
Chapter 2
Mereology and Rough Mereology:
Rough Mereological Granulation

Ex pluribus unum
[Saint Augustine. Confessions]

In this chapter, we embark on a more specific granulation theory, stemming from
the mereological theory of things. This mechanism provides us with tolerance and
weak tolerance relations forming a graded similarity in the sense of Chap.1 and with
resulting therefrom granules. To put the necessary notions in a proper order, we are
going to discuss mereology, rough mereology and the mereological granulation.

2.1 Mereology

Mereology does address things in terms of parts, cf., [1]. A formal theory of Mere-
ology due to Leśniewski [5] axiomatically defines the notion of a part.

The reader may be aware of the existence of a vast literature on philosophical and
ontological aspects of mereology which cannot be mentioned nor discussed here,
and, we advise them to consult, e.g., Simons [27], Luschei [11] or Casati and Varzi
[2] for discussions of those aspects.

2.1.1 Mereology of Leśniewski

Mereology due to Leśniewski arose from attempts at reconciling antinomies of naïve
set theory, see Leśniewski [5, 6, 8], Surma et. al. [9], Sobociński [29, 30]. Leśniewski
[5] was the first presentation of the foundations of this attempt as well as the first
formally complete exposition of mereology.
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2.1.1.1 On the Notion of Part

The primitive notion of mereology in this formalism is the notion of a part. Given
some category of things, a relation of a part is a binary relation π which is required
to be

M1 Irreflexive: For each thing x, it is not true that π(x, x)
M2 Transitive: For each triple x, y, z of things, if π(x, y) and π(y, z), then π(x, z)

Remark In the original scheme of Leśniewski, the relation of parts is applied to
individual things as defined in Ontology of Leśniewski, see Leśniewski [7], Iwanuś
[4], Słupecki [28]. Ontology due to Leśniewski is based on the Ontology Axiom:

(AO) xεy if and only if (xεx) and there is z such that zεy and for each z if zεx

then zεy,

which singles out x as an individual (characterized by the formula xεx) and y as a
collective thing, with the copula ε read as ‘is’.

The relation of part induces the relation of an ingredient ingr, defined as

ingr(x, y) if and only if π(x, y) ∨ x = y. (2.1)

The relation of ingredient is a partial order on things, i.e.,

1. ingr(x, x);
2. If ingr(x, y) and ingr(y, x) then (x = y);
3. If ingr(x, y) and ingr(y, z) then ingr(x, z).

We formulate the third axiom with a help from the notion of an ingredient, see
Polkowski [24], Chap. 5,

M3 (Inference) For each pair of things x, y, if the property

I(x, y) : if ingr(t, x), then exist w, z with ingr(w, t), ingr(w, z), ingr(z, y)

is satisfied, then ingr(x, y).

The predicate of overlap, Ov in symbols, is defined by means of

Ov(x, y) if and only if there is z such that ingr(z, x) and ingr(z, y). (2.2)

Using the overlap predicate, one can write I(x, y) down in the form

IOv(x, y) : if ingr(t, x), then there is z such that ingr(z, y) and Ov(t, z).

2.1.1.2 On the Notion of a Class

The notion of a mereological class follows; for a non-vacuous property Φ of things,
the class of Φ, denoted ClsΦ is defined by the conditions
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C1 If Φ(x), then ingr(x, ClsΦ)

C2 If ingr(x, ClsΦ), then there is z such that Φ(z) and IOv(x, z)

In plain language, the class of Φ collects in an individual thing all things satisfying
the property Φ. The existence of classes is guaranteed by an axiom

M4 For each non-vacuous property Φ there exists a class ClsΦ

The uniqueness of the class follows by M3. M3 implies also that, for the non-
vacuous property Φ, if for each thing z such that Φ(z) it holds that ingr(z, x), then
ingr(ClsΦ, x).

