
Chapter 2

A Short Tour of UML

Before introducing the most important concepts of UML in the follow-
ing chapters, we first explain the background of this modeling language.
We look at how UML came into being and what the “U” for “Unified”
actually means. We then answer the question of how UML itself is de-
fined, that is, where do the rules come from that dictate what a valid
model should look like in UML? Furthermore, we outline what UML
is used for. Finally, we give a short overview of all 14 UML diagrams
in the current version 2.4.1 of the UML standard specification. These
diagrams can be used for modeling both structure and behavior.

2.1 The History of UML

The introduction of object-oriented concepts in information technology Origins of object

orientationoriginates from the work of the early 1960s [12]. The first ideas were
implemented in systems such as Sketchpad, which offered a new, graph-
ical communication approach between man and computer [28, 51].

Today, the programming language SIMULA [24] is regarded as the SIMULA

first object-oriented programming language. SIMULA was primarily
used to develop simulation software and was not particularly widely
used. It already included concepts such as classes, objects, inheritance,
and dynamic binding [2].

The introduction of these concepts was the start of a revolution
in software development. In the subsequent decades, there followed Object-oriented

programming languagesa multitude of programming languages based on the object-oriented
paradigm [21]. These included languages such as C++ [50], Eiffel [31],
and Smalltalk [28]. They already contained many of the important con-
cepts of modern programming languages and are still used today.

11© Springer International Publishing Switzerland 2015
M. Seidl et al., UML @ Classroom, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-12742-2_ 2

12 2 A Short Tour of UML

The emergence and introduction of object orientation as a method in
software engineering is closely connected to the appearance of object-
oriented programming languages. Today, object orientation is a proven
and well-established approach for dealing with the complexity of soft-
ware systems. It is applied not only in programming languages but also
in other areas, such as in databases or the description of user interfaces.

As we have already discussed in Section 1.2, where we introduced
the notion of a model, software systems are abstractions aimed at solv-
ing problems of the real world with the support of machines. Procedural
programming languages are not necessarily the most appropriate tools
for describing the real world: the differences in concept between a nat-
ural description of a problem and the practical implementation as a pro-
gram are huge. Object-oriented programming was an attempt to develop
better programs that, above all, are easier to maintain [12].

Over the years, object orientation has become the most important
software development paradigm. This is reflected in object-oriented
programming languages such as Java [4] or C# [32] and object-oriented
modeling languages such as UML. However, the road to the current
state-of-the-art of software development was long and winding.

In the 1980s, the programming language Ada, funded by the UnitedAda

States Department of Defense, was extremely popular due to its pow-
erful concepts and efficient compilers [25]. Even back then, Ada sup-
ported abstract data types in the form of packages and concurrency in
the form of tasks. Packages allowed the separation of specification and
implementation and the usage of objects and classes of objects. Ada
thus distinguished itself fundamentally from other popular languages of
that time, such as Fortran and Cobol. As a consequence, there followed
a great demand for object-oriented analysis and design methods to make
the development of Ada programs easier. Due to the wide distribution
of Ada and the pressure from the United States Department of Defense,
these modeling methods were based specifically on the characteristics
of Ada. Grady Booch was one of the first researchers to publish workBooch method

on the object-oriented design of Ada programs [5].
Over time, a number of further object-oriented modeling methods

arose (see [12] for an overview). In general, the modeling methods
had either a strong reference to programming languages, such as the
Booch method, or a strong reference to data modeling, such as the Ob-OMT approach by

Rumbaugh et al. ject Modeling Technique (OMT) approach developed by James Rum-
baugh et al. [42]. OMT supported the development of complex objects
in the sense of an object-oriented extension of the entity-relationship
model [14] which had been introduced for describing databases.

Independently of this, Ivar Jacobson et al. introduced the Object-OOSE approach by

Jacobson et al. Oriented Software Engineering (OOSE) approach [27]. This approach
was originally developed to describe telecommunication systems.

2.1 The History of UML 13

In the 1980s and early 1990s, the modeling world was flooded with Method war

a multitude of different modeling languages. Considerable effort was
required to deal with the resulting compatibility problems. The models
of different project partners were often not compatible and it was not
always possible to reuse models in different projects. The result was
exhausting discussions about different notations, which detracted from
the actual modeling problems. As new modeling languages were ap-
pearing all the time, there was no clarity about which were worthy of
investment and which were just a short-lived trend. If a language did
not become accepted, all investments that had been made to establish it
within a project or a company were generally lost. Looking back, this
time of numerous approaches, often with the difference being only in
the detail, is referred to as the method war.

To put an end to this unsatisfactory situation, in 1996 the Object Object Management

Group (OMG)Management Group (OMG) [33], the most important standardization
body for object-oriented software development, called for the specifica-
tion of a uniform modeling standard.

