Chapter 2

Bayesian Design of Noninferiority Clinical Trials
with Co-primary Endpoints and Multiple Dose
Comparison

Wengqing Li, Ming-Hui Chen, Huaming Tan and Dipak K. Dey

Abstract We develop a Bayesian approach for the design of noninferiority clinical
trials with co-primary endpoints and multiple dose comparison. The Bayesian ap-
proach has the potential of power increase and hence sample size reduction due to
the incorporation of the historical data and the correlation structure among multiple
co-primary endpoints while it still maintains the family-wise type I error control
without additional multiplicity adjustment. In this chapter, we compare the Bayesian
method to the conventional frequentist method with or without Bonferroni multiplic-
ity adjustment resulting from the multiple dose comparison. The proposed method
is also applied to the design of a clinical trial, in which the study drug at a low dose
level and at a high dose level is compared with the active control in terms of the
bivariate co-primary endpoints.

2.1 Introduction

A noninferiority clinical trial is often designed to demonstrate that a test treatment
is not worse than an active control or the current standard of care (SOC). Phase
IIT confirmatory clinical trials are recently seen to be conducted via noninferior-
ity trials in comparison with an active comparator for various reasons, including
ethic compliance, comparison effectiveness, benefit and risk assessment. Details
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of medical reasons and the inherent issues of the conduction of a non-inferiority
trial have been discussed extensively (CPMP 2000). A number of health authorities
guidelines, including the draft guidance from the US Food and Drug Administration
(FDA), have been released to guide the pharmaceutical industry to conduct non-
inferiority trials (CPMP Working Party on Efficacy of Medicinal Products Note for
Guidance [11/3630/92-EN 1995, CHMP 2005, FDA Guidance for industry 2010, ICH
Harmonised tripartite guideline 1998, ICH Harmonized tripartite guideline 2000).

There is a substantial literature on both the frequentist design and the Bayesian
design for a simple noninferiority clinical trial to compare a test treatment with a
control in terms of one primary endpoint, including Liu and Chang (2011) and Chen
et al. (2011). Often there is only one primary endpoint involved in the hypothesis
testing in a clinical trial. But sometimes multiple endpoints are simultaneously tested
in a trial even though the formulation of hypotheses may be different depending
on the study objectives, the study design, and the nature of multiplicity. Several
corresponding statistical methods have been proposed. Sugimoto et al. (2012) present
a convenient formula for sample size calculation in clinical trials with multiple co-
primary continuous endpoints. Laska et al. (1992) extend the well-known optimality
of the min test in the univariate case to the multivariate case and apply to superiority
hypothesis testing on multiple endpoints. Kong et al. (2004) adopt the min test to
non-inferiority hypothesis testing for multiple endpoints following a multivariate
normal distribution.

The clinical trial with multiple co-primary endpoints is a special case of the one
with multiple endpoints, in which all endpoints are equally important clinically.
The conventional frequentist approach for a clinical trial with multiple co-primary
endpoints is via the intersection—union testing (IUT; Eaton and Muirhead 2007).
Recently, new statistical approaches have been developed to achieve a higher power
while the family-wise type I error rate is still controlled. For example, Chuang-Stein
etal. (2007) propose an approach based on the notion of controlling the average type I
error rate over a restricted null space rather than over the conventional full null space.
The other Bayesian approaches include Gonen et al. (2003) and Scott and Berger
(2006). While most clinical trials compare two treatments, some trials compare three
or more medications, multiple doses of medications, or medical devices against each
other or against the standard treatment, which often leads to the multiplicity issue.
If the global hypothesis involves multiple comparisons, an appropriate multiplicity
adjustment method is required in order to control the family-wise type I error rate.
Dmitrienko et al. (2010) give a comprehensive review on the multiple testing pro-
cedures widely used in clinical studies, including procedures based on univariate
p values (e.g., Bonferroni, Holm, fixed-sequence, Simes, Hommel, and Hochberg
procedures), parametric procedures, and resampling-based procedures. A noninferi-
ority clinical trial involving multiple dose levels for a study drug is often designed to
demonstrate the noninferiority of the study drug under at least one dose level; hence,
it is a typical multiple testing problem and an appropriate multiplicity adjustment
method is required in a frequentist design. By now, there is a rich literature on the
frequentist design of a noninferiority trial with multiple tests, including Ng (2003),
Hung and Wang (2004), Tsong and Zhang (2007), and R6hmel and Pigeot (2010).
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In this chapter, we develop a Bayesian approach for noninferiority clinical trials
with co-primary endpoints and multiple dose comparison by incorporating historical
data. One of the advantages of the Bayesian approach is that it has the potential
of increasing power and reducing sample size due to the incorporation of historical
data and the correlation structure among the multiple co-primary endpoints. Another
advantage of the proposed Bayesian approach is to control the family-wise type I error
automatically without an additional multiplicity adjustment. The Bayesian method
is also demonstrated and compared with the conventional frequentist method with
or without Bonferroni multiplicity adjustment via the design of a clinical trial.

