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Abstract We consider a complicated hub location problem which includes multi-
allocation, different hub sizes and different transport volumes on different week
days. Furthermore, we consider transport costs per vehicle and not per volume which
transforms the cost function into a step function and makes the problem numerically
very hard. In our previous work we developed a heuristic approach which we now
want to compare to CPLEX results for general and simplified models.

1 Introduction

Hub location problems have become classic challenges in the area of discrete opti-
mization. The original problems, as they are very well described in [1], use a graph
of depots which are connected by transport arcs. The task is to transport a given
set of shipments from their sources to their sinks in a cost-optimal way. For that,
some depots are equipped as hubs; then one assigns to every shipment a path from
its source to its sink using only hubs in between. The total cost is the sum of the
transport costs (for every shipment on every arc it uses) and the costs for the hubs
(some problems require a fixed number of hubs p which is equivalent to assigning
zero cost to the first p hubs and infinite costs to the following ones).

Themain idea of hub location problems is economies of scale: Bundling shipments
usually decreases the unit transport costs and may hence be beneficial even if it
requires detours and costly facilities. Classic hub location problems usually assume
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fixed unit costs for each transport arc; to simulate economies of scale they reduce the
unit costs on hub-hub-connections by a factor α because “usually” these arcs carry
more overall weight. This simplification increases the solvability but also limits the
applicability of the model.

We investigate the problem from the point of viewof a less-than-truckload network
planner. A large number of small shipments has to be transported from their source
depots to their sink depots. A vehicle can transport many of these shipments, so that
it is advantageous to bundle shipments for transport: Instead of direct transport we
establish hubs as transhipment points. We ask the strategic questions:

• Where should hubs be established?
• What transhipment capacities should be assigned to them?

To give a cost-efficient answer to such questions, we have to balance the strategic
costs of establishing transhipment capacitieswith the prospective tactical/operational
costs of the transport. Our model incorporates the following challenges:

• Truck-based transport costs. If we send a truck from A to B, the resulting cost
depends on general vehicle costs, driver salary and fuel consumption. The filling
quota of the truck has little influence on the fuel consumption and nearly no
influence on the other terms. Thus we obtain a good approximation of the real
costs if we measure transport costs “by vehicle” instead of “by volume” [2]. On
each connection A → B, the cost per volume becomes a step function. Such
vehicle based costs were already considered in the mathematical models of [8, 9].

• Multi-allocation. Every shipment can be independently routed, so that each depot
can be connected to many others. If it turns out to be cheaper to have some direct
transports, this is also possible.

• A weekday-based schedule. We consider a European network where the travel time
between two depots/hubs is one to four days. As our shipping volumes depend on
the day of the week, we use a cyclic model with five time slices to represent the
working days.

• Variable hub sizes. We assign a transhipment to every possible hub. It can be
chosen on a continuous scale. Hubs of different capacities were considered by [7],
but our weekly schedule adds an additional flavour: Strategic decisions have to be
equal for every day of the week, i.e. the transhipment capacity of a hub is the same
on every week day.

• Buffering. We want to analyse the effect of buffering, i.e. the possibility of storing
a shipment in a hub for a day to get a cheaper transport on the next day. Therefore,
we consider a scenario with a separate buffering capacity for every hub, which can
also be chosen on a continuous scale at the strategic level. Buffering is considered
as a “transport in time” lasting one day. In principle, buffering actions can be
chained, but as our real world instances have strict transport time limits this is
usually not possible.

Section2 will define and discuss mathematical models for the strategic planning
problem that was just outlined. These have a huge number of binary variables, so
that we define restricted models in Sect. 3 that are easier to solve. Section4 briefly
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describes our heuristic approach which is detailed in [3]. In Sect. 5, we state and
discuss the numerical results of both the MIP approaches and the heuristic approach.
A short conclusion completes the paper.