In the previous year, 1995, Grady Booch, Ivar Jacobson, and James
Rumbaugh had combined their ideas and approaches at the OOPSLA
conference (OOPSLA stands for Object-Oriented Programming, Sys-
tems, Languages, and Applications). Since then, Booch, Jacobson, and
Rumbaugh have often been called the “three amigos”. They set them- Three amigos

selves the following objectives [1]:

• Use of object-oriented concepts to represent complete systems rather
than just one part of the software

• Establishment of an explicit relationship between modeling concepts
and executable program code

• Consideration of scaling factors that are inherent in complex and crit-
ical systems

• Creation of a modeling language that can be processed by machines
but can also be read by human beings

The result of their efforts was the Unified Modeling Language (UML) Unified Modeling

Language (UML)which was submitted in version 1.0 in 1997 in response to the OMG
call. A number of former competitors were involved in the creation of
version 1.1 that subsequently appeared in 1998. One of the main objec-
tives was a consistent specification of the language core of UML which
is documented in the metamodel (see Chapter 9). The metamodel de- Metamodel

fines which model elements the language UML provides and how to use
them correctly. For formulating constraints which the model elements
have to fullfill, the Object Constraint Language (OCL) [36], based on Object Constraint

Language (OCL)predicate logic, was introduced. In subsequent versions, along with the
revision of certain language concepts, mechanisms for the interchange-
ability of models in the form of the XML Metadata Interchange format

14 2 A Short Tour of UML

(XMI) [38] were added. In addition to these rather small changes, inXML Metadata

Interchange format

(XMI)

2000 the OMG initiated a modernization process for UML. This finally
led to the adoption of the language standard UML 2.0 in 2005. With the
exception of small changes which, through interim versions, resulted in
the current version 2.4.1, this is the language description of UML that
we will get to know and use in this book.

Today, UML is one of the most widespread graphical object-oriented
modeling languages. Despite the numerous revisions, its roots (Booch
method, OMT, OOSE) are still clearly recognizable. UML is suitable
for modeling both complex object relationships and processes with con-
currency. UML is a general purpose modeling language, meaning that
its use is not restricted to a specific application area. It provides lan-
guage and modeling concepts and an intuitive graphical notation for
modeling various application areas, enabling a software system to be
specified, designed, visualized, and documented [43]. The result of
modeling with UML is a graphical model that offers different views
of a system in the form of various diagrams.

2.2 Usage

UML is not tied to a specific development tool, specific programming
language, or specific target platform on which the system to be devel-
oped must be used. Neither does UML offer a software development
process. UML in fact separates the modeling language and modeling
method. The latter can be defined on a project-specific or company-
specific basis. However, the language concepts of UML do favor an
iterative and incremental process [43].

UML can be used consistently across the entire software develop-Use in the software

development process ment process. At all stages of development, the same language concepts
can be used in the same notation. Thus, a model can be refined in stages.
There is no need for a model to be translated into another modeling lan-
guage. This enables an iterative and incremental software development
process. UML is well-suited for various application areas with different
requirements regarding complexity, data volume, real time, etc.

The UML model elements and their correct use are specified in the
UML metamodel [35]. The language concepts are defined so gener-Generic language

concepts ically that a wide and flexible applicability is achieved. To avoid re-
stricting the use of UML, the standard is (intentionally) vague at vari-
ous points, permitting different interpretations in the form of semanticSemantic variation point

variation points. However, this is a two-edged sword; it also leads to
different implementations of the language standard by modeling tools,
which in turn, unfortunately makes it difficult to exchange models.

2.3 Diagrams 15

2.3 Diagrams

In UML, a model is represented graphically in the form of diagrams. A Diagram

diagram provides a view of that part of reality described by the model.
There are diagrams that express which users use which functionality
and diagrams that show the structure of the system but without specify-
ing a concrete implementation. There are also diagrams that represent
supported and forbidden processes. In the current version 2.4.1, UML
offers 14 diagrams that describe either the structure or the behavior of a
system.

Diagram

Structure Diagram

Component

Diagram

Deployment

Diagram

Composition Structure

Diagram

Class

Diagram

Object

Diagram

Package

Diagram

Profile

Diagram

Behavior Diagram

State Machine

Diagram

Timing

Diagram

Sequence

Diagram

Activity

Diagram

Use Case

Diagram

Interaction

Diagram

Interaction Overview

Diagram

Communication

Diagram

Figure 2.1

UML diagrams

Figure 2.1 shows a taxonomy of the 14 UML diagrams [35], giv-
ing a very rough categorization. As the figure shows, we differentiate
between structure diagrams and behavior diagrams. The behavior di-
agrams include the interaction diagrams, which in turn consist of four
diagrams (see Chapter 6).