The rest of the chapter is organized as follows. A motivation example of a non-
inferiority clinical trial with co-primary endpoints and multiple dose comparison is
described in Sect. 2.2. In Sect. 2.3, firstly the statistical settings of the noninferiority
clinical trial with co-primary endpoints and multiple dose comparison are introduced.
Then the conventional frequentist approach is briefly reviewed, and the Bayesian
method using the commonly used conjugate prior and the power prior with fixed
power parameter(s) to incorporate historical data for the control group is proposed
and described. In Sect. 2.4, the proposed Bayesian method is applied to the non-
inferiority clinical trial described in Sect. 2.2 in comparison with the conventional
frequentist method. Finally, the chapter ends with the conclusion and discussion in
Sect. 2.5.

2.2 Design of a Noninferiority Clinical Trial with Two
Co-primary Endpoints and Multiple Dose Comparison

An experiment agent is currently in mid to the late-stage development as a treatment
of signs and symptoms of benign prostatic hyperplasia or hypertrophy (BPH). BPH
is a chronic and progressive condition that adversely affects health-related quality
of life (HRQoL) by interfering with normal daily activities and sleep patterns. The
International Prostate Symptom Score (IPSS) ranging from 0 to 35, also known
as the American Urologic Association Symptom Score (AUA-SS), is collected in
a questionnaire. The change of IPSS from the baseline score (denoted by AIPSS
thereafter) is one of the primary endpoints for all drug trials in the treatment of BPH.
Although it is not mandatory, the change from baseline maximum urinary flow rate
(denoted by AQmax thereafter) is recommended as another co-primary endpoint
by European regulatory authority. In addition, the smaller AIPSS is and the bigger
AQmax is, the better the treatment effect of the test drug is.

A non-inferiority clinical trial design demonstrating that at least one dose regime
of 15 mg QD or 30 mg QD of the experiment compound is non-inferior to the
active comparator, Tamsulosin, the SOC for BPH, is explored to support further
development of the experiment compound.

Based on the above consideration, a hypothetical study will be a multicenter,
double-blind, three-arm parallel trial. The patients will be on placebo for 4 weeks
before they are randomized to one of the three arms: 15 mg QD and 30 mg QD of
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Table 2.1 Summary statistics (n, mean =+ standard deviation and correlation) of AIPSS and AQmax
for Tamsulosin

Correlation
coefficient between
Study n AIPSS AQmax (ml/s) AIPSS and AQmax
1 244 —5.1+6.4 1.52+3.59 N/A
2 34 —7.03+5.84 1.68+4.08 —-0.29

IPSS International Prostate Symptom Score

the experiment compound, and Tamsulosin 0.4 mg QD dose group, for 12 weeks.
After the 12-week double-blind treatment period, the patients who are randomized
to the experiment compound will remain on the same treatment, and the patients
who are on Tamsulosin will be re-randomized at the end of 12-week treatment to one
of the dose groups of the experiment compound for another 40 weeks to assess the
safety and tolerability of the compound. The two co-primary endpoints are AIPSS
and AQmax at the end of the 12-week double-blind treatment period.

