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Abstract  The significant development of the e-learning systems has changed the 
ways of teaching and learning. In nowadays, everyone can have access to e-learning 
systems from everywhere. Therefore, the e-learning systems have to adapt the 
learning material and processes to the needs of each individual learner. However, 
learning and student’s diagnosis are complex processes, which deal with uncertainty. 
A solution to this is the use of fuzzy logic, which is able to deal with uncertainty 
and inaccurate data. This chapter explains how fuzzy logic can be used to automati-
cally model the learning or forgetting process of a student, offering adaptation and 
increasing the learning effectiveness in Intelligent Tutoring Systems. In particular, 
it presents a novel rule-based fuzzy logic system, which models the cognitive state 
transitions of learners, such as forgetting, learning or assimilating. The operation of 
the presented approach is based on a Fuzzy Network of Related-Concepts (FNR-C), 
which is a combination of a network of concepts and fuzzy logic. It is used to rep-
resent so the organization and structure of the learning material as the knowledge 
dependencies that exist between the domain concepts of the learning material.

2.1 � Introduction

Over the past decade, the rapid development of computer and Internet technolo-
gies has affect a variety of fields of the human’s everyday life. Such a field is the 
education. The ways of teaching and learning have been changed and the e-learn-
ing systems and processes have been developed significantly. E-learning systems 
offer easy access to knowledge domains and learning processes from everywhere 
for everybody at any time. As a result, users of web-based educational systems are 
of varying backgrounds, abilities and needs. Therefore, the e-learning systems and 
applications have to offer dynamic adaptation to each individual student.

Adaptation is performed through the student model. In particular, the student 
model is a core component in any intelligent or adaptive tutoring system that is 
responsible for identifying and reasoning the student’s knowledge level, miscon-
ceptions, abilities, preferences and needs. The student model represents many 
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of  the student’s features, such as knowledge and individual traits, so as to be 
accessible for offering adaptation (Brusilovsky and Millán 2007). The adaptive 
and/or personalized educational system consults the student model and delivers 
the learning material to each individual learner with respect to her/his personal 
characteristics.

However, student modeling in many cases deals with uncertainty. Learning 
and student’s diagnosis are complex. They are defined by many factors and are 
depended on tasks and facts that are uncertain and, usually, unmeasured. One pos-
sible approach to deal with this is fuzzy logic, which was introduced by Zaheh 
(1965) as a methodology for computing with words in order to handle uncer-
tainty. It encounters the uncertainty problems that are caused by incomplete data 
and human subjectivity (Drigas et al. 2009). Chrysafiadi and Virvou (2012) have 
showed that the integration of fuzzy logic into the student model of an ITS can 
increase learners’ satisfaction and performance, improve the system’s adaptivity 
and help the system to make more valid and reliable decisions. Consequently, fuzzy 
logic techniques are able to analyze the students’ knowledge level, needs and 
behavior and to make the right decision about the instructional model that has to 
be applied for each individual learner.

The issue of fuzzy logic and how it can be used in student modeling are pre-
sented in the remainder of this chapter. In particular, an overview of the fuzzy logic 
theory and fuzzy sets are described. Also, applications of fuzzy logic in student 
modeling are presented. Furthermore, the use of fuzzy logic in the representation 
of the knowledge domain of an adaptive and/or personalized tutoring system is 
described. In addition, a novel rule-based fuzzy logic system for modeling auto-
matically the learning or forgetting process of a student is presented. Finally, a 
brief discussion and the conclusions drawn from this work are presented.

2.2 � An Overview of Fuzzy Logic

Fuzzy logic was introduced by Zadeh (1965) to encounter imprecision and uncer-
tainty. It deals with reasoning that is approximate rather than fixed and exact. It is 
a precise logic of imprecision and approximate reasoning (Zadeh 1975, 1979). In 
other words, fuzzy logic is able to reason and make rational decisions in circum-
stances of imprecision, uncertainty, human subjectivity, incomplete information 
and deficient computations (Zadeh 2001).

The basic element of the fuzzy logic theory is the fuzzy set. A fuzzy set 
describes a characteristic, thing, fact or state. For example, ‘novice’ is a fuzzy set 
that describes the student’s knowledge level, ‘young’ is a fuzzy set that describes 
the person’s age, ‘cold’ is a fuzzy set that describes the environment’s tempera-
ture, ‘tall’ is a fuzzy set that describes the person’s height, ‘loud’ is a fuzzy set that 
describes the sound’s intensity, ‘close’ is a fuzzy set that describes the distance 
between two objects. The fuzzy sets that describe an element have no concrete 
limits (Fig. 2.1).
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Fuzzy logic variables have a truth-value that ranges in degree between 0 and 1. 
That value declares the degree in which the particular variable belongs to a fuzzy 
set. For example, if x is a fuzzy logic variable that describes the student’s knowl-
edge level and its value is 0.6 for the fuzzy set ‘novice’, then it means that the 
particular student is considered to be 60 % novice. This value is called degree of 
membership or membership value and is symbolized with μ. A fuzzy logic ele-
ment can belong to two adjacent fuzzy sets at the same time, but with different 
membership degrees. For example, if a person’s height is 1.72 cm, then according 
to the fuzzy sets that are depicted in Fig. 2.1c, the particular person is considered 
to be 80 % tall (the membership degree for the fuzzy set ‘tall’ is 0.8) and 20 % 
medium (the membership degree for the fuzzy set ‘medium’ is 0.2).

Taking into account the above, the definition of a fuzzy set follows (Fig. 2.2). 
Let S be a set of values that represent an element (i.e. S =  {1.20, …, 2.10} for 

Fig. 2.1   Fuzzy sets and their partitions. a Fuzzy sets for age; b Fuzzy sets for knowledge level; 
c Fuzzy sets for height

Fig. 2.2   Definition of fuzzy set

2.2  An Overview of Fuzzy Logic
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height; S = {1, 2, 3, …, 120} for age; S = {0, 1, 2, …, 100} for grades) and x ∈ 
S. In other words, x is a particular value that belongs to the set S. A fuzzy set FS is 
a pair (x, μ(x)), where x ∈ S and μ(x): S → [0, 1]. In other words, for each x ∈ S, 
there is a value μ(x) between 0 and 1, which declares the membership degree of x 
to the fuzzy set FS.

•	 If μ(x) = 0, then x is not included in FS
•	 If μ(x) = 1, then x is fully included in FS
•	 If 0 < μ(x) < 1, then x is partially included in FS

2.2.1 � Type-1 Fuzzy Sets

This first approach of fuzzy sets theory, which points that the value of the mem-
bership function of a fuzzy set can range between 0 and 1, is called type-1 fuzzy 
sets. Two common examples of a membership function of type-1 fuzzy sets are 
depicted in Fig. 2.3. Type-1 fuzzy sets have been criticized about their ability to 
handle uncertainty. It has been advocated that it is not reasonable to use an accu-
rate membership function for something uncertain. Type-1 fuzzy sets used in con-
ventional fuzzy systems cannot fully handle the uncertainties that are present in 
intelligent systems (Castillo and Melin 2008). To handle these uncertainties, Lotfi 
Zadeh (1975) proposed a more sophisticated kind of fuzzy sets theory that is 
called type-2 fuzzy sets (Mizumoto and Tanaka 1976; Mendel 2001).

2.2.2 � Interval Type-2 Fuzzy Sets

The concept of a type-2 fuzzy set was introduced first by Zadeh (1975) as an extension 
of the type-1 fuzzy set. In particular, the membership function of a general type-2 fuzzy 
set is three-dimensional (Fig. 2.4):

Fig. 2.3   Examples of type-1 fuzzy sets
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•	 1st dimension: the primary variable x (e.g. age, height, grade, temperature)
•	 2nd dimension: the primary membership function (PMF), which is a function 

and not just a value between 0 and 1.
•	 3rd dimension: the secondary membership function (SMF), which is the value 

of the membership function at each point on its two-dimensional domain that 
is called its footprint of uncertainty (FOU). The value of SMF is, also, range 
between 0 and 1.

Using type-2 fuzzy logic can reduce the amount of uncertainty in a system. This is hap-
pened due to the fact that type-2 fuzzy logic offers better capabilities to handle linguis-
tic uncertainties by modeling vagueness and unreliability of information (Liang and 
Mendel 2000). Such sets are useful in circumstances where it is difficult to determine 
the exact membership function for a fuzzy set, as in modeling a word by a fuzzy set.

When the value of the third dimension is the same (e.g. 1) everywhere, then 
the type-2 fuzzy set is called interval type-2 fuzzy set. For an interval type-2 set 
the SMF is ignored and only the FOU is used to describe it. The more (less) area 
in the FOU the more (less) is the uncertainty (Mendel 2001). The FOU represents 
the blurring of a type-1 membership function. It is completely described by its two 
bounding functions (Fig. 2.5): (i) a lower membership function (LMF) and (ii) an 
upper membership function (UMF).

2.2.3 � Rule-Based Fuzzy Logic System

Type-2 fuzzy sets are finding very wide applicability in rule-based fuzzy logic 
systems (FLSs). The operation of FLSs is based on rules. The rules are expressed 
as a collection of IF-THEN statements (e.g. If George’s grade at mathematics is 
65/100, then he is classified to moderate students). Fuzzy sets are associated with 
the terms that appear in the antecedents (IF-part) or consequents (THEN-part) of 
rules. For example in the example “if George’s grade at mathematics is 65/100, 
then he is classified to moderate students”, the fuzzy set ‘moderate’ appears in 

Fig. 2.4   The membership function of a general type-2 fuzzy set

2.2  An Overview of Fuzzy Logic
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the consequents, while in the example “if the temperature indicates cold, then 
the heater must be switched on”, the fuzzy set ‘cold’ appears in the antecedents. 
Membership functions are used to describe these fuzzy sets.

Experts construct the rules of a FLS considering their experience or data that 
have been extracted from experiments or surveys. Therefore, the knowledge and 
data that are used to construct the rules of a FLS are uncertain. This uncertainty 
leads to rules that have uncertain antecedents and/or consequents, which in turn 
translates into uncertain corresponding membership functions (Karnik et al. 1999). 
This uncertainty can be handled using type-2 fuzzy sets.

A type-2 FLS is depicted in Fig.  2.6. Two steps are required to go from an 
interval type-2 fuzzy set to a number:

•	 Type-reduction: in this step an interval type-2 fuzzy set is reduced to an interval-
valued type-1 fuzzy set. This is achieved using particular algorithms. There are a 
comparable number of type-reduction methods (Mendel 2001).

•	 Defuzzification: In this step the centroid of the type-reduced set is computed. 
In particular, the average of the two end-points of the finite interval of numbers, 
which has been come off the process of type-reduction, is calculated. In other 
words, defuzzification maps the type-1 FS that came of the type-reduction step.