A diagram is usually enclosed by a rectangle with a pentagon in the Notation for diagram

frametop left-hand corner. This pentagon contains the diagram type and the
name of the diagram. Optionally, parameters may be specified following
the name which then can be used within the diagram. Figure 2.2 con-

16 2 A Short Tour of UML

Figure 2.2

Examples of UML diagram
frames

cd University

Building

*teaches at
te

nd
s

*

Professor Student

Course

*

*

Person

in
LectureHall

* 1

*

sd Registration(course, date)

register(course, date)

register: ″ok″

:Student :Database
:Registration

System

enter(course, date)

enter: ″ok″

tains two examples of diagram frames. In particular, it shows a class di-
agram (cd) with the name University and a sequence diagram (sd) called
Registration with the parameters course and date.

A concept that may occur in all diagrams is the note. A note can con-Note

tain any form of expression that specifies the diagram and its elements
more precisely—for example, in natural language or in the Object Con-
straint Language (OCL). Notes may be attached to all other model ele-
ments. Figure 2.3 shows an example of the use of a note which specifies
in natural language that persons are not permitted to grade themselves.
The class Person and the association grades represent concepts of the
class diagram that will be introduced in Chapter 4.

2.3 Diagrams 17

Persons are not permitted

to grade themselves

Person

grades

*

*

Figure 2.3

Example of a note

2.3.1 Structure Diagrams

UML offers seven types of diagrams for modeling the structure of a sys-
tem from different perspectives. The dynamic behavior of the elements
in question (i.e., their changes over time) is not considered in these dia-
grams.

The Class Diagram

Just like the concepts of the object diagram (see next paragraph), the Class diagram
(see Chapter 4)

Course

*teaches at
te

nd
s

* *

*

Person

Prof. Student

concepts of the class diagram originate from conceptual data model-
ing and object-oriented software development. These concepts are used
to specify the data structures and object structures of a system. The
class diagram is based primarily on the concepts of class, generaliza-
tion, and association. For example, in a class diagram, you can model
that the classes Course, Student, and Professor occur in a system. Profes-
sors teach courses and students attend courses. Students and professors
have common properties as they are both members of the class Person.
This is expressed by a generalization relationship.

The Object Diagram

Based on the definitions of the related class diagram, an object dia- Object diagram
(see Chapter 4)

henryFoster

:Professor

oom:Course

oop:Course

gram shows a concrete snapshot of the system state at a specific execu-
tion time. For example, an object diagram could show that a professor
Henry Foster (henryFoster) teaches the courses Object-Oriented Model-
ing (oom) and Object-Oriented Programming (oop).

18 2 A Short Tour of UML

The Package Diagram

The package diagram groups diagrams or model elements according toPackage diagram

Exam

Administration

Student

common properties, such as functional cohesion. For example, in a uni-
versity administration system, you could introduce packages that con-
tain information about the teaching, the research, and the administrative
aspects. Packages are often integrated in other diagrams rather than be-
ing shown in separate diagrams.

The Component Diagram

UML pays homage to component-oriented software development byComponent diagram

CentralData

Administration

Library

Administration

offering component diagrams. A component is an independent, exe-
cutable unit that provides other components with services or uses the
services of other components. UML does not prescribe any strict separa-
tion between object-oriented and component-oriented concepts. Indeed,
these concepts may be combined in any way required. When specify-
ing a component, you can model two views explicitly: the external view
(black box view), which represents the specification of the component,
and the internal view (white box view), which defines the implementa-
tion of the component.

The Composition Structure Diagram

The composition structure diagram allows a hierarchical decompositionComposition structure
diagram

Server Client

Network

of the parts of the system. You can therefore use a composition struc-
ture diagram to describe the internal structure of classes or components
in detail. This enables you to achieve a higher level of detail than, for
example, in a class diagram because the modeling is context-specific.
You can specify details of the internal structure that are valid precisely
for the context under consideration.

The Deployment Diagram

The hardware topology used and the runtime system assigned can beDeployment diagram

«device»

Server

«device»

Client

represented by the deployment diagram. The hardware encompasses
processing units in the form of nodes as well as communication rela-
tionships between the nodes. A runtime system contains artifacts that
are deployed to the nodes.

2.3 Diagrams 19

The Profile Diagram

Using profiles, you can extend UML to introduce domain-specific con- Profile diagram

«metaclass»

Component

«stereotype»

Bean

cepts. The actual core of the language definition of UML, the meta-
model, remains unchanged. You can thus reuse modeling tools without
having to make adjustments. For example, you can use profiles to intro-
duce the concept of Java Enterprise Beans.

2.3.2 Behavior Diagrams

With the behavior diagrams, UML offers the infrastructure that enables
you to define behavior in detail.