The notion of an overlap allows for a succinct characterization of a class: for each
non-vacuous property Φ and each thing x, it happens that ingr(x, ClsΦ) if and only
if for each ingredient w of x, there exists a thing z such that Ov(w, z) and Φ(z).

Remark Uniqueness of the class along with its existence is an axiom in the
Leśniewski [5] scheme, from which M3 is derived. Similarly, it is an axiom in the
Tarski [32–34] scheme.

Consider two examples,

1. The strict inclusion ⊂ on sets is a part relation. The corresponding ingredient
relation is the inclusion ⊆. The overlap relation is the non-empty intersection.
For a non-vacuous family F of sets, the class ClsF is the union

⋃
F.

2. For reals in the interval [0, 1], the strict order < is a part relation and the corre-
sponding ingredient relation is the weak order ≤. Any two reals overlap; for a set
F ⊆ [0, 1], the class of F is supF.

2.1.1.3 Notions of Element, Subset

The notion of an element is defined as follows

el(x, y) if and only if for a property Φ y = ClsΦ and Φ(x). (2.3)

In plain words, el(x, y) means that y is a class of some property and x responds to
that property. To establish some properties of the notion of an element, we begin with
the property INGR(x) = {y : ingr(y, x)}, for which the identity x = ClsINGR(x)
holds by M3. Hence, el(x, y) is equivalent to ingr(x, y). Thus, each thing x is its
own element. This is one of means of expressing the impossibility of the Russell
paradox within the mereology, cf., Leśniewski [5], Thms. XXVI, XXVII, see also
Sobociński [29].

We observe the extensionality of overlap: For each pair x, y of things, x = y if and
only if for each thing z, the equivalence Ov(z, x) ⇔ Ov(z, y) holds. Indeed, assume
the equivalence Ov(z, x) ⇔ Ov(z, y) to hold for each z. If ingr(t, x) then Ov(t, x)
and Ov(t, y) hence by axiom M3 ingr(t, y) and with t = x we get ingr(x, y). By
symmetry, ingr(y, x), hence x = y.
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The notion of a subset follows,

sub(x, y) if and only if for each z if ingr(z, x) then ingr(z, y). (2.4)

It is manifest that for each pair x, y of things, sub(x, y) holds if and only if el(x, y)
holds if and only if ingr(x, y) holds.

For the property Ind(x) ⇔ ingr(x, x), one calls the class ClsInd, the universe, in
symbols V .

2.1.1.4 The Universe of Things, Things Exterior, Complement

It follows by definition of the universe that

1. The universe V is unique;
2. ingr(x, V) holds for each thing x;
3. For each non-vacuous property Φ, it is true that ingr(ClsΦ, V).

The notion of an exterior thing x to a thing y, extr(x, y), is the following

extr(x, y) if and only if ¬Ov(x, y). (2.5)

In plain words, x is exterior to y when no thing is an ingredient both to x and y.
Clearly, the operator of exterior has properties

1. No thing is exterior to itself;
2. extr(x, y) implies extr(y, x);
3. If for a non-vacuous property Φ, a thing x is exterior to every thing z such that

Φ(z) holds, then extr(x, ClsΦ).

The notion of a complement to a thing, with respect to another thing, is rendered as
a ternary predicate comp(x, y, z), cf., Leśniewski [5], par. 14, Def. IX, to be read:‘x
is the complement to y with respect to z’, and it is defined by means of the following
requirements

1. x = ClsEXTR(y, z);
2. ingr(y, z), where EXTR(y, z) is the property which holds for a thing t if and only

if ingr(t, z) and extr(t, y) hold.

This definition implies that the notion of a complement is valid only when there
exists an ingredient of z exterior to y. Following are basic properties of complement,

1. If comp(x, y, z), then extr(x, y) and π(x, z);
2. If comp(x, y, z), then comp(y, x, z).

We let for a thing x, −x = ClsEXTR(x, V). It follows that

1. −(−x) = x for each thing x;
2. −V does not exist.
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We conclude this paragraph with two properties of classes useful in the following.