Fig. 2.5   The membership function of an interval type-2 fuzzy set

Fig. 2.6   A type-2 rule-based fuzzy logic system
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2.2.4 � Applications of Fuzzy Logic

The ability of fuzzy logic to handle the uncertainty, imprecise and incomplete 
data, and information that is characterized by human subjectivity makes it useful 
in many human-centric fields. Mendel (2007) has categorizes the applications of 
fuzzy logic in: approximation; clustering; control; databases; decision making; 
embedded agents; health care; hidden Markov models; neural networks; noise 
cancellation; pattern classification; quality control; spatial query; wireless com-
munications. In addition, fuzzy set theory has been applied in education and edu-
cational systems. The applications of fuzzy logic in the educational field can be 
categorized into:

•	 Grading systems: Fuzzy logic is used to define the grade (as a letter, as a num-
ber, or as a percentage) that characterized the student’s level of achievement. 
Examples of fuzzy applications in grading systems are the researches of (Bai 
and Chen 2006a, 2006b, 2008; Biswas 1995; Cheng and Yang 1998; Echauz and 
Vachtsevanos 1995; Law 1996; Wang and Chen 2006; Wilson et al. 1998).

•	 Student’s evaluation: It includes an overall assessment of the student’s learn-
ing. In particular, it is a complex process that includes student’s performance, 
abilities, skills and learning characteristics. Some of the fuzzy logic applications 
in the process of the student’s evaluation, which appear in the literature, are 
the following: (Chang and Sun 1993; Chen and Lee 1999; Ma and Zhou 2000; 
Nykänen 2006; Weon and Kim 2001).

•	 Learning adaptation: Learning and teaching are complex processes that have 
to consider each individual student’s characteristics and abilities in order to be 
effective. The educational systems have to adapt dynamically to each individual 
learner’s needs and abilities. Many researchers (Alves et al. 2008; Jili et al. 2009; 
Jurado et  al. 2008; Kosba et  al. 2003; Suarez-Cansino and Hernandez-Gomez 
2008) have used fuzzy logic for providing learning and teaching adaptation.

2.2.4.1 � Applications of Fuzzy Logic in Student Modeling

The aim of the adaptive and/or personalized tutoring systems is to readjust each 
time the instructional process and the teaching strategy considering the student’s 
needs and abilities. This operation is based on human subjectivity and concep-
tualizations. That is the reason for the need of fuzzy logic. Therefore, there are 
many researchers that have used fuzzy logic techniques in student modeling to 
deal with uncertainty in the student’s diagnose. For example, Xu et al. (2002) have 
used fuzzy models to represent a student profile in order to provide personalized 
learning materials, quiz and advices to each student. Furthermore, Kavčič (2004a) 
have succeeded to provide personalization of navigation in the educational con-
tent of InterMediActor system through the construction of a navigation graph and 
the adoption of fuzzy logic into student reasoning. A fuzzy-based student model 
has been applied, also, by Stathacopoulou et  al. (2005) to a discovery-learning 

2.2  An Overview of Fuzzy Logic
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environment that aimed to help students to construct the concepts of vectors in 
physics and mathematics. The particular fuzzy-based student model allows the 
diagnostic model to some extent imitate teachers in diagnostic students’ charac-
teristics, and equips the intelligent learning environment with reasoning capa-
bilities that can be further used to drive pedagogical decisions depending on the 
student learning style. Moreover, Jia et  al. (2010) have applied fuzzy set theory 
to the design of an adaptive learning system in order to help learners to memory 
the content and improve their comprehension. Also, Goel et al. (2012) have used a 
fuzzy student model for facilitating the student reasoning process, which is based 
on imprecise information coming from the student-computer interaction, and pre-
dicting the degree of error that a student is possible to make in the next attempt 
to a problem. In addition, Salim and Haron (2006) have provided a personalized 
learning environment that exploit pedagogical model and fuzzy logic techniques. 
Other educational systems that have incorporated fuzzy logic techniques into the 
student model are: F-CBR-DHTS (Tsaganoua et  al. 2003); TADV (Kosba et  al. 
2003, 2005) and DEPTHS (Jeremić et al. 2012).

2.3 � Fuzzy Logic for Knowledge Representation

The knowledge domain module is one of the most major modules of an Intelligent 
Tutoring System (ITS). The knowledge domain representation is the base for the 
representation of the learner’s knowledge, which is usually performed as a subset 
of the knowledge domain. It contains a description of the knowledge or behaviors 
that represent expertise in the subject-matter domain the ITS is teaching. In other 
words, the knowledge domain module is responsible for the representation of the 
subject matter taking into account the course modules, which involve domain 
concepts. The particular module has been introduced in ITS but its use has been 
extended to most current educational software applications that aim to be adaptive 
and/or personalized.

To enable communication between system and learner at content level, the 
domain model of the system has to be adequate with respect to inferences and 
relations of domain entities with the mental domain of a human expert (Peylo 
et al. 2000). Therefore, the knowledge domain representation in an adaptive and/
or personalized tutoring system is an important factor for providing adaptivity. The 
appropriate approach for knowledge representation makes easier the selection of 
the appropriate educational material satisfying the student’s learning needs. The 
most common used techniques of knowledge domain representation in adaptive 
tutoring systems are hierarchies and networks of concepts.

A hierarchical knowledge representation is usually used in order to specify 
the order in which the domain concepts of the learning material have to be taught 
(Chen and Shen 2011; Siddara and Manjunath 2007; Vasandani and Govindury 
1995), and can be implemented through trees (Kumar 2005; Geng et  al. 2011). 
For example, in INMA, which is a knowledge-based authoring tool for music 
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education, the knowledge domain is described in terms of hierarchies (Virvou 
et al. 2006). Also, Siddappa et al. (2009) have developed a multilevel hierarchical 
model for the representation of knowledge domain of an intelligent tutoring system 
for numerical method (ITNM). This multilevel hierarchical model was based on 
various aptitude levels of students. An example of hierarchical representation is 
depicted in Fig. 2.7.

Hierarchies give information about the order in which the learning material 
should be taught, but they do not clearly depict the relations among the domain 
concepts. The network of concepts gives this kind of information. In a network of 
concepts, nodes represent concepts and arcs represent relations between concepts 
(Fig. 2.8). Many adaptive tutoring systems, such as Web-PTV (Tsiriga and Virvou 
2003a, 2003b), DEPTHS (Jeremić et  al. 2009) and IDEAL (Khamis 2011) use 
a network of concepts for representing the knowledge domain. However, in a 
network of concepts the relations between concepts are restricted to “part-of”, 
“is-a” and prerequisite relations. They do not depict how the knowledge of a 
domain concept may be affected by the knowledge of another concept. They do 
not give answers to the questions: “If a student learns the concept Ci, which will 
be her/his knowledge level of the depended domain concept Cj?”; “If the student’s 
knowledge of concepts Ci improves, how will be affected her/his knowledge of the 

Fig. 2.7   A hierarhical tree

2.3  Fuzzy Logic for Knowledge Representation
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depended concept Cj?”; “If the student has misconceptions on the domain concept 
Ci, how will be affected her/his knowledge level of the depended concept Ci?”.

The domain concepts that constitute the learning material are not independent 
from each other. The student’s knowledge level of a domain concept usually is 
affected by her/his knowledge level of other related domain concepts. For example,  
a new domain concept may be completely unknown to the learner but in other 
circumstances it may be partly known due to previous related knowledge of the 
learner. On the other hand, domain concepts, which were previously known by 
the learner, may be completely or partly forgotten. Hence, currently they may be 
partly known or completely unknown. Therefore, the knowledge representation 
approach has to allow the system to recognize either the domain concepts that 
are already partly or completely known for a learner, or the domain concepts that  
s/he has forgot, taking into account the learner’s knowledge level of the related 
concepts. Therefore, the representation of dependencies between the domain con-
cepts of the learning material includes imprecise and uncertain information. As a 
result an effective solution for handling this uncertainty is to use fuzzy logic tech-
niques in the representation of the knowledge domain.

A fuzzy logic application, which is used to model the behavior of complex sys-
tems (Leon et al. 2011) and emphasizes the connections and dependencies between 
the system’s elements, is the Fuzzy Cognitive Map (FCM). Fuzzy Cognitive 
Maps (FCMs) constitute a way to represent real-world dynamic systems; in a 
form that corresponds closely to the way humans perceive it (Papageorgiou 2011; 
Papageorgiou and Iakovidis 2013). They are able to incorporate experts’ knowl-
edge (Papageorgiou and Salmeron 2012; Salmeron 2009; Salmeron et  al. 2012) 
and approach representation of knowledge by emphasizing the connections and 
the structure (Lin 2007). A FCM illustrates the whole system as a combination of 

Fig. 2.8   A network of 
concepts
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concepts and the various relations that exist between its concepts (Azadeh et  al. 
2012; Song et  al. 2011; Stula et  al. 2010). They are inference networks, using 
cyclic directed graphs, for knowledge representation and reasoning (Fig. 2.9). In 
particular, A FCM consists of nodes (N1, N2, … Nn), which represent the impor-
tant elements of the mapped system, and directed arcs, which represent the causal 
relationships between two nodes (Ni, Nj). The directed arcs are labeled with fuzzy 
values (fij) in the interval [−1, 1] that show the “strength of impact” of node Ni 
on node Nj. If fij has a positive value, then it indicates that node Ni affects posi-
tively node Nj. In other words, the positive value on the directed arc that connects 
Ni with Nj, means that the increase of the value of Ni leads to the increase of the 
value of Nj, or the decrease of the value of Ni leads to the decrease of the value 
of Nj. Otherwise, If fij has a negative value, then it indicates that node Ni affects 
negatively node Nj. In other words, the negative value on the directed arc that con-
nects Ni with Nj, means that the increase of the value of Ni leads to the decrease of 
the value of Nj, or the decrease of the value of Ni leads to the increase of the value 
of Nj. Therefore, a FCM is a cognitive map whose relations between the nodes 
can be used to compute the “strength of impact” of these elements. This property 
of FCM makes it able to predict, to make decisions, to generate a more accurate 
description of a difficult situation and to explain behaviors, actions and situations 
(Codara 1998). That is the reason of their extensive use in a wide range of appli-
cations (Craiger et al. 1996; Kosko 1999; Miao and Liu 2000; Rodriguez-Repiso 
et al. 2007; Stylios and Groumpos 2004). Furthermore, according to Papageorgiou 
(2011), in the past decade, FCMs have gained considerable research interest 
and are widely used to analyze causal systems such as system control, decision- 
making, management, risk analysis, text categorization, prediction etc. However, 
the contribution of FCMs to the knowledge representation of an adaptive tutoring 
system has not been discussed before.