2 The Mathematical Models

Westartwith a given set of D of depots. The depots are all interconnected by transport
connections. A transport connection can be used by shipments to get from one depot
to another; it has a travel time (in days) and cost factor which is the cost per vehicle on
this connection. We consider a homogeneous fleet as one usually uses the maximal
allowed truck size on European connections. The situation can be depicted by a
directed graph: The nodes are formed by the (depot, weekday) pairs, and a transport
connection from depot A to depot B which needs n days connects (depotA, d) with
(depotB, d + n (mod 5)) for each weekday d (shown in Fig. 1).

Furthermore we have a large number of shipments. These shipments all have a
source depot, a sink depot, a volume and a maximal travel time. The routes can use
every depot for transhipment or buffering which is equipped with the appropriate hub
capacity. The transhipment capacities of the hubs have to be chosen large enough
to work for every weekday, i.e. they need to handle the maximal transhipment that
happens throughout the week. A route can consist of arbitrary many steps as long as
the maximal travel time is not exceeded.

There are two general approaches to model the routing of the shipments: A route-
based or a flow-based view.

In the route-based view, each possible route for a shipment is represented by a
binary variable from which exactly one has the value 1. Without any restrictions on

Fig. 1 The time expanded network: each arc represents a movement in space and (cyclic) time
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the possible paths, the number of variables is exponential in the number of edges of
the graph.Hence this kind ofmodel can only be sensibly appliedwhenwe have strong
restrictions on the number of possible paths (like in our paper [5] or in classical hub
location problems [1], where at most three edges per path were allowed) or apply an
approach like column generation. As column generation failed to give good results
in a simpler model with truck-based costs [6], we will not use this approach in the
general case, but wewill come back to it in the next section to build restrictedmodels.

The flow-based view is inspired by the multi-commodity flow problem, but
with the major difference that shipments cannot be split, so that we need a binary
variable for each (shipment, edge) pair, stating if the edge is used by the ship-
ment. As the number of commodities and the number of edges are each of order
(#depots)2 · (#days per week), we get approximately (#depots)4 · (#days per week)2
binary variables. Due to the maximal travel time of each shipment, some of these
variables can be set to zero in preprocessing.

Firstly, we will construct a mathematical model without shipment buffering, then
we will add this feature later. Let D be the set of depots and W = {0, 1, 2, 3, 4} be
the set of week days. Furthermore we have a set Q of shipments. For every q ∈ Q
we denote by qso ∈ D, qsi ∈ D, qday ∈ W , amq and timeq the source, sink, starting
day, amount and maximal travel time respectively.

The most important variable is the binary flow variable fqabw. It states whether
the shipment q ∈ Q uses the arc a → b, a �= b with starting day w. To form a flow
it has to fulfill the following three conditions (trab is the number of days to travel
from a to b):

∑

d∈D,d �=qso

fqqsodqday = 1 q ∈ Q (1)

∑

d∈D,d �=qsi,w∈W

fqdqsiw = 1 q ∈ Q (2)

∑

a∈D,a �=d

fqad(w−trad mod 5) =
∑

b∈D,b �=d

fqdbw

q ∈ Q, d ∈ D, w ∈ W, d �= qsi, d = qso ⇒ w �= qday (3)

Equation (1) states that each shipment leaves its source depot on the respective
day, while Eq. (2) indicates that each shipment has to reach the sink depot (on an
arbitrary week day). Equation (3) matches the flows for any other depot and time.
As the last parameter of f stands for the starting day, we have to reduce w on the left
hand side. To model the maximal travel time of each shipment we add the times of
all used edges (4):

∑

a �=b∈D,w∈W

fqabw · trab ≤ timeq q ∈ Q (4)
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Let us introduce some auxiliary variables: We define tabw to be the transport
volume on the edge a → b starting on day w, vabw the number of vehicles on that
edge, udw the total transhipment at depot d on day w and umax

d the maximum over w
of udw. These variables are defined by the Eqs. (5–8) (size is the size of a vehicle in
units of volume):

tabw =
∑

q∈Q

amq · fqabw a �= b ∈ D, w ∈ W (5)

vabw · size ≥ tabw a �= b ∈ D, w ∈ W (6)

udw =
∑

b∈D

tdbw −
∑

q∈Q:qso=d ,qday=w

amq d ∈ D, w ∈ W (7)

umax
d ≥ udw d ∈ D, w ∈ W (8)