If Φ ⇒ Ψ then ingr(ClsΦ, ClsΨ ), (2.6)

and, a corollary

If Φ ⇔ Ψ then ClsΦ = ClsΨ. (2.7)

2.2 Rough Mereology

A scheme ofmereology, introduced into a collection of things, sets an exact hierarchy
of things of which some are (exact) parts of others; to ascertain whether a thing is an
exact part of some other thing is in practical cases often difficult if possible at all, e.g.,
a robot sensing the environment by means of a camera or a laser range sensor, cannot
exactly perceive obstacles or navigation beacons. Such evaluation can be done ap-
proximately only and one can discuss such situations up to a degree of certainty only.
Thus, one departs from the exact reasoning scheme given by decomposition into parts
to a scheme which approximates the exact scheme but does not observe it exactly.

Such a scheme, albeit its conclusions are expressed in an approximate language,
can be more reliable, as its users are aware of uncertainty of its statements and can
take appropriate measures to fend off possible consequences.

Introducing some measures of overlapping, in other words, the extent to which
one thing is a part to the other, would allow for a more precise description of relative
position, and would add an expressional power to the language of mereology. Rough
mereology answers these demands by introducing the notion of a part to a degree
with the degree expressed as a real number in the interval [0, 1]. Any notion of a part
by necessity relates to the general idea of containment, and thus the notion of a part
to a degree is related to the idea of partial containment and it should preserve the
essential intuitive postulates about the latter.

The predicate of a part to a degree stems ideologically from and has as one of
motivations the predicate of an element to a degree introduced by Zadeh as a basis
for fuzzy set theory [36]; in this sense, rough mereology is to mereology as the fuzzy
set theory is to the naive set theory. To the rough set theory, owes rough mereology
the interest in concepts as things for analysis.

The primitive notion of rough mereology is the notion of a rough inclusion which
is a ternary predicate μ(x, y, r)where x, y are things and r ∈ [0, 1], read as ‘the thing
x is a part to degree at least of r to the thing y’. Any rough inclusion is associated with
a mereological scheme based on the notion of a part by postulating that μ(x, y, 1) is
equivalent to ingr(x, y), where the ingredient relation is defined by the adoptedmere-
ological scheme. Other postulates about rough inclusions stem from intuitions about
the nature of partial containment; these intuitions can be manifold, a fortiori, postu-
lates about rough inclusions may vary. In our scheme for rough mereology, we begin
with some basic postulates which would provide a most general framework. When
needed, other postulates, narrowing the variety of possiblemodels, can be introduced.
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2.2.1 Rough Inclusions

We have already stated that a rough inclusion is a ternary predicate μ(x, y, r). We
assume that a collection of things is given, on which a part relation π is introduced
with the associated ingredient relation ingr. We thus apply inference schemes of
mereology due to Leśniewski, presented above.

Predicates μ(x, y, r) were introduced in Polkowski and Skowron [25, 26]; they
satisfy the following postulates, relative to a given part relation π and the induced
by π relation ingr of an ingredient, on a set of things:

RINC1 μ(x, y, 1) if and only if ingr(x, y)

This postulate asserts that parts to degree of 1 are ingredients.

RINC2 If μ(x, y, 1) then μ(z, x, r) implies μ(z, y, r) for every z

This postulate does express a feature of partial containment that a ‘bigger’ thing
contains a given thing ‘more’ than a ‘smaller’ thing. It can be called a monotonicity
condition for rough inclusions.

RINC3 If μ(x, y, r) and s < r then μ(x, y, s)

This postulate specifies the meaning of the phrase ‘a part to a degree at least of r’.
From postulates RINC1–RINC3, and known properties of ingredients some conse-
quences follow

1. μ(x, x, 1);
2. If μ(x, y, 1) and μ(y, z, 1) then μ(x, z, 1);
3. μ(x, y, 1) and μ(y, x, 1) if and only if x = y;
4. If x 	= y then either ¬μ(x, y, 1) or ¬μ(y, x, 1);
5. If, for each z, r, [μ(z, x, r) if and only if μ(z, y, r)] then x = y.