Taking into account the above, there is the need to represent the knowledge 
dependency relations between the individual domain concepts of the domain 
knowledge. In particular, the knowledge dependencies that exist between the 
domain concepts of the learning material, as well as their “strength of impact” on 
each other have to be represented. A solution to this is to use a combination of 
a network of concepts with Fuzzy Cognitive Maps. In this way, a new approach 
of domain knowledge representation derives. That new approach is called Fuzzy 
Related-Concept Network (FR-CN).

Fig. 2.9   A fuzzy cognitive 
map

2.3  Fuzzy Logic for Knowledge Representation
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2.3.1 � Knowledge Domain Representation Using a Fuzzy 
Related-Concept Network

A Fuzzy Related-Concepts Network is a network of concepts, which depicts, 
also, the knowledge dependencies that exist between the domain concepts of the 
learning material. Therefore, it illustrates so the structure of the learning mate-
rial, as the concepts’ knowledge dependencies. Particularly, it represents the 
fact that the knowledge level of a domain concept is increased when the knowl-
edge level of a related topic improves, as well as the fact that the knowledge 
level of a domain concept is decreased when the knowledge level of a depended 
topic is not satisfactory. The Fuzzy Related-Concepts Network (Fig. 2.10) con-
sists of: nodes, which depict the domain concepts of the learning material, and 
directed arcs, which represent relations between the concepts of the learning 
material.

The relations that exist between the concepts of the learning material depict 
so the order in which the domain concepts have to be delivered and the struc-
ture of the learning material, as the knowledge dependencies. In particular, there 
are three type of relations between the concepts: “precedes” that declares the 
order in which each domain concept of the learning material has to be taught  

Fig. 2.10   A fuzzy related-concepts network
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(for example, in Fig.  2.10 the domain concept C3 is delivered to the learner 
before the domain concept C5); “part-of” that declares that a concept belongs to 
another concept (for example, in Fig. 2.10 the domain concept C2 in includes the 
domain concepts C10, C11 and C12); the dependence relation that declares that the 
knowledge level of a domain concept is affected by the learner’s knowledge level 
on another related concept (For example, in Fig. 2.10 the knowledge level of the 
domain concepts C14, C8 and C9 is affected by the learner’s knowledge level on 
the concept C15).

The dependence relations allow the tutoring system to identify how the knowl-
edge level of a concept is affected by the learner’s knowledge level on other 
related concepts. A dependence relation is characterized by the symbol ‘+’ or the 
symbol ‘−’ and a number (strength of impact). The symbol depicts the order in 
which the two related concepts are delivered to the learner. If the symbol ‘+’ is 
labeled on the arc that connects Ci with Cj with direction from Ci to Cj (Ci → Cj), 
then it denotes that Ci is taught before Cj. Otherwise, if the symbol that is labeled 
on the particular directed arc is the symbol ‘−’, then it denoted that that Cj is 
taught before Ci. The numbers that are labeled on the directed arcs depict the 
degree at which the knowledge level of a domain concept is affected regarding 
the knowledge level of its related domain concepts. In other words, they depict 
the “strength of impact” of a domain concept on a related concept. The particu-
lar numbers are only positive. This is happened due to the fact that the increase 
of the knowledge level of a domain concept leads to the increase of the knowl-
edge level of a depended domain concept, and the decrease of the knowledge level 
of a domain concept leads to the decrease of the knowledge level of a depended 
domain concept. Therefore, the numbers of the directed arcs that depict the 
knowledge dependencies belong to the interval (0, 1]. For example, in Fig. 2.10, 
the value ‘+0.8’ that is labeled on the directed arc, which connects C10 with 
C13 (C10 → C13), denotes that the concept C10 is delivered to the learner before 
the concept C13 and the “strength of impact” of C10 on C13 is 0.8. Similarly, the 
value ‘−0.72’ that is labeled on the directed arc, which connects C15 with C14 
(C15 →  C14), denotes that the concept C15 is delivered to the learner after the  
concept C14 and the “strength of impact” of C15 to C14 is 0.72.

The arcs in the FR-CN, which represent the domain concepts’ dependencies 
of the knowledge domain, are bidirectional. Furthermore, the value of the arc 
Ci → Cj is not essentially equal to the value of the arc Cj → Ci. This is hap-
pened due to the fact that changes on the knowledge level of Ci may affect the 
knowledge level of Cj in a different degree than changes on the knowledge level 
of Cj affect the knowledge level of Ci. It has to be clear that the value 1 on the 
directed arc that connects two dependent domain concepts does not mean that 
the two dependent concepts are the same. It implies that if a learner knows a 
domain concept of a section, s/he may know a related concept of another sec-
tion at the same degree. The percentage of increase or decrease of the knowledge 
level of a domain concept that occurs due to changes on the knowledge level of 
another concept related with this domain concept is defined by experts of the 
knowledge domain.

2.3  Fuzzy Logic for Knowledge Representation
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Therefore, a FR-CN that is used to represent the knowledge domain of the 
learning material is a 6-tuple (C, ORD, PART, IMPACT, KL, f), where:

•	 C = {C1, C2, … Cn} is the set of concepts of the knowledge domain.
•	 ORD: (Ci, Cj)  →  {0, 1} is a matrix, which denotes that the concept Ci is 

delivered to the learner before the concept Cj (the value of the corresponding 
matrix’s cell—line i, column j—is 1). If the value of the corresponding matrix’s 
cell is 0, then it denotes that there is no “precedes” relation between the two 
domain concepts.

•	 PART: (Ci, Cj) → {0, 1} is a matrix, which denotes that the concept Ci is part-
of the concept Cj (the value of the corresponding matrix’s cell—line i, column 
j—is 1). If the value of the corresponding matrix’s cell is 0, then it denotes that 
there is no “part-of” relation between the two domain concepts.

•	 IMPACT: (Ci, Cj) → wij is a matrix, where wij is a weight of the directed arc 
from Ci to Cj, which denotes the “strength of impact” of the concept Ci on the 
concept Cj (the value wij is inserted in the cell that corresponds to line i and 
column j). If wij = 0, then it denotes that Ci and Cj are not knowledge related 
concepts.

•	 KL is a function that at each concept Ci associates the sequence of its activa-
tion degree. In other worlds, KLi(t) indicates the value of a concept’s knowledge 
level at the moment t.

•	 f is a transformation function. For the definition of the transformation 
function the following limitation has to be taken into account. Only the 
knowledge level of the most recently read concept affects the knowl-
edge level of a domain concept, each time. The reason for this is the fact 
that the learner’s knowledge level is affected either by the new knowledge 
that s/he has obtained, or by the knowledge that s/he has forgot, each time. 
Consequently, the KL value of a concept is affected only by the KL value of 
the most recently read concept, regarding the weight of the directed arc that 
connects them. Therefore, the transformation function for a FR-CN, which is 
used to represent the knowledge domain of the learning material, is defined 
as: KLi(t + 1) = f(KLi(t) ± wji*pj*KLi(t)/100), where pj is the percentage of 
the difference on the value of the knowledge level of the most recently read 
concept Cj, with pj = (KLj(t + 1) − KLj(t))*100/KLj(t). Also, the + is used 
in case of increase and the − is used in case of decrease.

For example, the matrixes ORD (Table  2.1), PART (Table  2.2) and IMPACT 
(Table 2.3) for the FR-CN that depicts in Fig. 2.10 are the following:

At the ORD matrix the value of the cell ORD [i, j], which corresponds to the 
line i and column j, can be 1, although there is no a direct arc in the corresponding 
FR-CN that connects the node-concept Ci with the node-concept Cj and 
declares “precedes” relation between the particular concepts. The reason for that 
is the fact that an indirect relation of type “precedes” can be exist between the par-
ticular concepts. For example, in the FR-CN of Fig. 2.10, the concept C3 precedes 
the concept C2 due to the fact that the concept C7 precedes the concept C2 and the  
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concept C3 precedes the concept C7. Therefore, ORD  [3, 2] =  1. Similarly, C4 
precedes C8 because C4 is part-of the concept C3, which precedes the concept C7 
whose part is the concept C8. C3 precedes C7 due to the fact that C3 precedes C5, 
which precedes C7. As a result, ORD [4, 8] = 1.

Table 2.1   ORD

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15

C1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

C2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C3 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1

C4 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1

C5 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1

C6 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1

C7 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1

C8 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1

C9 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1

C10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2.2   PART

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15

C1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C4 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

C5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C6 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

C7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C8 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

C9 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

C10 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

C11 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

C12 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

C13 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0

C14 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0

C15 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0

2.3  Fuzzy Logic for Knowledge Representation
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2.3.1.1 � Application of FR-CN for the Representation of the Knowledge 
Domain of the Programming Language ‘C’

An application of Fuzzy Related-concepts Networks to a real situation is needed to 
understand the above, described approach for knowledge domain representation. 
That is the aim of the particular section, in which the description of the knowledge 
domain of a programming tutoring system is presented. In particular, the knowl-
edge domain of the programming tutoring system is the programming language 
‘C’. The aim of the particular tutoring system is to teach learners so the principles 
and structures of the programming language ‘C’, as the logic of programming. So, 
the learning material includes not only expressions, operations and statements of the 
programming language ‘C’, but also it includes algorithms, like calculating sums, 
averages and maximums or minimums. Thereby, the learning material is decom-
posed in domain concepts which concern declarations of variables and constants, 
expressions and operators, input and output expressions, the sequential execution 
of a program, the if, if-else and if-else if statements, the iteration statements (for 
loop, while loop, do…while loop), sorting and searching algorithms, arrays, func-
tions (Table 2.4).