Historical data are available from the two previous studies on Tamsulosin capsule
0.4 mg QD regime. The first study was a multicenter, randomized, double-blind,
placebo-controlled, parallel group, phase III trial to evaluate the efficacy and safety
of Tamsulosin for the treatment of patients with symptoms of moderate to severe
BPH (Narayan and Ashutosh Tewari 1998). This study was conducted by Boehringer
Ingelheim Pharmaceuticals, Inc. in 1993. The second study was a multicenter, ran-
domized, double-blind, placebo-controlled, parallel group, phase II trial to evaluate
the efficacy and safety of an experiment compound in the treatment of patients with
lower urinary tract symptoms (LUTS), in which Tamsulosin was an active compara-
tor (Tamimi et al. 2010). This study was conducted by Pfizer Inc. in 2007. Summary
statistics for AIPSS and AQmax for the active comparator of Tamsulosin from these
two studies are shown in Table 2.1. The pooled standard deviations (SD) for AIPSS
and AQmax are 6.34 and 3.70 ml/s, respectively. In addition, clinically meaningful
non-inferiority margins for AIPSS and AQmax are chosen to be 1 and —0.6 ml/s,
respectively, to design the noninferiority trial. The historical data in Table 2.1 is
incorporated in the Bayesian design developed in the subsequent sections.

2.3 Methodology

2.3.1 Assumption and Notation

We assume that there are three treatments in a clinical trial, including the study drug
at a high dose level, the study drug at a low dose level, and the (active) control
treatment, denoted by the 4, [, and ¢ (treatment) groups, respectively. The objective
of the study is to show non-inferiority of the study drug at a (high or low) dose level
compared to the control group.
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Let{ye,i =1,2,...,n,} bea J-dimensional random sample of size n, collected
for the gth group. Furthermore, given u, and X, we assume that y,; follows a
multivariate normal N;(u,, X) distribution, where 1, is the mean vector for the gth
group, and X' is the common variance covariance matrix for all the groups with the
dimension of J x J.Let 6 = (un, W, Ke, X) denote the collection of parameters.

Without loss of generosity, we assume there are two co-primary endpoints, i.e.,
J = 2, where a smaller value of the first co-primary endpoint is better and a larger
value of the second co-primary endpoint is better. Assume 1, = (itg1, ihg2)', Where
Mg1 and (g are the true means for the two co-primary endpoints for the gth group,
respectively. The noninferiority hypotheses comparing the gth study drug group,
g = h,l, with the control group can be formulated as Ho,: ftg1 — the1 = 8g1 OF
M2 — Mea < 8gp versus Hig: pgr — el < 8g1 and plgo — e > 842, where 8,1 and
8,2 are the noninferiority margins of the co-primary endpoints. Let §; = (8,1, 842)' for
g = h,l. The noninferiority margins should be the same for both high and low doses
in the comparison and, hence, we assume that §, = § = 8, where § = (8;,8,)’, in
the subsequent sections. The objective of the study is to demonstrate non-inferiority
of the study drug at a dose level after the noninferiority margin is chosen based on
both clinical and statistical considerations.

We assume that {y,;,i = 1,...,ng}, g = h,l,c, are independent across the
groups. The likelihood function of the data can be written as

1 &

_ng P

SOID) o< Hy—pyo| X2 exp <_§ Z()’gi — Hg) X l(ygi - Mg))
i=1

ilg

_mg 1 - o e
= My_py | 77 exp (—5” (Z (Vei — yg) (Vei = ¥o)' 27!
i=l1

+ ng(//‘g - yg)(ﬂg - yg)/z_l)),

where ¥, = (Y72, y,i)/ng, and the data D = {(ygi, yij» Yek)s @ = Lo ymy, j =
1,...,n,k=1,...,n.}.

2.3.2 Preliminary: The Frequentist Design

Under the multivariate normal assumption, (y;, y1, y., S) are the sufficient statistics,
where S denotes the pooled matrix of sums of squares and cross products: S =
Y (g = DSg. g = hol,c,and Sg = (X0 (i — )i — ) /g — 1).

Let Wy, = (npne/(np 4+ ne) 2w — e — 8), and Wy = (myne/(n; +ne)' (3 —
. —§8). Then W), and S are independent, and W; and S are independent, with W, ~
N((pne/pAn )" (mn—pe—8), £), Wi ~ N((nne/(n+ne ) (ui—pe—8), ),
and S ~ Wishart(n, X'), where n = n;, + n; + n. — 3.