Property 5 may be regarded as an extensionality postulate in rough mereology.
It follows that rough inclusions are in general graded weak tolerance relations in

the sense of Chap.1, par. 2.1.
By a model for rough mereology, we mean a quadruplex

M = (VM ,πM , ingrM ,μM)

where VM is a set with a part relation πM ⊆ VM × VM , the associated ingredient
relation ingrM ⊆ VM × VM , and a relation μM ⊆ VM × VM × [0, 1] which satisfies
RINC1–RINC3.

We now describe some models for rough mereology which at the same time give
us methods by which we can define rough inclusions, see Polkowski [14–17, 20–22],
a detailed discussion may be found in Polkowski [24].

http://dx.doi.org/10.1007/978-3-319-12880-1_1
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2.2.1.1 Rough Inclusions from T-norms

We resort to continuous t-norms which are continuous functions T : [0, 1]2 → [0, 1]
which are 1. symmetric; 2. associative; 3. increasing in each coordinate; 4. satisfying
boundary conditions T(x, 0) = 0, T(x, 1) = x, cf., Polkowski [24], Chaps. 4, 6,
Hájek [3], Chap. 2. Classical examples of continuous t-norms are

1. L(x, y) = max{0, x + y − 1} (the Łukasiewicz t-norm);
2. P(x, y) = x · y (the product t-norm);
3. M(x, y) = min{x, y} (the minimum t-norm).

The residual implication ⇒T induced by a continuous t-norm T is defined as

x ⇒T y = max{z : T(x, z) ≤ y}. (2.8)

One proves that μT (x, y, r) ⇔ x ⇒T y ≥ r is a rough inclusion; particular cases are

1. μL(x, y, r) ⇔ min{1, 1 − x + y ≥ r} (the Łukasiewicz implication);
2. μP(x, y, r) ⇔ y

x ≥ r when x > 0, μP(x, y, 1) when x = 0 (the Goguen
implication);

3. μM(x, y, r) ⇔ y ≥ r when x > 0, μM(x, y, 1) when x = 0 (the Gödel
implication).

A particular case of continuous t-norms are Archimedean t-norms which satisfy the
inequality T(x, x) < x for each x ∈ (0, 1). It is well–known, see Ling [10], that each
archimedean t-norm T admits a representation

T(x, y) = gT ( fT (x) + fT (y)), (2.9)

where, the function fT : [0, 1] → R is continuous decreasing with fT (1) = 0, and
gT : R → [0, 1] is the pseudo–inverse to fT , i.e., g ◦ f = id. It is known, cf., e.g.,
Hájek [3], that up to an isomorphism there are two Archimedean t-norms: L and P.
Their representations are

fL(x) = 1 − x; gL(y) = 1 − y, (2.10)

and,

fP(x) = exp(−x); gP(y) = −ln y. (2.11)

For an Archimedean t-norm T , we define the rough inclusion μT on the interval [0, 1]
by means of

(ari) μT (x, y, r) ⇔ gT (|x − y|) ≥ r, (2.12)
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equivalently,

μT (x, y, r) ⇔ |x − y| ≤ fT (r). (2.13)

It follows from (2.13), that μT satisfies conditions RINC1–RINC3 with ingr as
identity =.

To give a hint of proof: for RINC1: μT (x, y, 1) if and only if |x − y| ≤ fT (1) = 0,
hence, if and only if x = y. This implies RINC2. In case s < r, and |x − y| ≤ fT (r),
one has fT (r) ≤ fT (s) and |x − y| ≤ fT (s).

Specific recipes are

μL(x, y, r) ⇔ |x − y| ≤ 1 − r, (2.14)

and,

μP(x, y, r) ⇔ |x − y| ≤ −ln r. (2.15)

Both residual and archimedean rough inclusions satisfy the transitivity condition,
cf., Polkowski [24], Chap. 6,

(Trans) If μ(x, y, r) and μ(y, z, s), then μ(x, z, T(r, s)).