Learners of programming languages have different backgrounds and their 
knowledge of a concept of the programming language, which they are taught, is  
subject to change. A new concept may be completely unknown to the learner but in 
other circumstances it may be partly or completely known due to previous related 
knowledge of the learner. For example, if a learner already knows an algorithm  
(e.g., calculating the sum of integers in a ‘for’ loop), there is no need to learn another 
similar algorithm (e.g., counting in a ‘for’ loop). Similarly, if a learner knows a pro-
gramming structure (e.g., one-dimensional arrays), it is easier to understand another 

Table 2.3   IMPACT

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15

C1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C6 0 0 0 0 0 0 0 0 0 0 0 +0.35 0 0 0

C7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +1

C9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0.63

C10 0 0 0 0 0 0 0 0 0 0 0 0 +0.8 0 0

C11 0 0 0 0 0 0 0 0 0 0 0 +1 0 0 0

C12 0 0 0 0 0 −0.5 0 0 0 0 −1 0 0 0 0

C13 0 0 0 0 0 0 0 0 0 −0.2 0 0 0 +0.45 0

C14 0 0 0 0 0 0 0 0 0 0 0 0 −0.3 0 +1

C15 0 0 0 0 0 0 0 −1 −0.17 0 0 0 0 −0.72 0
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programming structure (e.g., multidimensional arrays), so this new structure should 
not be considered as being completely unknown to the learner. On the other hand, 
domain concepts, which were previously known by the learner, may be completely 
or partly forgotten. For example, if a learner has difficulties in calculating a sum in 
a ‘while’ loop, her/his knowledge of the previous domain concept of “calculating a 
sum in a ‘for’ loop” has eroded. Therefore, there is the need to represent the knowl-
edge dependencies that exist between the domain concepts of the learning mate-
rial of the programming language. This is achieved using Fuzzy Related-Concepts 
Network. The FR-CN for the knowledge domain of the programming language ‘C’ 
that is described in Table 1.7 is depicted in Fig. 2.11. Tables 2.5, 2.6 and 2.7 are a part 
of the matrixes ORD, PART, IMPACT of the FR-CN of Fig. 2.11 correspondingly. 
The whole matrixes are presented in the Appendix A.

Table 2.4   Learning material of the programming language ‘C’

C1. Basics C1.1. Constants and 
variables

C5. Iteration 
structure
Unknown no of 
loops

C5.1. While statement

C1.2. Assignment statement C5.2. Calculating sum 
in a while loop

C1.3. Arithmetical operators C5.3. Counting in a 
while loop

C1.4. Comparative operators C5.4. Calculating avgr 
in a while loop

C1.5. Logical operators C5.5. Calculating max/
min in a while loop

C1.6. Mathematical 
functions

C5.6. Do…while 
statement

C1.7. Input-output statements

C2. Sequence 
structure

C2.1. A simple program 
structure

C6. Arrays C6.1 One-dimensional 
arrays
C6.2. Searching

C3. Conditional 
structures

C3.1. If statement C6.3. Sorting

C3.2. If…else if C6.4. Two-dimensional 
arraysC3.2.1 Methodology of find-

ing max/min

C3.3. Nested if C6.5. Processing per 
row
C6.6. Processing per 
column

C4. Iteration 
structure
Concrete no of 
loops

C4.1. For statement C6.7. Processing of 
diagonals

C4.2. Calculating sum in a 
for loop

C7. 
Sub-programming

C7.1. Functions

C4.3. Counting in a for loop
C4.4. Calculating avgr in a 
for loop
C4.5. Calculating max/min 
in a for loop

2.3  Fuzzy Logic for Knowledge Representation
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Fig.  2.11   The FR-CN of the knowledge domain of the programming language ‘C’ (it is 
decomposed in four graphs). a The “precedence” and “part-of” relations of the FR-CN; b The 
knowledge dependence relations for the domain concepts of the section 3; c The knowledge 
dependence relations for the domain concepts of the section 6; d The knowledge dependence 
relations for the domain concepts of the sections 4 and 5
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The value 1 on the directed arc that connects two dependent domain concepts 
of the FR-CN implies that if a learner knows a domain concept, then s/he may 
know a related domain concept at the same degree. For example, if a learner has 
been tested and found to have known the “for” loop and the “while” loop and this 

Fig. 2.11   (continued)

2.3  Fuzzy Logic for Knowledge Representation
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learner knows how to calculate sum in a “for” loop, s/he will also know how to 
calculate sum in a “while” loop, since the methodology is the same.

Experts on programming have defined so the domain concepts of the learning 
material, as their relations (“precedence”, “part-of”, “knowledge dependence”). 
In particular, ten professors of computer programming, whose experience counts 
12 years at least, are responsible for the definition and structure of the knowl-
edge domain. They were, also, asked to determine, empirically, the knowledge 
dependencies that exist between the defined domain concepts of the learning 
material, as well as their “strength of impact” on each other. The FR-CN that 
is depicted in Fig. 2.11 has been mapped according to the mean of the experts’ 
answers (due to its complexity, it has been decomposed in four graphs).

The information that is derived from the above matrixes concerns:

•	 The order in which the domain concepts of the leaning material have to be 
delivered.

•	 Which domain concepts belong to another general domain concept of the learning 
material.

•	 The knowledge dependencies that exist between the domain concepts of the 
learning material and their “strength of impact”.

Table 2.5   A sample of the ORDER matrix of the FR-CN of Fig. 2.11

C1 C1.1 C1.2 C1.3 C1.4 C1.5 C1.6 C1.7 C2 C2.1 C3 C3.1 C3.2 C3.2.1 C3.3

C1.7 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1

C2 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

C2.1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

C3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C3.1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

Table 2.6   A sample of the PART matrix of the FR-CN of Fig. 2.11

C1 C1.1 C1.2 C1.3 C1.4 C1.5 C1.6 C1.7 C2 C2.1 C3 C3.1 C3.2 C3.2.1 C3.3

C2.1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

C3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C3.1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

C3.2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

C3.2.1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0

Table 2.7   A sample of the IMPACT matrix of the FR-CN of Fig. 2.11

C4 C4.1 C4.2 C4.3 C4.4 C4.5 C5 C5.1 C5.2 C5.3 C5.4 C5.5 C5.6

C4.1 0 0 0 0 0 0 0 0 0 0 0 0 0

C4.2 0 0 0 +0.45 +0.81 0 0 0 +1 +0.45 +0.39 0 0

C4.3 0 0 −0.42 0 +0.34 0 0 0 +0.42 +1 +0.41 0 0

C4.4 0 0 −1 −0.45 0 0 0 0 + 1 +0.45 +0.52 0 0

C4.5 0 0 0 0 0 0 0 0 0 0 0 +1 0
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For example, the domain concept C1 is delivered before concept C2 and concept 
C4.2 is delivered before the domain concept C4.4. That is derived from the values of 
the cells ORDER [1, 9] (Table 1.8a) and ORDER [18, 20] (Table 1.8b), which are 1 
both. On the other hand, the ORDER [18, 21] = 0 (Table 1.8b) denotes that the con-
cept C4.2 is not necessary to be taught before the concept C4.5. Furthermore, C3.2.1 
belongs to the concepts C3 and C3.2 as PART [14, 11] = 1 and PART [14, 13] = 1 
(Table  2.1a). In addition, the learner’s knowledge level on the concept C4.4 affects 
the particular learner’s knowledge level on the previously delivered concepts C4.2, 
C4.3, C5.2, C5.3 and C5.5. This information is derived from the matrix IMPACT. 
In particular, the values IMPACT [20, 18] = −1 and IMPACT [20, 19] = −0.45 
(Table  2.2b) denote that the knowledge level of concept C4.4 affects the knowledge 
level of C4.2 and C4.3, and its “strength of impact” on C4.2 and C4.3 are 1 and 0.45  
correspondingly. Similarly, the values IMPACT [20, 24]  =  +  1, IMPACT [20, 
25] = + 0.45 and IMPACT [20, 26] = +0.52 (Table 2.2b) denote that the knowledge 
level of concept C4.4 affects the knowledge level of the following concepts C5.2, C5.3 
and C5.5, and its “strength of impact” on the particular concepts are 1, 0.45 and 0.52 
correspondingly. However, the value IMPACT [20, 21] = 0 (Table 2.2b) denote that the 
knowledge level of concept C4.4 does not affect the knowledge level of the concept C4.5.

2.4 � A Novel Rule-Based Fuzzy Logic System  
for Modeling Automatically the Learning  
or Forgetting Process of a Student

Learning is not a “black or white” process. The definition of the learner’s knowledge 
level is a moving target. In other words, it is not a straightforward task to define for 
each learner which concepts are unknown, known or assimilated and at what degree. 
The particular process is confronted with uncertainty and human subjectivity. One 
possible approach to deal with this is fuzzy set techniques, with their ability to nat-
urally represent human conceptualization. That is the reason for the integration of 
fuzzy logic techniques into the student model.

Fuzzy logic is the solution for recognizing and modeling the increase and/or 
decrease of the learner’s knowledge level on a domain concept in relation with 
her/his performance on other related domain concepts of the learning material. In 
particular, the presented rule-based fuzzy logic module is responsible for identifying and 
updating the student’s knowledge level of all the concepts of the knowledge domain. 
Its operation is based on the Fuzzy Related-Concepts Network that is used to 
represent the structure of the learning material and the dependencies that exist 
between the domain concepts. It uses fuzzy sets to represent the student’s knowl-
edge level and a mechanism of rules over the fuzzy sets, which is triggered after a 
change has occurred on the student’s knowledge level of a domain concept. This 
mechanism updates the student’s knowledge level of all related with this concept, 
concepts. With this approach the alterations on the state of student’s knowledge 
level, such as forgetting or learning are represented.

2.3  Fuzzy Logic for Knowledge Representation
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The presented rule-based fuzzy logic module includes the following three steps:

Step 1	 Definition of the fuzzy sets:

	 In the particular step, the definition of the fuzzy sets, which represent the 
learner’s knowledge level on a domain concept (i.e. {“Unknown”, “Known”, 
“Learned”} or {“Unknown”, “Insufficiently Known”, “Known”, “Learned”, 
“Assimilated”}), is carried out. Fuzzy sets are used to characterize the change-
able learner’s knowledge level. Therefore, FS1, FS2, …, FSn are the defined 
fuzzy sets, for the educational adaptive system.

Step 2	 Definition of the membership functions:

	 In the particular step, the membership functions of the determined fuzzy sets 
FS1, FS2, …, FSn is defined. The membership functions (Fig. 2.12) are defined 
as follows (x indicates the learner’s degree of success on a particular domain 
concept; xi-1, xi, xi+1, xi+2 are thresholds that indicate particular degrees of  
success like 0, 50, 100): 

	 The knowledge level of a domain concept changes in a continuous way. Meaning 
that the knowledge level of a domain concept usually passes gradually from the 
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Fig. 2.12   The membership functions μFSi



47

unknown state to the learned and assimilated state. Membership values corre-
spond to percentages of the offered knowledge in a way that they cover 100 % of 
it, at any time. This gives a more natural and understandable way of representa-
tion. For example, it would be non-intuitive to say that domain concept “A” is 0.5 
(50 %) Insufficiently Known and 0.6 (60 %) Known for a student, given that 0.5 
plus 0.6 gives 1.1 (110 %). So, the sum of the concept’s percentage of different 
knowledge levels has to be 100 %, or 1 if the membership value of a concept to a 
knowledge level category is from 0 to 1. So, the following expression stands: 

	 Therefore, a set (μFS1, μFS2, μFS3, … ,μFSn) is used express the student 
knowledge of a domain concept.