In the conventional frequentist design, an appropriate multiplicity adjustment
method due to the multiple dose comparisons must be adopted in order to control the
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family-wise type I error rate. Let « denote the desired overall one-sided significance
level, and assume Bonferroni multiplicity adjustment is used to assign significance
levels to comparisons of the study drug at the high and the low dose levels to the
control group. Suppose that we consider the comparison of the study drug at ei-
ther the high or the low dose level with the control group first. The standard test
involves testing the two endpoints separately at the same significance level of «/2
using the one-sided ¢ tests, and rejecting the null hypothesis Hy, (in favor of the
alternative hypothesis H,,) if and only if the two separate ¢ test statistics are signifi-
cant. Specifically, let W, = (W1, Wy2)', g = h,1, and define Tyy = Wy (s11/n)~"/?
and Ty» = Wyo(s2a/n)~1/2, where s1; and sy, are the diagonal elements of S. Tyg
has a standard ¢ distribution with degrees of freedom of n when the dth element
of g — e — 8 is zero (d = 1,2). The standard test rejects Hy, if and only if
maxyTgq < cqy2, Where cq 7 is the (/2)th quantile of the  distribution with degrees
of freedom of n. Eaton and Muirhead (Eaton and Muirhead 2007) show that the stan-
dard test is an IUT and the size of the test is «/2. Moreover, the standard test may
be conservative because the two statistics Tgq, d = 1,2, are assumed independent.
The type I error rate approaches to «/2 as the correlation coefficient of the two end
points approaches to one.

Note that the assumption of the equal variance covariance for all groups could be
relaxed if necessary. For example, Welch’s ¢ test (Welch 1947) is an adaptation of the
Student’s ¢ test when the two samples have possibly unequal variances. Specifically,
the test statistic is given by 7' = (X, — )_(2)(512/711 + S%/nz)’l/z, where X;, Siz, and
n;,i = 1,2, are the ith sample mean, sample variance, and sample size, respectively.
The degrees of freedom v associated with the test can be approximated by

v =(S}/n1 + S3/n2)*/1S}/{ni(ny — 1)} + S3/{n5(na — D).

2.3.3 The Proposed Bayesian Design

Following Chen et al. (2011), let 7/)(9) be the fitting prior and also let 7*)(9)
be the sampling prior. The fitting prior is used to perform Bayesian analysis once
data are collected. The sampling prior is the distribution for the parameters which
we believe the future data would follow, and it is used to generate psuedo-data for
the design evaluation, i.e., the type I error and power assessment. We assume the
hypotheses: Hog: 15(6) > 1*(8) versus Hig: n,(8) < n*(8), where n* = (81, —8>)',
ng(0) = (g1 — Met, —(Hg2 — He2)), the subscript ¢ = & is for the comparison
between the high dose group of the study drug and the control group, and g = [ is
for the comparison between the low dose group of the study drug and the control
group.
Define the key quantity:

Bs = Es [HUgmni{P(1,(0) < n"(8)ID) = v, 1], 2.1)

where 1(-) is the indicator function, and y, is a prespecified credible level in (0, 1),
e.g., 0.95. It is reasonable to assume that y, = 3, = y for our scenario since
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there is no differentiation for the high and low dose group comparisons with the
control group in terms of y,. Therefore, we use the same credible level y in §; in
the subsequent sections. The probability in (2.1) is calculated with respected to the
posterior distribution of 6, given the data D and the fitting prior 7/(9), and the
expectation is taken with respect to the marginal distribution of the data under the
sampling prior 77)(6).

We use the same Bayesian sample size determination algorithm from (Chen et
al. 2011). Let ®y and ®; denote the parameter spaces corresponding to the null and
alternative hypothesis, respectively, and let 6, and O, be the closure of ® and O),.
Further, let né”(@) be the sampling prior with support @p = Oy N O, and let nf”(@)
be the sampling prior with support & C &,. For given ap > 0 and o; > 0, we
compute

Ngy = mln{n : /350 = 050}; Ng, = mll’l{l’l : IBSI >1- O(l}, (2.2)

where Byo and g in (2.2) are the ,’s in (2.1) by letting 7)(9) be 7" (6) and
nf”(@), respectively, and they are the Bayesian type I error and power, respectively.
The Bayesian sample size is given by np = max{ng,, 1y, }. One possible choice of y
is 0.975, which is comparable to a significant level of 0.05/2 used for the individual
hypothesis test under the frequentist design with multiplicity adjustment. Common
choices of oy and o include oy = 0.05 and «; = 0.2 so that in a Bayesian design
with sample size np, the family-wise type I error rate is less than or equal to 0.05
and the power is at least 0.8. The choice of @ is often related to the design margins
dq’s. For example, for a continuous endpoint, a typical choice of (g4 in @ for the
noninferiority hypothesis testing is ..