Using the parameters truckcostab for the costs of using a truck on connection
a → b and transcostd for the strategic costs of having transhipment capacity, we can
state the objective function as:

∑

a,b∈D,w∈W

vabw · truckcostab +
∑

d∈D

umax
d · transcostd (9)

Let us call this problem Multi-Allocation Weekday Scheduled Strategic Planning
ProblemMAWSSPP. To get the buffering version BMAWSSPP, we need to introduce
the possibility to store a commodity in a hub for a day. For this, we use the flow
variables fqddw which describe a “transport” from d to itself lasting one day. The
buffering is also a strategic cost which is charged similarly to the transshipment cost
(but with the factor buffcost). For that bdw and bmax

d are analogously defined to udw

and umax
d . We write:

bdw =
∑

q∈Q

fqddw · amq d ∈ D, w ∈ W (10)

bmax
d ≥ bdw d ∈ D, w ∈ W (11)

The constraints (1–5) are transformed to:

∑

d∈D

fqqsodqday = 1 q ∈ Q (12)

∑

d∈D,w∈W

fqdqsiw = 1 q ∈ Q (13)

∑

a∈D

fqad(w−trad mod 5) =
∑

b∈D

fqdbw
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q ∈ Q, d ∈ D, w ∈ W, d �= qsi, d = qso ⇒ w �= qday (14)
∑

a �=b∈D,w∈W

fqabw · trab +
∑

d∈D,w∈W

fqddw ≤ timeq q ∈ Q (15)

tabw =
∑

q∈Q

amq · fqabw a, b ∈ D, w ∈ W (16)

These five equations only differ from their counterparts by usage of buffering flows
fqaaw. For (15) we added a term adding one day for every buffering. We note that
the (following) Eqs. (17) and (19) are unchanged, while (18) gets an additional term:
Without it, buffered shipments would be charged twice for transhipment, but we
chose only to charge incoming shipments.

vabw · size ≥ tabw a �= b ∈ D, w ∈ W (17)

udw =
∑

b∈D

tdbw −
∑

q∈Q:qso=d ,qday=w

amq − bd(w−1mod 5) d ∈ D, w ∈ W (18)

umax
d ≥ udw d ∈ D, w ∈ W (19)

The cost function is extended by an extra term:

∑

a,b∈D,w∈W

vabw · truckcostab +
∑

d∈D

umax
d · transcostd

+
∑

d∈D

bmax
d · buffcostd (20)

Let us note that our modelling of the buffering feature includes the possibility
of chaining buffering edges which means buffering a shipment for more than one
day. We see no theoretic reasons for stronger constraints, but in practice the maximal
transport time restrictions often exclude long buffering.

One can improve the solvability of the problem by discarding some variables in
preprocessing. The largest number of eliminated variables can normally be achieved
by the following argument:

fqabw = 1 ⇒ trqsoa + trab + trbqsi ≤ timeq , (21)

if we make the reasonable assumption that transport times fulfill the triangle inequal-
ity. Variables not fulfilling condition (21) can hence be eliminated from the equations.
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3 Restricted Mathematical Models

A way to improve solvability of the MAWSSPP is to drastically reduce the number
of involved binary variables.Wewant to define restrictedmodels whose solutions are
still valid solutions for MAWSSPP (and hence also for BMAWSSPP). We consider
two approaches:

1. Weconsider the same transport plan for everyday (Sameday).By this, the number
of routes that have to be assigned is reduced by a factor of five. Furthermore, it
reflects the reality in many non-automatized settings.

2. We allow at most one hub on each route (Onehub). This leads to a massive
reduction in the number of binary variables (detailed below).