Step 3	 Definition of the fuzzy rules:

	 When there is a dependency between two domain concepts, then the knowl-
edge level of the one domain concept can affect the knowledge level of the other 
domain concept. More specifically, the following are taken into account:

•	 Considering the knowledge level of Ci, the knowledge level of its following 
domain concept Cj is increased or decreased.

•	 Considering the knowledge level of Cj, the knowledge level of its prerequisite 
domain concept Ci is increased or decreased.

	 Consequently, the student model expands when a change on the knowledge level of 
a domain concept causes increase on the knowledge level of the related concepts, 
or it is minimized when a change on the knowledge level of a domain concept 
causes decrease on the knowledge level of the related concepts with this concept.

	 In this document, D is defined to represent the knowledge dependency between two 
domain concepts. The symbolism μD(Ci, Cj) is used to represent the “strength of 
impact” of Cj on Ci and the symbolism μD(Cj, Ci) is used to represent the “strength 
of impact” of Ci on Cj. The values of μD(Ci, Cj) and μD(Ci, Cj) are the values of the 
arcs that depict the “knowledge dependencies” relations between the concepts of 
the learning material in the FR-CN of the knowledge domain (Sect. 3.1).

	 Concerning two domain concepts Ci and Cj where Ci is taught before Cj, the 
knowledge level of the concepts can change according to the following rules. 
These rules depict how the changes on the knowledge level of the domain con-
cepts of the learning material for a student occur, revealing her/his learning state. 
In particular, they reveal if s/he learns or not or if s/he forgets. If the knowledge 
level of a concept is decreased, then the system infers that the student does not 
learn. If the knowledge level of a previously taught concept is decreased, then 
the system infers that the student forgets. If the knowledge level of a concept is 
increased, then the system infers that the student learns, and if the knowledge 
level of all the related concepts is improved continuously, then the system infers 
that the student assimilates the learning material.

	 The rules are based on Kavčič’s (2004b) work. That work models mainly how 
the student’s knowledge level of the prerequisites concepts that the student 

µFS1 + µFS2 + µFS3 + . . .+ µFSn = 1

2.4  A Novel Rule-Based Fuzzy Logic System …
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had read previously, is improved when s/he performs better in following 
concepts. In this way Kavčič’s work deals only with how learning progresses. 
In her work there are no rules that imply the possible decrease of knowledge 
via the student’s forgetting of some previously learned concepts. Moreover, 
another important problem that is not dealt with in Kavčič’s work is the 
fact that in static educational systems, students are often required to repeat 
previously known concepts thought the following chapters. However, this  
practice is quite generic and does not take into account individual features 
of a student such as how fast they learn or how well they remember previ-
ously taught concepts. As such, educational systems do not adapt their pace 
on individual students. In view of the above, in the presented rule-based 
fuzzy module, Kavčič’s rules have been expanded to deal with the above  
problems. The rules with these novelties that lead to the dynamic personali-
zation of teaching are presented below. In the following rules, FSx, FSy are 
fuzzy sets that represent knowledge levels with FSx < FSy, and KL() denotes 
the “Knowledge Level of”.

•	 Based on updates of the KL(Ci), the KL(Cj) is improved according to:

	 R1: If the same fuzzy sets are active for both Ci and Cj, then KL(Cj) = FSx with 

	 where FSx is the last active fuzzy set. Subtract the value (new μFSx(Cj)—previous 
μFSx (Cj)) from the others μFSy(Cj) (FSy < FSx) sequentially until 

∑

µFSi = 1.

	 R2: If KL(Cj) = FSx and KL(Ci) = FSy, then KL(Cj) = FSy with 

•	 Based on updates of the KL(Ci), the KL(Cj) is deteriorated according to:

	 R3: If KL(Cj) = FSn, then
	 if µFS1

(

Cj

)

+ µFS2

(

Cj

)

+ · · · + µFSn−1

(

Cj

)

< µFSi(Ci) ∗ µD

(

Ci,Cj

)

, where 
i < n, then the corresponding value is subtracted by μFSn(Cj)

	 else it does not change.

	 R4: If KL(Cj) = FSy and KL(Ci) = FSx, then KL(Cj) = FSx with 

•	 Based on updates of the KL(Cj), the KL(Ci) is improved according to:

	 R5: If the same fuzzy sets are active for both Ci and Cj, then KL(Cj) = FSx with 

	 where FSx is the last active fuzzy set. Subtract the value (new μFSx(Ci)—previous 
μFSx (Ci)) from the others μFSy(Ci) (FSy < FSx) sequentially until 

∑

µFSi = 1

	 R6: If KL(Ci) = FSx and KL(Cj) = FSy, then KL(Ci) = FSy with 

µFSy(Cj) = max[µFSx(Ci),µFSx(Ci) ∗ µD(Ci,Cj)

µFSy(Cj) = µFSy(Ci) ∗ µD(Ci,Cj)

µFSx

(

Cj

)

= µFSx(Ci) ∗ µD

(

Ci,Cj

)

µFSx(Ci) = max[µFSx(Ci),µFSx

(

Cj

)

∗ µD

(

Ci,Cj

)

]

µFSy(Ci) = µFSy(Cj) ∗ µD(Cj,Ci)
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•	 Based on updates of the KL(Cj), the KL(Ci) is deteriorated according to:

	 R7: If KL(Ci) = FSn with μFSn(Ci) = 1, then it does not change

	 R8: The formula xi =
(

1− µD

(

Ci ,C j

))

∗ xi +min[µD

(

Ci ,C j

)

∗ xi ,µD
(

Ci ,C j

)

∗ x j ], where xi and xj are the values of the criterion, which determines 
the fuzzy sets that are active each time for Ci and Cj respectively, is used (for 
the calculation of previous xi, the membership value of the upper active fuzzy 
set is used). Then, using the new xi, the KL(Ci) is determined, calculating the 
membership functions.

•	 Limitation: 
∑

µFSi = 1

2.4.1 � Integration of the Fuzzy Rules

The application of the fuzzy rules of the step 3 that was described above deals 
with the problem of estimating wrongly the knowledge level of a domain con-
cept. In particular, consider the fuzzy sets {“Uknown”, “Known”, “Well-Known”, 
“Learned”} and the set of their membership functions (μUn, μK, μWK, μL) that 
represent the student’s knowledge level of a domain concept. Let’s the domain 
concept Ci to be 100 % ‘Learned’ and the “strength of impact” of Ci on the fol-
lowing concept Cj to be 0.3. The knowledge level of Cj is 100  % ‘Unknown’. 
According to the rule R2, the knowledge level of Cj will become 30 % ‘Learned’. 
However, that it means that the rest 70  % of the concept Cj is ‘Known’? The 
answer is no. The rest 70 % of the Cj can be ‘Unknown’, ‘Known’, ‘Well-Known’ 
or ‘Learned’, or different parts of it can belong to a different fuzzy set (i.e. 10 % 
‘Unknown’, 20 % ‘Known’ and 40 % ‘Well-Known’). In addition, let’s the set that 
describes the knowledge level of the domain concept Ci to be (0.8, 0.2, 0, 0) (e.g. 
80 % ‘Unknown’ and 20 % ‘Known’ → KL(Cj) = 0.2 ‘Known’) and the “strength 
of impact” of Ci on its following concept Cj to be 0.6. The knowledge level of Cj is 
20 % ‘Learned’. According to the rule R4, the knowledge level of Cj will become 
60  % ‘Known’. However, that it means that the rest 40  % of the concept Cj is 
‘Uknown’? The answer is no. It can be any of the above fuzzy sets.

A solution to this problem is to keep data for each domain concept of the 
learning material concerning the different part of the particular concept that can 
be affected be other related concepts. In such a way, the system can be informed 
each time about the knowledge level of each separate part of the particular domain 
concept and it is able to draw conclusions about the learner’s knowledge level on 
the overall domain concept. For example, according to the Fig.  2.10 (Sect.  3.1) 
the domain concept C12 is affected by both concepts C11 and C6. Initially 
is KL(C6)  =  KL(C11)  =  KL(C12)  =  100  % ‘Uknown’. During the learning  
process, the concept C6 is delivered to the learner firstly. The learner’s knowledge 
level on the particular concept becomes 20 % ‘Well-Known’ and 80 % ‘Known’ 
(KL(C6) =  20  % Well-Known). According to the rule R2, the learner’s knowl-
edge level on the domain concept C12 will become 7 % ‘Well-Known’ and 28 % 
‘Known’. The other part, however, of C12 is not affected by C6. So, its knowledge 

2.4  A Novel Rule-Based Fuzzy Logic System …



50 2  Fuzzy Logic in Student Modeling

level remains ‘Unknown’. Therefore, C12 is 7  % ‘Well-Known’, 28  % ‘Known’ 
and 65  % ‘Unknown’. As a result, the system will advise the learner to read 
C12. Also, according to R6, the learner’s knowledge level of C11 will become 
7 % ‘Well-Known’ 28 % ‘Known’ and 65 % ‘Unknown’ because C12 affects C11 
with “strength of impact” 1 (Fig. 2.10). Then, the concept C11 is delivered to the 
learner. The learner’s knowledge level on the particular concept becomes 40  % 
‘Learned’ and 60 % ‘Well-Known’ (KL(C11) = 40 % Learned). According to R2 
is KL(C12) = 40 % Learned (40 % ‘Learned’ and 60 % ‘Well-Known’), due to the 
fact that the “strength of impact” of C11 on C12 is 1. Therefore, the system will 
consider that the concept the learner knows C12, and it will not advise her/him to 
read the particular concept. In addition, C12 affects C6. The “strength of impact” 
of the particular knowledge dependency is 0.5. Therefore, according to the rule 
R6, the learner’s knowledge level of C6 will become 20  % ‘Learned’ and 30  % 
‘Well-known’. However, because the previous knowledge level of C6 was 20  % 
‘Well-Known’ and 80 % ‘Known’, the system will consider that the rest 50 % of 
C6 remains ‘Known’. Thereby, although the learner’s knowledge level on C6 has 
been improved, the system will advise the learner to revise the domain concept C6.

2.4.2 � Application of the Presented Rule-Based Fuzzy Logic 
System in a Programming Tutoring System

In this chapter an application of the presented rule-based fuzzy logic system is 
described. In particular, the presented rule-based fuzzy logic system is used to 
model the cognitive states of learners of the programming language ‘C’.

Step 1	 Definition of the fuzzy sets:

	 The defined fuzzy sets are the following:

•	 Unknown (Un): the degree of success in the domain concept is from 0 to 50 %.
•	 Moderate Known (MKn): the degree of success in the domain concept is from 

40 to 70 %.
•	 Known (Kn): the degree of success in the domain concept is from 60 to 80 %.
•	 Learned (L): the degree of success in the domain concept is from 75 to 90 %.
•	 Assimilated (A): the degree of success in the domain concept is from 85 to 

100 %.