Historical data can be incorporated via the different forms of the fitting prior,
including the power prior with a fixed or random or mixture power parameter, the
hierarchical prior, and the hierarchical commensurate and power prior. In this chapter,
for simplicity, we consider the commonly used conjugate prior and the power prior
with a fixed power parameter. Often the historical data are only available for the
control group; hence, a noninformative fitting prior is assumed for the study drug.

2.3.4 The Conjugate Prior

The conjugate priors for the unknown parameters 6 = (uy, i1, e, X) are given as

X ~ Inv—Wishart,,;(Ao),
Mg|2 ~ N(MgOa Z‘/Kgo),
where v, Ao, (g0, and Kgo are known constants. The posterior distributions for

(tg, X)), g = h,l, c, arein the same families as the prior distributions but with updated
parameters. Specifically, the marginal posterior distribution for p, is a multivariate



24 W. Liet al.

|D ~ ¢ An
Mg vp—J+1 | Kgn> Kgn(\)n —J+1) >

t distribution:

the marginal distribution of X' is an Inverse—Wishart distribution:
Y'|D ~ Inv—Wishart,, (A,),
and the conditional distribution of u, given X is a multivariate normal:

Mg|E,D ~ N(Mgn, E/Kgn),

— — e 5 — —
where J = 2» MHgn = Mg0+ Kg0+ilg Ygs Kgn = Kg0 +ng» vy = Vo+n,+n+n,

K40
Kg()-ng
Ay = Ao+ Zg:h,l,c {Sgn + K’;i(fjg (¥g — g0)(Yg — MgO)/}, and Sg, = Z;’il (vgi —
)_)g)(ygi - )_’g),-

Samples from the joint posterior distribution for (ug, X'), ¢ = h,l,c, can be
obtained using the following procedure:

Step 1. Draw X'|D ~ Inv—Wishart,, (A,)
Step 2. Independently draw i, | X, D ~ N(pign, X /ken), & = h,l,c.

The following is a computation algorithm to compute the study type I error or
power for given ng, 8, y, M (number of Monte Carlo samples), and N (number
of simulations):

Step 1. Generate 6 from the sampling prior, i.e., 8 ~ 7).

Step 2. Generate data from the multivariate normal distribution, ie., y, ~
N(ug, X), g =h,l,c.

Step 3. Generate M samples 0™ m = 1,...,M, from the joint posterior
distribution using the algorithm shown above.

Step 4. Compute P, = M~' "M 1{n,(6") < n*()}, and check whether P, > y
or not.

Step 5. Repeat steps 1-4 N times, then calculate the proportion of {Ug_p; f’g >y}
among those N times, which gives an estimate of Sy, i.e., the type I error or power.

For the sample size determination, we need to repeat the above procedure for other
scenarios of different combinations of n,’s and then choose the optimal combination
of ng’s as the desired sample size under which both the type I error and power satisfy
the design requirement.

A Special Case: The Noninformative Prior. In order to facilitate the comparison
between the Bayesian approach and the frequentist approach, it is desirable to specify
a noninformative prior in the Bayesian approach. A commonly used noninformative
prior is the multivariate Jeffreys prior, 7 (pg, X') |ZJ|‘JTH, which is the limit of
the conjugate prior as k,0 — 0, v9 — —1, and |Ag| — 0, g = h, [, c. Consequently,
the corresponding posterior distribution can be obtained by

Z‘|D ~ Inv—Wishart,,h +111+114-—1(Shn + Sln + Scn)»
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Mgl D~ N(yg, X/ng).

The computational algorithm to determine the sample size is exactly same as that
described above except for the Monte Carlo sampling steps, where the samples of
parameters are drawn from a different posterior distribution. In addition, the marginal
distribution for pi, is a multivariate ¢ distribution:

tnh+n1+ncfj(yg, Sgn/(ng(nh +n;+n.—J)),

where J = 2.