To recall the proof, assume, e.g., μT (x, y, r) and μT (y, z, s), i.e., |x − y| ≤
fT (r) and |y − z| ≤ fT (s). Hence, |x − z| ≤ |x − y| + |y − z| ≤ fT (r) +
fT (s), hence, gT (|x − z|) ≥ gT ( fT (r) + fT (s)) = T(r, s), i.e., μT (x, z, T(r, s)).
Other cases go along the same lines. Let us observe that rough inclusions of the
form (ari) are also symmetric, hence they are graded tolerance relations, whereas
residual rough inclusions are graded weak tolerance relations needing not be
symmetric.

2.2.1.2 Rough Inclusions in Information Systems (Data Tables)

An important domainwhere rough inclusionswill play a dominant role in our analysis
of reasoning by means of parts is the realm of information systems of Pawlak [13],
cf., Polkowski [24], Chap. 6. We will define information rough inclusions denoted
with a generic symbol μI .

We recall that an information system (a data table) is represented as a pair (U, A)

where U is a finite set of things and A is a finite set of attributes; each attribute
a : U → V maps the set U into the value set V . For an attribute a and a thing v, a(v)

is the value of a on v.
For things u, v the discernibility set DIS(u, v) is defined as

DIS(u, v) = {a ∈ A : a(u) 	= a(v)}. (2.16)



2.2 Rough Mereology 25

For an (ari) μT , we define a rough inclusion μI
T by means of

(airi) μI
T (u, v, r) ⇔ gT (

|DIS(u, v)|
|A| ) ≥ r. (2.17)

Then, μI
T is a rough inclusion with the associated ingredient relation of identity and

the part relation empty. These relations are graded tolerance relations.
For the Łukasiewicz t-norm, the airi μI

L is given by means of the formula

μI
L(u, v, r) ⇔ 1 − |DIS(u, v)|

|A| ≥ r. (2.18)

We introduce the set IND(u, v) = A\DIS(u, v). With its help, we obtain a new form
of (2.18)

μI
L(u, v, r) ⇔ |IND(u, v)|

|A| ≥ r. (2.19)

The formula (2.19) witnesses that the reasoning based on the rough inclusion μI
L is

the probabilistic one which goes back to Łukasiewicz [12]. Each (airi)–type rough
inclusion μI

T satisfies the transitivity condition (Trans) and is symmetric.

2.2.1.3 Rough Inclusions on Sets and Measurable Sets

Formula (2.19) can be abstracted for set and geometric domains. For finite sets A, B,

μS(A, B, r) ⇔ |A ∩ B|
|A| ≥ r (2.20)

defines a rough inclusion μS . For bounded measurable sets X, Y in an Euclidean
space En,

μG(A, B, r) ⇔ ||A ∩ B||
||A|| ≥ r, (2.21)

where, ||A|| denotes the area (the Lebesgue measure) of the region A, defines a
rough inclusion μG. Both μS,μG are neither symmetric nor transitive, hence, they
are graded weak tolerance relations.

Other rough inclusions and their weaker variants will be defined in later chapters.

2.3 Granules from Rough Inclusions

The idea of mereological granulation of knowledge, see Polkowski [16–19], cf.,
surveys Polkowski [21, 22], presented here finds an effective application in problems
of synthesis of classifiers from data tables. This application consists in granulation of
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data at preprocessing stage in the process of synthesis: after granulation, a new data
set is constructed, called a granular reflection, to which various strategies for rule
synthesis can be applied. This application can be regarded as a process of filtration
of data, aimed at reducing noise immanent to data. Application of rough inclusions
leads to a formal theory of granules of various radii allowing for various choices of
coarseness degree in data.

Granules are formed here as simple granules in the sense of Chap. 1, with tolerance
or weak tolerance induced by a rough inclusion. Assume that a rough inclusion μ is
given along with the associated ingredient relation ingr, as in postulate RINC1.