Let us first discuss the elimination of weekdays. Until now, we assumed one
shipment for every (source depot, sink depot, week day) triple, possibly of size zero.
Nowwe define a “super shipment” for every pair (source depot, sink depot) which has
themaximal size of all five attached shipments.We call the set of super shipments Qs

and furthermore reuse the variables f , v, t and u, which are now time independent (we
can thus dispense with umax). Solving the routing problem for these super shipments
(with quintupled costs) automatically gives a solution for the original problem. The
model now looks like this:

∑

d∈D,d �=qso

fqqsod = 1 q ∈ Qs (22)

∑

d∈D,d �=qsi

fqdqsi = 1 q ∈ Qs (23)

∑

a∈D,a �=d

fqad =
∑

b∈D,b �=d

fqdb d ∈ D, d �= qsi, d �= qso (24)

∑

a �=b∈D

fqab · trab ≤ timeq q ∈ Qs (25)

tab =
∑

q∈Qs

amq fqab a �= b ∈ D (26)

vab · size ≥ tab a �= b ∈ D (27)

ud =
∑

b∈D

tdb −
∑

q∈Qs :qso=d

amd d ∈ D (28)

min 5 ·
( ∑

a,b∈D

vab · truckcostab +
∑

d∈D

ud · transcostd
)

(29)

For the Onehub model, we opted for a route-based-approach, because we can
now easily describe the routing of a shipment by giving the intermediate hub d as
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rqd . A direct routing can be represented by d = qsi or d = qso. In this way we
reduce the number of binary variables from about (#days per week)2 · (#depots)4 to
approximately (#days per week) · (#depots)3.

We keep all the other variables except for f . Hence, we can leave the objective
function unchanged. Essentially, we have to make four changes:

• Delete the flow conditions (1–4).
• The transport volume tabw is now calculated as:

tabw =
∑

q∈Q,
qso=a,
qday=w

rqb · amq +
∑

q∈Q,
qsi=b,

qday=w−trda

rqa · amq a �= b ∈ D, w ∈ W (30)

• We have to ensure that for every commodity exactly one route is chosen:

∑

d∈D

rqd = 1 q ∈ Q (31)

• The maximal travel time constraint has to be rewritten:

∑

d∈D

rqd · (
trqsod + trdqsi

) ≤ timeq q ∈ Q (32)

In our paper [4, Sect. 4] we considered additional inequalities to strengthen the
formulation, which were not very successful in the two-hub-case. Following Martin
Baumung’s good unpublished results for the one-hub-case, we reconsider them. The
idea is that we can calculate the minimal flow from a subset K ⊂ D to D\K as

minflow
(
K , D\K

) =
∑

q∈Q,qso∈K ,qsi∈D\K

amq (33)

From that we know that the number of vehicles going from K to D\K is at least
	minflow(K , D\K )/size
. Due to the rounding up procedure, this bound is stronger
than the original LP bound. To avoid adding huge numbers of inequalities, we con-
sider this only for |K | = 1 and |K | = |D|−1. In the first case, we can even consider
the outgoing flow of every day separately. In the end, we get:

∑

b∈D

vabw ≥
⌈( ∑

q∈Q:qso=a,qday=w

amq

)
/size

⌉
a ∈ D, w ∈ W (34)

∑

a∈D,w∈W

vabw ≥
⌈( ∑

q∈Q:qsi=b

amq

)
/size

⌉
a ∈ D (35)
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4 A Short Description of the Heuristic Approach from [3]

In [3] we developed a general modelling language for shipment based transport prob-
lems, i.e. problems that consist of a large number of (unsplittable) shipments which
have to be transported through a graph. It is based upon the following paradigms:

1. The routes of the shipments are considered as independent variables, while all
other variables (like number of trucks, transhipment capacities, buffering capac-
ities, etc.) are calculated from the chosen routes.

2. Each shipment has a set of admissible routes. Constraints that depend on more
than one route are modelled in the cost function.

3. Aneighbour of a given solution is created by taking a small subset of the shipments
and replacing their routes by others. To avoid extremely large neighbourhoods we
discard neighbours which fail to fulfill a special local optimality criterion detailed
in [3].