2.3.5 The Power Prior

We extend the power prior of (Ibrahim and Chen 2000) to construct the fitting prior
for p. and X. In general, we assume that there are a total of K sets of historical

data available for the control group, denoted by y.or = (Veoki-i = 1,2,... ,n01),
k=1,2,...,K, where ng is the number of samples collected in the kth historical
dataset. Furthermore, we let y.o = ((yc01)> (Ve02)s--- »(Veox)') denote all the K

historical datasets.
We consider the power prior with a fixed power parameter a, for i, and X' as
7 (pes 2 Yo, 20)

nok

K aok
n 1
o8 1_[ |:|E|_gk exXp <_§ Z (Yeoki — /Lc)/z_l(yCOki - Mc))] wo(he, X), (2.3)
k=1 i=1

where ag = (ag1,...,a0x), 0 < ap < 1,fork =1,...,K, and mp(u, X) is an
initial prior. When mo(jt., X) oc | X|~@*+D/2 je., the noninformative Jeffreys prior,
(2.3) can reduce to the conjugate prior

2| ye0, a9 ~ Inv—Wishart,,; (Ao),

K
Bel X, yeo,a0 ~ N (Z (aoknor Yeor)/ no(@o), 27//<c0>,

k=1

where

K K
Ap = ZaOk Sox + Z (@oknor Yeor Voo
k=1 =1

K K
- Z (@oknok yeok) Z (aoknokyeor)'/no(ao),
k=1 k=1
Sok = 2r% Yeoki — Yeor)Yeoki — Yeor)s Yook = (212 Yeori) /nok> vo = no(ag) —
1,k.0 = no(ag) = Zle aornok- Then, the computational algorithms developed in
Sect. 2.3.4 for the conjugate prior can be applied here correspondingly.



26 W. Lietal.

2.4 Application to the Design of a Non-inferiority Trial

In this section, we apply the proposed Bayesian approach to the design of the
non-inferiority trial described in Sect. 2.2. We use simulations to investigate the
performance of the proposed approach in terms of the type I error and power, and
compare the Bayesian approach with the conventional frequentist approach with or
without the Bonferroni multiplicity adjustment. We assume the data corresponding
to the high dose group of the study drug, the low dose group of the study drug, and
the control group have the distributions yg;|ie, X ~ Na(ug, X), where u, is the
mean vector for the gth group, X' is the common variance covariance matrix for all
groups, and i = 1,2,--- ,n,. Let iy = (g1, ihg2)', Where g1 and g are the true
means for the two co-primary endpoints, respectively, for the gth group. We choose
the point mass sampling priors as commonly used in the frequentist trial design and
trial analysis. That is, we let

79 (pg) = b= g Oy = TFE o

0 otherwise 0 otherwise,

where 1! and X©) are prespecified values. The sample size is also allowed to
change in the simulations, which can be used for the sample size determination
during the design stage. The design strategy is to find a minimum total size #, i.e.,
n = ny + n; + n,, so that the power is at least 80 % and the type I error is controlled
at 5 %.

Figure 2.1 shows mean vectors of the two co-primary endpoints for the control
group from the two historical data as well as the pooled mean vector. We assume
that the mean vector for the co-primary endpoints for the control group for the
future data is a linear combination of the mean vector from the first historical data,
Yeor = ¢(—5.1,1.52), and the mean vector from the pooled historical data, y.o. =
c(—5.34,1.54) . That is, u* is chosen to be any point on the line interval of AC in
Fig. 2.1. Moreover, X® is chosen to be that the variance components are the pooled
variances for the two co-primary endpoints from the two historical trials, i.e., 6.34%
and 3.702, respectively, and the correlation coefficient to be —0.29, estimated from
the second historical study. The design value of ,U,Ej), g = h,l is chosen according to
the type I error or power evaluation.

Let § = (81,82) = (1,—0.6)". For the type I error evaluation, we simulate the
data from the sampling priors with parameters of ,u(y) p® 48, 1 = pu® 45,
or Y = p® + (61,0), 1 = p® + (61,05, or ) = ul + (0,8, p” =

1 +(0,8,), and define the type I error for the design as the maximum type I

error. For the power evaluation, we let the sampling pr10r parameters be M(s) =,

S

) = ME”, orpy) = pu® + (61,00, i = pu®,or g = O +0,8,), " = p¥,
or 1l = ul + (8,8, u = MEY), and define the power for the des1gn as the
minimum power.

We use the power prior in Sect. 2.3.5 to incorporate the two historical data for
the control group and use a power prior with an approximately noninformative prior
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