The granule gμ(u, r) of the radius r about the center u is defined as the class of
property Φ

μ
u,r , i.e.,

Φμ
u,r(v) if and only if μ(v, u, r). (2.22)

The granule gμ(u, r) is defined by means of

gμ(u, r) = ClsΦμ
u,r . (2.23)

Properties of granules depend, obviously, on the type of rough inclusion used in their
definitions. We consider separate cases, as some features revealed by granules differ
from a rough inclusion to a rough inclusion. The reader is asked to refer to the axiom
M3 for the tool formereological reasoning, which is going to be used inwhat follows.

In case of Archimedean t-norm–induced rough inclusions (ari), or (airi)–type
rough inclusions, by their transitivity, and symmetry, the important property holds,
see Polkowski [21, 24].

Proposition 6 In case of a symmetric and transitive rough inclusion μ, for each
pair u, v of objects , and r ∈ [0, 1], ingr(v, gμ(u, r)) if and only if μ(v, u, r) holds.
In effect, the granule gμ(u, r) can be represented as the set {v : μ(v, u, r)}.
Proof (op.cit., op.cit.) Assume that ingr(v, gμ(u, r)) holds. Thus, there exists z such
that Ov(z, v) and μ(z, u, r). There is x with ingr(x, v), ingr(x, z), hence, by tran-
sitivity of μ, also μ(x, u, r) holds. By symmetry of μ, ingr(v, x), hence, μ(v, x, r)
holds also �

In case of rough inclusions in information systems, induced by residual implications
generated by continuous t-norms, we have a positive case, for the minimum t-norm
M, see Polkowski [24].

Proposition 7 For the rough inclusion μ induced by the residual implication ⇒M,
due to the minimum t-norm M, and r < 1, the relation ingr(v, gμ(u, r)) holds if and
only if μ(v, u, r) holds.

Proof (loc.cit.) We recall the proof. The rough inclusion μ has the form μ(v, u, r)
if and only if |IND(v,s)|

|A| ⇒M
|IND(u,s)|

|A| ≥ r. If ingr(v, gμ(u, r)) holds, then by the
class definition, there exists z such that Ov(v, z) and μ(z, u, r) hold. Thus, we have

http://dx.doi.org/10.1007/978-3-319-12880-1_1
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w with ingr(w, v) and μ(w, u, r) by transitivity of μ and the fact that ingr(w, z).
By definition of μ, ingr(w, v) means that |IND(w, s)| ≤ |IND(v, s)|. As μ(w, u, r)
with r < 1 means that |IND(u, s)| ≥ r because of |IND(w, s)| ≥ |IND(u, s)|, the
condition |IND(w, s)| ≤ |IND(v, s)| implies that μ(v, u, r) holds as well �
The case of the rough inclusionμ induced either by the product t-normP(x, y) = x ·y,
or by the Łukasiewicz t-norm L, is a bit more intricate. To obtain in this case some
positive result, we exploit the averaged t-norm ϑ(μ) defined for the rough inclusion
μ, induced by a t-norm T , by means of the formula, see Polkowski [24], Chap. 7, par.
7.3, from which this result is taken,

ϑ(μ)(v, u, r) ⇔ ∀z.∃a, b.μ(z, v, a),μ(z, u, b), a ⇒T b ≥ r. (2.24)

Our proposition for the case of the t-norm P is, op.cit.

Proposition 8 For r < 1, ingr(v, gϑ(μ)(u, r)) holds if μ(v, u, a · r), where μ(v, t, a)

holds for t which obeys conditions ingr(t, v) and ϑ(μ)(t, u, r).

Proof ingr(v, gϑ(μ)(u, r)) implies that there is w such that Ov(v,w) and
ϑ(μ)(w, u, r), so we can find t with properties, ingr(t, w), ingr(t, v), hence, by
transitivity of ϑ(μ) also ϑ(μ)(t, u, r).