Step 2	 Definition of the membership functions:

	 The membership functions of the fuzzy sets Un, MKn, Kn, L and A are depicted 
in Fig. 2.13 and are the following (x indicates the learner’s degree of success on 
a particular domain concept): 

µUn =







1, x ≤ 40

1− x−40
10

, 40 < x < 50

0, x ≥ 50
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	 Therefore, a set (μUn, μMKn, μKn, μL, μA) is used to express the student knowl-
edge of a domain concept.
	 Experts on programming and teachers of the programming language ‘C’ 
have defined the limits of each fuzzy set. In particular, they were asked to deter-
mine the lower and higher values of the degree of success that characterize a 
domain concept as ‘Unknown’, ‘Moderate Known’, ‘Known’, ‘learned’ and 
‘Assimilated’. The mean values of their answers consist the base for the definition 
of the limits of the presented fuzzy sets.

µMKn =















x−40
10

, 40 < x < 50

1, 50 ≤ x ≤ 60

1− x−60
10

, 60 < x < 70

0, x ≤ 40 or x ≥ 70

µKn =















x−60
10

, 60 < x < 70

1, 70 ≤ x ≤ 75

1− x−75
5

, 75 < x < 80

0, x ≤ 60 or x ≥ 80

µL =















x−75
5

, 75 < x < 80

1, 80 ≤ x ≤ 85

1− x−85
5

, 85 < x < 90

0, x ≤ 75 or x ≥ 90

µA =







x−85
5

, 85 < x < 90

1, 90 ≤ x ≤ 100

0, x ≤ 85

Fig. 2.13   The membership functions of the fuzzy sets of the programming tutoring system for ‘C’
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Step 3	 Definition of the fuzzy rules:

	 Concerning two domain concepts Ci and Cj where Ci is taught before Cj, the 
knowledge level of the concepts can change according to the following rules 
(μD(Ci, Cj) and μD(Cj, Ci) indicate the “strength of impact” of Ci on Cj and of 
Cj on Ci correspondingly. Their values are the values of the arcs that depict the 
“knowledge dependencies” relations between the concepts of the learning material 
in the FR-CN (Sect. 3.1.1 Fig. 2.11)):

•	 Based on updates of the KL(Ci), the KL(Cj) is improved according to:

	 Subtract the value (new μx(Cj)—previous μx(Cj)) from the others μy(Cj) 
sequentially until µUn + µMKn + µKn + µL + µA = 1, where x =  {MKn, Kn, 
L, A} and y = {Un, MKn, Kn, L} with y < x.

	 R1: If the same fuzzy sets are active for both Ci and Cj, then:
–	 If KLA(Cj) > 0: µA

(

Cj

)

= max
[

µA

(

Cj

)

,µA (Ci) ∗ µD

(

Ci,Cj

)]

–	 Else If KLL(Cj) > 0: µL

(

Cj

)

= max
[

µL

(

Cj

)

,µL(Ci) ∗ µD

(

Ci,Cj

)]

–	 Else If KLKn(Cj) > 0: µKn

(

Cj

)

= max
[

µKn

(

Cj

)

,µKn(Ci) ∗ µD

(

Ci,Cj

)]

–	 Else If KLMKn(Cj) > 0: µMKn

(

Cj

)

= max
[

µMKn

(

Cj

)

,µMKn(Ci) ∗ µD

(

Ci,Cj

)]

	 R2:

(a)	 If KL(Cj) = Un and KL(Ci) = MKn, then KL(Cj) = MKn with

(b)	 If KL(Cj) = Un and KL(Ci) = Kn, then KL(Cj) = Kn with

(c)	 If KL(Cj) = Un and KL(Ci) = L, then KL(Cj) = L with

(d)	 If KL(Cj) = Un and KL(Ci) = A, then KL(Cj) = A with

(e)	 If KL(Cj) = MKn and KL(Ci) = Kn, then KL(Cj) = Kn with

(f)	 If KL(Cj) = MKn and KL(Ci) = L, then KL(Cj) = L with 

(g)	 If KL(Cj) = MKn and KL(Ci) = A, then KL(Cj) = A with

(h)	 If KL(Cj) = Kn and KL(Ci) = L, then KL(Cj) = L with 

µMKn

(

Cj

)

= µMKn(Ci) ∗ µD

(

Ci,Cj

)

µKn

(

Cj

)

= µKn(Ci) ∗ µD

(

Ci,Cj

)

µL

(

Cj

)

= µL(Ci) ∗ µD

(

Ci,Cj

)

µA

(

Cj

)

= µA(Ci) ∗ µD

(

Ci,Cj

)

µKn

(

Cj

)

= µKn(Ci) ∗ µD

(

Ci,Cj

)

µL

(

Cj

)

= µL(Ci) ∗ µD

(

Ci,Cj

)

µA

(

Cj

)

= µA(Ci) ∗ µD

(

Ci,Cj

)

µL

(

Cj

)

= µL(Ci) ∗ µD

(

Ci,Cj

)
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(i)	 If KL(Cj) = Kn and KL(Ci) = A, then KL(Cj) = A with 

(j)	 If KL(Cj) = L and KL(Ci) = A, then KL(Cj) = A with

•	 Based on updates of the KL(Ci), the KL(Cj) is deteriorated according to:

	 R3: If KL(Cj) = A, then
–	 if µUn

(

Cj

)

+ µMKn

(

Cj

)

+ µKn

(

Cj

)

+ µL

(

Cj

)

< µx(Ci) ∗ µD

(

Ci,Cj

)

, where 
x = {Un, MKn, Kn, L}, then the corresponding value is subtracted by μA(Cj)

–	 else it does not change.

R4:

(a)	 If KL(Cj) = L and KL(Ci) = Kn, then KL(Cj) = Kn with

(b)	 If KL(Cj) = L and KL(Ci) = MKn, then KL(Cj) = MKn with

(c)	 If KL(Cj) = L and KL(Ci) = Un, then KL(Cj) = Un with

(d)	 If KL(Cj) = Kn and KL(Ci) = MKn, then KL(Cj) = MKn with 

(e)	 If KL(Cj) = Kn and KL(Ci) = Un, then KL(Cj) = Un with

(f)	 If KL(Cj) = MKn and KL(Ci) = Un, then KL(Cj) = Un with

•	 Based on updates of the KL(Cj), the KL(Ci) is improved according to:

	 R5: If the same fuzzy sets are active for both Ci and Cj, then:
–	 If KLA(Ci) > 0: µA (Ci) = max

[

µA (Ci),µA

(

Cj

)

∗ µD

(

Cj,Ci

)]

–	 Else If KLL(Ci) > 0: µL(Ci) = max
[

µL(Ci),µL

(

Cj

)

∗ µD

(

Cj,Ci

)]

–	 Else If KLKn(Ci) > 0: µKn(Ci) = max
[

µKn(Ci),µKn

(

Cj

)

∗ µD

(

Cj,Ci

)]

–	 Else If KLMKn(Ci) > 0: µMKn(Ci) = max[µMKn(Ci),µMKn

(

Cj

)

∗ µD

(

Cj,Ci

)

]

	 Subtract the value (new μx(Ci)—previous μx(Ci)) from the others μy(Ci) 
sequentially until µUn + µMKn + µKn + µL + µA = 1, where x =  {MKn, Kn, 
L, A} and y = {Un, MKn, Kn, L} with y < x.

µA

(

Cj

)

= µA(Ci) ∗ µD

(

Ci,Cj

)

µA

(

Cj

)

= µA(Ci) ∗ µD

(

Ci,Cj

)

µKn

(

Cj

)

= µKn(Ci) ∗ µD

(

Ci,Cj

)

µMKn

(

Cj

)

= µMKn(Ci) ∗ µD

(

Ci,Cj

)

µUn

(

Cj

)

= µUn(Ci) ∗ µD

(

Ci,Cj

)

µMKn

(

Cj

)

= µMKn(Ci) ∗ µD

(

Ci,Cj

)

µUn

(

Cj

)

= µUn(Ci) ∗ µD

(

Ci,Cj

)

µUn

(

Cj

)

= µUn(Ci) ∗ µD

(

Ci,Cj

)
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	 R6:

(a)	 If KL(Ci) = Un and KL(Cj) = MKn, then KL(Ci) = MKn with

(b)	 If KL(Ci) = Un and KL(Cj) = Kn, then KL(Ci) = Kn with

(c)	 If KL(Ci) = Un and KL(Cj) = L, then KL(Ci) = L with

(d)	 If KL(Ci) = Un and KL(Cj) = A, then KL(Ci) = A with

(e)	 If KL(Ci) = MKn and KL(Cj) = Kn, then KL(Ci) = Kn with

(f)	 If KL(Ci) = MKn and KL(Cj) = L, then KL(Ci) = L with

(g)	 If KL(Ci) = MKn and KL(Cj) = A, then KL(Ci) = A with

(h)	 If KL(Ci) = Kn and KL(Cj) = L, then KL(Ci) = L with

(i)	 If KL(Ci) = Kn and KL(Cj) = A, then KL(Ci) = A with

(j)	 If KL(Ci) = L and KL(Cj) = A, then KL(Ci) = A with

•	 Based on updates of the KL(Cj), the KL(Ci) is deteriorated according to:

	 R7: If KL(Ci) = A with μA(Ci) = 1, then it does not change.

	 R8: The formula xi =
(

1− µD

(

Ci ,C j

))

∗ xi +min[µD

(

Ci ,C j

)

∗ xi ,µD
(

Ci ,C j

)

∗ x j ], where xi and xj are the degree of success, which determine the 
fuzzy sets that are active each time for Ci and Cj respectively, is used (for the 
calculation of previous xi, the membership value of the upper active fuzzy 
set is used). Then, using the new xi, the KL(Ci) is determined, calculating the  
membership functions.

•	 Limitation L1: µUn + µMKn + µKn + µL + µA = 1.