The model and the neighbourhood creation scheme allow us to implement a
Simulated Annealing algorithm. The numerical results are given in the next section.

5 Numerical Results

We want to compare three different approaches:

1. The full model solved by CPLEX.
2. Heuristic results based upon Sect. 4.
3. The results of CPLEX for the restricted models.

We will use the seven benchmark instances I5, I10, I20, I30, I40, I50 and I60 with
the respective number of depotswhich are basedupondata froma largeEuropean road
freight company. We solved each of it twice: with buffering and without buffering.
The results are summarized in Table1. We used a computer with 3.4 GHz and 16GB
RAM for six hours, both for the heuristic and for CPLEX 12.6.0.

Contrary to our expectation, the buffering advantage does not show up in our
heuristic results. Especially for the larger instances, we tend to get better results in
the non-buffering case. There are practical and numerical reasons for this: Firstly,
the option “buffering” increases the size of the search space and so slows down the
heuristic. Secondly, the larger instances offer more other possibilities for consolida-
tion so that buffering is not so important.

Comparing heuristic and CPLEX we see that although we drastically reduced the
number of variables by preprocessing CPLEX fails for each of the instances over 20
depots. We see that the heuristic works well for the small instances; for the larger
ones, we have no comparison.

Hence we solved the restricted models Sameday and Onehub with the same
solver and computer. The results are shown in Tables2 and 3.We see that our heuristic
outperforms all of them.
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Table 1 Results of the heuristic approach compared to the results of CPLEX with preprocessing

Inst Heur Heur buf CPLEX CPLEX buf

I5 29,206,387 19,221,750 29,206,387 19,221,750

LB 29,206,387 19,221,750

I10 101,029,802 90,112,421 101,029,802 91,972,141

LB 101,029,802 82,633,347

I20 156,016,297 149,190,951 201,129,327 No solution

LB 135,228,841 No solution

I30 324,679,889 347,634,809 No solution No solution

I40 468,567,791 470,264,568 No solution No solution

I50 668,569,617 683,945,737 No solution No solution

I60 978,018,115 977,338,269 No solution No solution

Every problem is considered with and without the possibility of buffering

Table 2 Results from Sameday compared to the best known results

Inst SAMEDAY Lower bound Best known Best known with buff

I5 30,171,383 30,171,383 29,206,387 19,221,750

I10 133,023,575 133,023,575 101,029,802 90,112,421

I20 222,652,292 163,991,639 156,016,297 149,190,951

I30 597,737,936 363,056,830 324,679,889 324,679,889

I40 No solution 468,567,791 468,567,791

I50 2,169,759,985 670,424,018 668,569,617 668,569,617

I60 No solution 978,018,115 977,338,269

Table 3 Results from Onehub (minimum of the results with and without strengthening inequali-
ties) compared to the best known results

Inst ONEHUB Lower bound Best known Best known with buff

I5 29,206,387 29,206,387 29,206,387 19,221,750

I10 119,128,292 119,128,292 101,029,802 90,112,421

I20 200,685,015 188,607,303 156,016,297 149,190,951

I30 642,446,816 295,834,506 324,679,889 324,679,889

I40 7,881,411,010 381,556,712 468,567,791 468,567,791

I50 3,225,667,487 526,796,494 668,569,617 668,569,617

I60 4,813,948,039 739,362,497 978,018,115 977,338,269

6 Conclusion

The results show that the realistic hub location problem that we stated is very difficult
for standard MIP solvers. This difficulty persists not only if we do preprocessing but
also when we drastically reduce the complexity of the model. On the other hand, a
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heuristic approach based on [3] performs well. Hence we will follow two paths for
the further development:

On the one hand, we will improve our heuristic by proper gauging. A heuristic
procedure involves a huge number of search parameters which have to be calibrated
by statistical methods. On the other hand, we will aim for better lower bounds by
solving relaxed hub location problems, preferably with a Benders’ decomposition
approach.
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