By definition of ϑ(μ), there are a, b such that μ(v, t, a), μ(v, u, b), and a ⇒P

b ≥ r, i.e., b
a ≥ r. Thus, μ(v, u, b) implies μ(v, u, a · r) �

An analogous reasoning brings forth in case of the rough inclusion μ induced by
residual implication due to the Łukasiewicz implication L, the result that, op.cit.

Proposition 9 For r < 1, ingr(v, gϑ(μ)(u, r)) holds if and only if μ(v, u, r + a − 1)
holds, where μ(v, t, a) holds for t such that ingr(t, v) and ϑ(μ)(t, u, r).

The two last propositions can be recorded jointly in the form

Proposition 10 For r < 1, and μ induced by residual implications either ⇒P or
⇒L, ingr(v, gϑ(μ)(u, r)) holds if and only if μ(v, u, T(r, a)) holds, where μ(v, t, a)

holds for t such that ingr(t, v) and ϑ(μ)(t, u, r).

Granules as collective concepts can be objects for rough mereological calculi.

2.3.1 Rough Inclusions on Granules

Due to the feature of mereology that it operates (due to the class operator) only on
level of individuals, one can extend rough inclusions from objects to granules; the
formula for extending a rough inclusion μ to a rough inclusion μ on granules is a
modification of mereological axiom M3, see Polkowski [24], Chap. 7, par. 7.4:

μ(g, h, r) if and only if for each z if ingr(z, g) then there is w such that

ingr(w, h) and μ(z, w, r).
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Proposition 11 The predicate μ(g, h, r) is a rough inclusion on granules.

Proof To recall the proof, see that μ(g, h, 1) means that for each object z
with ingr(z, g) there exists an object w with ingr(w, h) such that μ(z, w, 1), i.e.,
ingr(z, w), which, by the inference rule implies that ingr(g, h). This proves RINC1.
For RINC2, assume that μ(g, h, 1) and μ(k, g, r) so for each ingr(x, k) there is
ingr(y, g) with μ(x, y, r). For y there is z such that ingr(z, h) and μ(y, z, 1), hence,
μ(x, z, r) by property RINC2 of μ. Thus, μ(k, h, r). RINC2 follows and RINC3 is
obviously satisfied. �

We now examine rough mereological granules with respect to their properties.

2.4 General Properties of Rough Mereological Granules

In this exposition, we follow the results presented in Polkowski [24] with references
given therein. The basic properties are collected in

Proposition 12 The following constitute a set of basic properties of rough mereo-
logical granules

1. If ingr(y, x) then ingr(y, gμ(x, r));
2. If ingr(y, gμ(x, r)) and ingr(z, y) then ingr(z, gμ(x, r));
3. If μ(y, x, r) then ingr(y, gμ(x, r));
4. If s < r then ingr(gμ(x, r), gμ(x, s)),

which follow straightforwardly from properties RINC1–RINC3 of rough inclusions
and the fact that ingr is a partial order, in particular it is transitive, regardless of the
type of the rough inclusion μ.

For T–transitive rough inclusions, we can be more specific, and prove

Proposition 13 For each T-transitive rough inclusion μ,

1. If ingr(y, gμ(x, r)) then, for each s, ingr(gμ(y, s), gμ(x, T(r, s)));
2. If μ(y, x, s) with 1 > s > r, then there exists α < 1 with the property that

ingr(gμ(y,α), gμ(x, r)).