µMKn(Ci) = µMKn

(

Cj

)

∗ µD

(

Cj,Ci

)

µKn(Ci) = µKn

(

Cj

)

∗ µD

(

Cj,Ci

)

µL(Ci) = µL

(

Cj

)

∗ µD

(

Cj,Ci

)

µA(Ci) = µA

(

Cj

)

∗ µD

(

Cj,Ci

)

µKn(Ci) = µKn

(

Cj

)

∗ µD

(

Cj,Ci

)

µL(Ci) = µL

(

Cj

)

∗ µD

(

Cj,Ci

)

µA(Ci) = µA

(

Cj

)

∗ µD

(

Cj,Ci

)

µL(Ci) = µL

(

Cj

)

∗ µD

(

Cj,Ci

)

µA(Ci) = µA

(

Cj

)

∗ µD

(

Cj,Ci

)

µA(Ci) = µA

(

Cj

)

∗ µD

(

Cj,Ci

)
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2.4.2.1 � Examples of Operation

The above described rule-based fuzzy logic system was used in a postgradu-
ate program in the field of informatics at the University of Piraeus in Greece. It 
was used in order to offer dynamically personalized e-training in computer pro-
gramming and the language C. At the beginning, all the domain concepts of the 
learning material were considered to be ‘Unknown’ for the learners. At the next 
interactions, the system delivered to them the appropriate learning material for 
each individual student’s needs by adapting instantly to the learner’s individ-
ual learning pace. The KL value of each domain concept was determined by the 
results of the tests. There were two kinds of tests: (i) the tests that corresponded 
to each individual domain concept of the learning material (practice tests), (ii) the 
final tests that corresponded to the sections of the learning material (they included 
exercises of a variety of domain concepts). In particular, each time the learner read 
a domain concept, s/he had to complete a corresponding practice test. When, the 
learner had completed successfully all the practice tests of the domain concepts of 
a section (e.g. iterations with concrete number of loops, arrays, sub-programming), 
then s/he had to complete the final test of the section. If s/he succeeded to the final 
test, then s/he transited to a next section. Otherwise, s/he had advised to revise 
some domain concepts. Representative examples of the system’s implementation 
follow.

•	 Example 1

George had learned the sections 1 (domain concepts 1.1 to 1.7) and 2 (domain 
concept 2.1) and she was taught the domain concepts of the section 3 (domain 
concepts 3.1 to 3.3) (Interaction I of Table 2.8). He read the concept C3.1. Then, 
he was examined in the particular domain concept and succeeded 78 %. According 
to the above, the value of the defined membership functions for concept C3.1 
become μUn = 0, μMKn = 0, μKn = 0.4, μL = 0.6 and μA = 0. According to the 
FR-CN (Fig. 2.11) the concept C3.1 affects the following concepts C3.2 and C3.3 
with “strength of impact” 0.5 and 0.2 correspondingly. Consequently, applying the 
fuzzy rule R2 (b) and (c), KL(C3.2) becomes 20 % ‘Known’ and 30 % ‘Learned’. 
The rest 50  % of the particular concept remains ‘Unknown’ (Interaction II of 
Table  2.8). Similarly, applying the same rules, KL(C3.3) becomes 8  % ‘Known’ 
and 12 % ‘Learned’. The rest 80 % of the particular concept remains ‘Unknown’ 
(Interaction II of Table  2.8). Therefore, although concepts C3.2 and C3.3 are not 
completely unknown to George, the system advises him to read them.

•	 Example 2

Kate had learned the sections 1 (domain concepts 1.1 to 1.7), 2 (domain con-
cept 2.1), 3 (domain concepts (3.1 to 3.3) and the concepts 4.1, 4.5 and 5.5 
(Interaction I of Table 2.9). She read the concept C4.2 to improve her knowledge 
level. Then, she was examined in the particular domain concept and succeeded 
86  %. According to the above, the value of the defined membership functions 
for concept C4.2 become μUn = 0, μMKn = 0, μKn = 0, μL = 0.8 and μA = 0.2. 
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According to the FR-CN (Fig. 2.11) the concept C4.2 affects the following concepts 
C4.3, C4.4, C5.2, C5.3 and C5.4 with “strength of impact” 0.45, 0.81, 1, 0.45 and 0.39 
correspondingly. Consequently, applying the fuzzy rule R2 (c) and (d), KL(C4.3) 
becomes 36 % ‘Learned’ and 9 % ‘Assimilated’. The rest 55 % of the particular 
concept remains ‘Unknown’ (Interaction II of Table 3.2). Similarly, applying the 
same rules, KL(C4.4) becomes 64.8 % ‘Learned’ and 16.2 % ‘Assimilated’ (the rest 
19  % of the particular remains ‘Unknown’), KL(C5.2) becomes 80  % ‘Learned’  

Table 2.8   George’s progress

Domain concepts Learner’s knowledge

Interaction I (μUn, μMKn, 
μKn, μL, μA)

Interaction II (μUn, 
μMKn, μKn, μL, μA)

1.1 Constants and variables (0, 0, 0, 0, 1) (0, 0, 0, 0, 1)

1.2 Assignment statement (0,0, 0, 0.08, 0.92) (0,0, 0, 0.08, 0.92)

1.3 Arithmetic operators (0, 0, 0, 0, 1) (0, 0, 0, 0, 1)

1.4 Comparative operators (0,0, 0,0.08, 0.92) (0,0, 0,0.08, 0.92)

1.5 Logical operators (0, 0, 0, 0, 1) (0, 0, 0, 0, 1)

1.6. Mathematic functions (0, 0, 0, 0, 1) (0, 0, 0, 0, 1)

1.7 Input-output statements (0, 0, 0, 0, 1) (0, 0, 0, 0, 1)

2.1 A simple program’s structure (0, 0, 0, 0, 1) (0, 0, 0, 0, 1)

3.1 If statement (1, 0, 0, 0, 0) (0, 0, 0.4, 0.6, 0)

3.2 If…else if (1, 0, 0, 0, 0) (0.5, 0, 0.2, 0.3, 0)

3.2.1 Finding max, min (1, 0, 0, 0, 0) (1, 0, 0, 0, 0)

3.3 Nested if statement (1, 0, 0, 0, 0) (0.8, 0, 0.08, 0.12, 0)

4.1 For statement (1, 0, 0, 0, 0) (1, 0, 0, 0, 0)

4.2 Calc. sum in a for loop (1, 0, 0, 0, 0) (1, 0, 0, 0, 0)

4.3 Counting in a for loop (1, 0, 0, 0, 0) (1, 0, 0, 0, 0)

4.4 Calc. avrg in a for loop (1, 0, 0, 0, 0) (1, 0, 0, 0, 0)

4.5 Calc. max/min in a for loop (1, 0, 0, 0, 0) (1, 0, 0, 0, 0)

5.1 While statement (1, 0, 0, 0, 0) (1, 0, 0, 0, 0)

5.2 Calc. sum in a while loop (1, 0, 0, 0, 0) (1, 0, 0, 0, 0)

5.3 Counting in a while loop (1, 0, 0, 0, 0) (1, 0, 0, 0, 0)

5.4 Calc. avrg in a while loop (1, 0, 0, 0, 0) (1, 0, 0, 0, 0)

5.5 Calc. max/min in a while loop (1, 0, 0, 0, 0) (1, 0, 0, 0, 0)

5.6 Do…until (1, 0, 0, 0, 0) (1, 0, 0, 0, 0)

6.1 One-dimension arrays (1, 0, 0, 0, 0) (1, 0, 0, 0, 0)

6.2 Searching (1, 0, 0, 0, 0) (1, 0, 0, 0, 0)

6.3 Sorting (1, 0, 0, 0, 0) (1, 0, 0, 0, 0)

6.4 Two-dimensions arrays (1, 0, 0, 0, 0) (1, 0, 0, 0, 0)

6.5 Processing per rows (1, 0, 0, 0, 0) (1, 0, 0, 0, 0)

6.6 Processing per column (1, 0, 0, 0, 0) (1, 0, 0, 0, 0)

6.7 Processing of diagonals (1, 0, 0, 0, 0) (1, 0, 0, 0, 0)

7.1 Functions (1, 0, 0, 0, 0) (1, 0, 0, 0, 0)
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and 20 % ‘Assimilated’, KL(C5.3) becomes 36 % ‘Learned’ and 9 % ‘Assimilated’ 
(the rest 55  % of the particular concept remains ‘Unknown’) and KL(C5.4) 
becomes 31.2 % ‘Learned’ and 7.8 % ‘Assimilated’ (the rest 61 % of the particular 
concept remains ‘Unknown’) (Interaction II of Table 3.3). Therefore, the increase 
of Kate’s knowledge level on C4.2 improves automatically her knowledge level 

Table 2.9   Kate’s progress

Domain concepts Learner’s knowledge

Interaction I (μUn, μMKn, 
μKn, μL, μA)

Interaction II (μUn, μMKn, 
μKn, μL, μA)

1.1 Constants and variables (0, 0, 0, 0, 1) (0, 0, 0, 0, 1)

1.2 Assignment statement (0, 0, 0, 0, 1) (0, 0, 0, 0, 1)

1.3 Arithmetic operators (0, 0, 0, 0.02, 0.098) (0, 0, 0, 0.02, 0.098)

1.4 Comparative operators (0, 0, 0, 0, 1) (0, 0, 0, 0, 1)

1.5 Logical operators (0, 0, 0, 0, 1) (0, 0, 0, 0, 1)

1.6. Mathematic functions (0, 0, 0, 0.12, 0.88) (0, 0, 0, 0.12, 0.88)

1.7 Input-output statements (0, 0, 0, 0, 1) (0, 0, 0, 0, 1)

2.1 A simple program’s 
structure

(0, 0, 0, 0, 1) (0, 0, 0, 0, 1)

3.1 If statement (0, 0, 0, 0.3, 0.7) (0, 0, 0, 0.3, 0.7)

3.2 If…else if (0, 0, 0, 0.4, 0.6) (0, 0, 0, 0.4, 0.6)

3.2.1 Finding max, min (0, 0, 0, 0.1, 0.9) (0, 0, 0, 0.1, 0.9)

3.3 Nested if statement (0, 0, 0, 0.4, 0.6) (0, 0, 0, 0.4, 0.6)

4.1 For statement (0, 0, 0, 0.73, 0.27) (0, 0, 0, 0.73, 0.27)

4.2 Calc. sum in a for loop (1, 0, 0, 0, 0) (0, 0, 0, 0.8, 0.2)

4.3 Counting in a for loop (1, 0, 0, 0, 0) (0.55, 0, 0, 0.36, 0.09)

4.4 Calc. avrg in a for loop (1, 0, 0, 0, 0) (0.19, 0, 0, 0.648, 0.162)

4.5 Calc. max/min in a for 
loop

(0, 0, 0, 0.67, 0.33) (0, 0, 0, 0.67, 0.33)

5.1 While statement (1, 0, 0, 0, 0) (1, 0, 0, 0, 0)

5.2 Calc. sum in a while loop (1, 0, 0, 0, 0) (0, 0, 0, 0.8, 0.2)

5.3 Counting in a while loop (1, 0, 0, 0, 0) (0.55, 0, 0, 0.36, 0.09)

5.4 Calc. avrg in a while loop (1, 0, 0, 0, 0) (0.61, 0, 0, 0.312, 0.078)

5.5 Calc. max/min in a while 
loop

(0, 0, 0, 0.67, 0.33) (0, 0, 0, 0.67, 0.33)

5.6 Do…until (1, 0, 0, 0, 0) (1, 0, 0, 0, 0)

6.1 One-dimension arrays (1, 0, 0, 0, 0) (1, 0, 0, 0, 0)

6.2 Searching (1, 0, 0, 0, 0) (1, 0, 0, 0, 0)

6.3 Sorting (1, 0, 0, 0, 0) (1, 0, 0, 0, 0)

6.4 Two-dimensions arrays (1, 0, 0, 0, 0) (1, 0, 0, 0, 0)

6.5 Processing per rows (1, 0, 0, 0, 0) (1, 0, 0, 0, 0)

6.6 Processing per column (1, 0, 0, 0, 0) (1, 0, 0, 0, 0)

6.7 Processing of diagonals (1, 0, 0, 0, 0) (1, 0, 0, 0, 0)

7.1 Functions (1, 0, 0, 0, 0) (1, 0, 0, 0, 0)
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on other related domain concepts, also. Indeed, the fact that the knowledge level 
of concept C5.2 became automatically from 100  % ‘Unknown’, 80  % ‘Learned’ 
and 20 % ‘Assimilated’, without Kate read it, is particular important. This change  
triggers the system to infer that C5.2 is already known for Kate.