Behavior refers to the direct consequences of an action of at least one
object. It affects how the states of objects change over time. Behavior
can either be specified through the actions of a single object or result
from interactions between multiple objects.

The Use Case Diagram

UML offers the use case diagram to enable you to define the require- Use case diagram
(see Chapter 3)

Registration

Student

Administration

ments that a system must fulfill. This diagram describes which users use
which functionalities of the system but does not address specific details
of the implementation. The units of functionality that the system pro-
vides for its users are called use cases. In a university administration
system, for example, the functionality Registration would be a use case
used by students.

The State Machine Diagram

Within their life cycle, objects go through different states. For example, State machine diagram
(see Chapter 5)

logout
logged

inlogin

logged

out

a person is in the state logged out when first visiting a website. The state
changes to logged in after the person successfully entered username and
password (event login). As soon as the person logs out (event logout), the
person returns to the state logged out. This behavior can be represented
in UML using the state machine diagram. This diagram describes the
permissible behavior of an object in the form of possible states and state
transitions triggered by various events.

20 2 A Short Tour of UML

The Activity Diagram

You can model processes of any kind using activity diagrams: both busi-Activity diagram
(see Chapter 7)

Reg.

Lec.

Ass.

ness processes and software processes. For example, an activity diagram
can show which actions are necessary for a student to participate in a
lecture and an assignment. Activity diagrams offer control flow mecha-
nisms as well as data flow mechanisms that coordinate the actions that
make up an activity, that is, a process.

The Sequence Diagram

The sequence diagram describes the interactions between objects to ful-Sequence diagram
(see Chapter 6)

register
(course, date)

register:
″ok″

:System:Student

fill a specific task, for example, registration for an exam in a univer-
sity administration system. The focus is on the chronological order of
the messages exchanged between the interaction partners. Various con-
structs for controlling the chronological order of the messages as well as
concepts for modularization allow you to model complex interactions.

The Communication Diagram

Similarly to the sequence diagram, the communication diagram de-Communication diagram
(see Chapter 6)

1: login(user, pw)
2: getCourses

:System
1.1: check
 (user, pw)

:Student

:DB

scribes the communication between different objects. Here, the focus
is on the communication relationships between the interaction partners
rather than on the chronological order of the message exchange. Com-
plex control structures are not available. This diagram clearly shows
who interacts with whom.

The Timing Diagram

The timing diagram explicitly shows the state changes of the interactionTiming diagram
(see Chapter 6)

:S
y
s
te

m
:S

tu
d
e
n
t

:D
B

active

log.in
log.out

busy

idle

login

check

login: ″ok″

check:
″ok″

partners that can occur due to time events or as a result of the exchange
of messages. For example, a person is in the state logged in as soon as
the message is received from the university administration system that
the password sent is valid.

2.4 Diagrams Presented in this Book 21

The Interaction Overview Diagram

The interaction overview diagram models the connection between dif- Interaction overview
diagram
(see Chapter 6)

reg.()

reg.:″ok″

:Sys.:Stud.

sd Registration

sd Forum

[authorized]

[else]

ferent interaction processes by setting individual interaction diagrams
(i.e., sequence diagram, communication diagram, timing diagram, and
other interaction overview diagrams) in a time-based and causal se-
quence. It also specifies conditions under which interaction processes
are permitted to take place. To model the control flow, concepts from
the activity diagram are used. For example, a user of the university ad-
ministration system must first log in (which already represents a sep-
arate interaction with the system) before being allowed to use further
functionalities.

2.4 Diagrams Presented in this Book

As already explained in Chapter 1, this book restricts itself to the five
most important and most widespread types of UML diagrams, namely
the use case diagram, class diagram (including the object diagram), state
machine diagram, sequence diagram, and activity diagram. In this book,
we present these diagrams in the order in which they would generally be
used in software development projects. We begin with the use case dia-
gram, which specifies the basic functionality of a software system. The
class diagram then defines which objects or which classes are involved
in the realization of this functionality. The state machine diagram then
defines the intra-object behavior, while the sequence diagram specifies
the inter-object behavior. Finally, the activity diagram allows us to de-
fine those processes that “implement” the use cases from the use case
diagram.

http://www.springer.com/978-3-319-12741-5

	Chapter 2 A Short Tour of UML
	2.1 The History of UML
	2.2 Usage
	2.3 Diagrams
	2.3.1 Structure Diagrams
	The Class Diagram
	The Object Diagram
	The Package Diagram
	The Component Diagram
	The Composition Structure Diagram
	The Deployment Diagram
	The Profile Diagram

	2.3.2 Behavior Diagrams
	The Use Case Diagram
	The State Machine Diagram
	The Activity Diagram
	The Sequence Diagram
	The Communication Diagram
	The Timing Diagram
	The Interaction Overview Diagram

	2.4 Diagrams Presented in this Book