Proof Property 1 follows by transitivity of μ with the t-norm T . Property 2 results
from the fact that the inequality T(s,α) ≥ r has a solution in α, e.g., for T = P,
α ≥ r

s , and, for T = L, α ≥ 1 − s + r �

It is natural to regard granule system {gμt
r (x) : x ∈ U; r ∈ (0, 1)} as a neighborhood

system for a topology on U that may be called the granular topology.
In order to make this idea explicit, we define classes of the form

NT (x, r) = Cls(ψμT
r,x), (2.25)
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where,

ψμT
r,x(y) if and only if there is s > r such that μT (y, x, s). (2.26)

We declare the system {NT (x, r) : x ∈ U; r ∈ (0, 1)} to be a neighborhood basis for
a topology θμ. This is justified by the following

Proposition 14 Properties of the system {NT (x, r) : x ∈ U, r ∈ (0, 1)} are as
follows:

1. If ingr(y, NT (x, r)) then there is δ > 0 such that ingr(NT (y, δ), NT (x, r));
2. If s > r then ingr(NT (x, s), NT (x, r));
3. If ingr(z, NT (x, r)) and ingr(z, NT (y, s)) then there is δ > 0 such that

ingr(NT (z, δ), NT (x, r)) and ingr(NT (z, δ), NT (y, s)).

Proof For Property 1, ingr(y, Nt(x, r)) implies that there exists an s > r such that
μt(y, x, s). Let δ < 1 be such that t(u, s) > r whenever u > δ; δ exists by continuity
of t and the identity t(1, s) = s. Thus, if ingr(z, Nt(y, δ)), then μt(z, y, η)with η > δ
and μt(z, x, t(η, s)) hence ingr(z, Nt(x, r)).

Property 2 follows by RINC3 and Property 3 is a corollary to properties 1 and 2.
This concludes the argument. �

2.5 Ramifications of Rough Inclusions

In problems of classification, it turns out important to be able to characterize locally
the distribution of values in data. The idea that metrics used in classifier construction
should depend locally on the training set is, e.g., present in classifiers based on the
idea of nearest neighbor, see, e.g., a survey in Polkowski [23]: for nominal values, the
metric Value Difference Metric (VDM) in Stanfill and Waltz [31] takes into account
conditional probabilitiesP(d = v|ai = vi) of decision value given the attribute value,
estimated over the training set Trn, and on this basis constructs in the value set Vi of
the attribute ai a metric ρi(vi, v

′
i) = ∑

v∈Vd
|P(d = v|ai = vi) − P(d = v|ai = v′

i)|.
The global metric is obtained by combining metrics ρi for all attributes ai ∈ A
according to one of many-dimensional metrics.

This idea was also applied to numerical attributes in Wilson and Martinez [35]
in metrics IVDM (Interpolated VDM) and WVDM (Windowed VDM). A modifica-
tion of the WVDM metric based again on the idea of using probability densities in
determining the window size was proposed as DBVDM metric.

In order to construct a measure of similarity based on distribution of attribute
values among objects, we resort to residual implications, of the form μT ; this rough
inclusion can be transferred to the universe U of an information system; to this end,
first, for given objects u, v, and ε ∈ [0, 1], factors

disε(u, v) = |{a ∈ A : |a(u) − a(v)| ≥ ε}|
|A| , (2.27)
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and,

indε(u, v) = |{a ∈ A : |a(u) − a(v)| < ε}|
|A| , (2.28)

are introduced. The weak variant of rough inclusion μ→T is defined, see Polkowski
[20], as

μ∗
T (u, v, r) if and only if disε(u, v) →T indε(u, v) ≥ r. (2.29)

Particular cases of this similarity measure induced by, respectively, t-norm min,
t-norm P(x, y), and t-norm L are,

1. For T = M(x, y) = min(x, y), x ⇒min y is y in case x > y and 1 otherwise,
hence, μ∗

min(u, v, r) if and only if disε(u, v) > indε(u, v) ≥ r with r < 1 and 1
otherwise.

2. For t = P, with P(x, y) = x · y, x ⇒P y = y
x when x > y and 1 when x ≤ y,

hence, μ∗
P(u, v, r) if and only if indε(u,v)

disε(u,v)
≥ r with r < 1 and 1 otherwise.

3. For t = L, x ⇒L y = min{1, 1 − x + y}, hence, μ∗
L(u, v, r) if and only if

1 − disε(u, v) + indε(u, v) ≥ r with r < 1 and 1 otherwise.
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