Table 2.10   Nick’s progress

Domain concepts Learner’s knowledge

Interaction I (μUn, μMKn, 
μKn, μL, μA)

Interaction II (μUn, μMKn, 
μKn, μL, μA)

1.1 Constants and variables (0, 0, 0, 0, 1) (0, 0, 0, 0, 1)

1.2 Assignment statement (0, 0, 0, 0, 1) (0, 0, 0, 0, 1)

1.3 Arithmetic operators (0, 0, 0, 0.02, 0.098) (0, 0, 0, 0.02, 0.098)

1.4 Comparative operators (0, 0, 0, 0, 1) (0, 0, 0, 0, 1)

1.5 Logical operators (0, 0, 0, 0, 1) (0, 0, 0, 0, 1)

1.6. Mathematic functions (0, 0, 0, 0.12, 0.88) (0, 0, 0, 0.12, 0.88)

1.7 Input-output statements (0, 0, 0, 0, 1) (0, 0, 0, 0, 1)

2.1 A simple program’s 
structure

(0, 0, 0, 0, 1) (0, 0, 0, 0, 1)

3.1 If statement (0, 0, 0, 0.3, 0.7) (0, 0, 0, 0.3, 0.7)

3.2 If…else if (0, 0, 0, 0.4, 0.6) (0, 0, 0, 0.4, 0.6)

3.2.1 Finding max, min (0, 0, 0, 0.1, 0.9) (0, 0, 0, 0.1, 0.9)

3.3 Nested if statement (0, 0, 0, 0.4, 0.6) (0, 0, 0, 0.4, 0.6)

4.1 For statement (0, 0, 0, 0.73, 0.27) (0, 0, 0, 0.73, 0.27)

4.2 Calc. sum in a for loop (0, 0, 0, 0.8, 0.2) (0, 0, 1, 0, 0)

4.3 Counting in a for loop (0, 0, 0, 0.6, 0.4) (0, 0, 0, 1, 0)

4.4 Calc. avrg in a for loop (0, 0, 0, 0.7, 0.3) (0, 0, 1, 0, 0)

4.5 Calc. max/min in a for 
loop

(0, 0, 0, 0.67, 0.33) (0, 0, 0, 0.67, 0.33)

5.1 While statement (0, 0, 0, 1, 0) (0, 0, 0, 1, 0)

5.2 Calc. sum in a while loop (0, 0, 0, 0.8, 0.2) (0, 0, 1, 0, 0)

5.3 counting in a while loop (0, 0, 0, 0.6, 0.4) (0, 0, 0.45, 0.15, 0.4)

5.4 Calc. avrg in a while loop (0, 0, 0, 0.7, 0.3) (0, 0, 0.81, 0, 0.19)

5.5 Calc. max/min in a while 
loop

(0, 0, 0, 0.67, 0.33) (0, 0, 0, 0.67, 0.33)

5.6 Do…until (1, 0, 0, 0, 0) (1, 0, 0, 0, 0)

6.1 One-dimension arrays (1, 0, 0, 0, 0) (1, 0, 0, 0, 0)

6.2 Searching (1, 0, 0, 0, 0) (1, 0, 0, 0, 0)

6.3 Sorting (1, 0, 0, 0, 0) (1, 0, 0, 0, 0)

6.4 Two-dimensions arrays (1, 0, 0, 0, 0) (1, 0, 0, 0, 0)

6.5 Processing per rows (1, 0, 0, 0, 0) (1, 0, 0, 0, 0)

6.6 Processing per column (1, 0, 0, 0, 0) (1, 0, 0, 0, 0)

6.7 Processing of diagonals (1, 0, 0, 0, 0) (1, 0, 0, 0, 0)

7.1 Functions (1, 0, 0, 0, 0) (1, 0, 0, 0, 0)
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•	 Example 3

Nick had learned the sections 1 (the domain concepts 1.1 to 1.7), 2 (the domain 
concept 2.1), 3 (the domain concepts 3.1 to 3.3), 4 (the domain concepts 4.1 to 
4.5) and some domain concepts 5.1 to 5.5 of the section 5 (Interaction I  of 
Table  2.10). He revised the concept C5.2. During the revision, he was exam-
ined in the particular domain concept and succeeded 73  %. According to the 
above, the value of the defined membership functions for concept C5.2 become 
μUn =  0, μMKn =  0, μKn =  1, μL =  0 and μA =  0. According to the FR-CN 
(Fig.  2.11) the concept C5.2 affects the preceding concepts C4.2, C4.3, C4.4 
and the following concepts C5.3 and C5.4 with “strength of impact” 1, 0.45, 
0.81, 0.45 and 0.81 correspondingly. Consequently, applying the fuzzy rule 
R8 is: x4.2 = (1− 1) ∗ 86+min[1 ∗ 86, 1 ∗ 73] = 73. That degree of suc-
cess corresponds to the fuzzy set ‘Known’ with μKn  =  1. (Interaction II of  
Table 3.4). Similarly, applying the same rule, KL(C4.3) becomes 100 % ‘Learned’, 
and KL(C4.4) becomes 100 % ‘Known’ (Interaction II of Table 3.4). Furthermore, 
according to the rules R3 and R4 (a), KL(C5.3) becomes 45  % ‘Known’, 15  % 
‘Learned’ and 40 % ‘Assimilated’ and KL(C5.4) becomes 70 % ‘Known’ and 30 % 
‘Assimilated’ (Interaction II of Table 2.10).

2.5 � Conclusions and Discussion

Learning is a complicated process. It cannot be accurately said that a learner 
knows or does not know a domain concept. For example, a new domain concept 
may be completely unknown to the learner but in other circumstances it may be 
partly known due to previous related knowledge of the learner. On the other hand, 
domain concepts, which were previously known by the learner, may be completely 
or partly forgotten. Hence, currently they may be partly known or completely 
unknown. In this sense, the level of knowing cannot be accurately represented. 
Finally, the teaching process itself changes the status of knowledge of a user. 
This is happened due to the fact that a learner accepts new concepts while being 
taught. Furthermore, the learner’s knowledge is a moving target. The knowledge 
level of a domain concept is increased when the student’s performance is improved. 
Alternatively, it is decreased when the student forgets. Improvement of the knowl-
edge level of a domain concept should lead to the increase of the knowledge level 
of all the related concepts (prerequisite and following), with his concept. Similarly, 
poor performance on a domain concept should lead to decrease of the knowledge 
level of all the related concepts with this concept.

In view of the above, an effective adaptive tutoring system has to be responsible 
for tracking cognitive state transitions of learners with respect to their progress or 
non-progress. The alterations on the state of student’s knowledge level are not lin-
ear. They deal with uncertainty. Thus, a solution to represent these is fuzzy logic. 
Therefore, the target of this section was to develop a rule-based fuzzy logic system, 
which models the cognitive state transitions of learners, such as forgetting, learning 
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or assimilating. The presented rule-based fuzzy logic system identifies and updates 
each time the student’s knowledge level not only for the current concept, which is 
delivered to the learner, but also for all the related concepts with this concept. To 
achieve that, the system considers either the learner’s performance or the knowledge 
dependencies that exist between the domain concepts of the learning material. In 
the particular rule-based fuzzy logic system, fuzzy sets are used in order to describe 
how well each individual domain concept is known and learned. Furthermore, it 
uses a mechanism of rules over the fuzzy sets, which is triggered after any change 
of the value of the knowledge level of a domain concept and updates the values of 
the knowledge level of all the related domain concepts with that. Therefore, the edu-
cational system, which has integrated the particular rule-based fuzzy logic system, 
is able to makes dynamic decisions on how the teaching syllabus is presented to the 
learner to fit his/her personal needs and learning pace.

The operation of the system is based on the knowledge domain representation that 
is implemented through a Fuzzy Related-Cognitive Network. This kind of knowl-
edge domain representation helps to manage to represent either the order in which 
the domain concepts of the learning material have to be taught and organized, or the 
knowledge dependencies that exist between the domain concepts. This is signifi-
cant because the knowledge level of a domain concept increases or decreases due to 
changes on the knowledge level of a related domain concept. The design of the learn-
ing material and the definition of the individual domain concepts that it includes, are 
based on the knowledge and experience of domain experts. Furthermore, the contri-
bution of domain experts is significant for the definition of the knowledge dependen-
cies that exist among the domain concepts of the learning material and their “strength 
o impact” on each other.

The presented rule-based fuzzy logic system is applicable to systems, in which the 
user’s changeable state and/or preferences are affected by the existing dependencies 
among the system’s elements (like concepts, preferences, events, choices). Thereafter, 
the particular system could be implemented in adaptive systems other than adaptive 
tutoring system. For example, it could be used in an e-shop, where the preference of 
an online shopper for particular products can be used in order to guess and propose 
her/him other products that the user is likely to be interested in. In the Table 2.11 the 
correlation of an e-shop and an adaptive e-learning system is presented concerning 
the particular rule-based fuzzy logic system (Table 2.11).

Table 2.11   Correlation of an e-shop and an adaptive e-learning system concerning the presented 
rule-based fuzzy logic system

E-shop E-learning

Nodes Products Domain concepts

Arcs Preferences’ dependencies Knowledge dependencies

Fuzzy sets Descriptions of a preference (e.g. 
‘uninterested’, ‘interested’, ‘liked’, 
‘preferred’)

Descriptions of knowledge level (e.g. 
‘unknown’, ‘insufficiently known’, 
‘known’, ‘learned’)

Changeable 
states

Preferences Knowledge level
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