Chapter 2
“It from Bit”’ and the Quantum
Probability Rule

M.S. Leifer

Abstract I argue that, on the subjective Bayesian interpretation of probability, “it
from bit” requires a generalization of probability theory. This does not get us all the
way to the quantum probability rule because an extra constraint, known as noncon-
textuality, is required. I outline the prospects for a derivation of noncontextuality
within this approach and argue that it requires a realist approach to physics, or “bit
from it”. I then explain why this does not conflict with “it from bit”. This version of
the essay includes an addendum responding to the open discussion that occurred on
the FQXi website. It is otherwise identical to the version submitted to the contest.

Wheeler’s “It from Bit”

It from bit. Otherwise put, every it—every particle, every field of force, even the spacetime
continuum itself—derives its function, its meaning, its very existence entirely—even if in
some contexts indirectly—from the apparatus-elicited answers to yes or no questions, binary
choices, bits.

It from bit symbolizes the idea that every item of the physical world has at bottom—at a
very deep bottom, in most instances—an immaterial source and explanation; that what we
call reality arises in the last analysis from the posing of yes-no questions and the registering
of equipment-evoked responses; in short, that all things physical are information-theoretic
in origin and this is a participatory universe.

— J. A. Wheeler [1]

John Wheeler’s “it from bit” is a thesis about the foundations of quantum theory.
It says that the things that we usually think of as real—particles, fields and even
spacetime—have no existence independent of the questions that we ask about them.
When a detector clicks it is not registering something that was there independently of
the experiment. Rather, the very act of setting up the detector in a certain way—the
choice of question—is responsible for the occurrence of the click. It is only the act of
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asking questions that causes the answers to come into being. This idea is perhaps best
illustrated by Wheeler’s parable of the game of twenty questions (surprise version).

You recall how it goes—one of the after-dinner party sent out of the living room, the others
agreeing on a word, the one fated to be a questioner returning and starting his questions. “Is
it a living object?” “No.” “Is it here on earth?” “Yes.” So the questions go from respondent
to respondent around the room until at length the word emerges: victory if in twenty tries or
less; otherwise, defeat.

Then comes the moment when we are fourth to be sent from the room. We are locked out
unbelievably long. On finally being readmitted, we find a smile on everyone’s face, sign of
a joke or a plot. We innocently start our questions. At first the answers come quickly. Then
each question begins to take longer in the answering—strange, when the answer itself is only
a simple “yes” or “no.” At length, feeling hot on the trail, we ask, “Is the word ‘cloud’?”
“Yes,” comes the reply, and everyone bursts out laughing. When we were out of the room,
they explain, they had agreed not to agree in advance on any word at all. Each one around
the circle could respond “yes” or “no” as he pleased to whatever question we put to him.
But however he replied he had to have a word in mind compatible with his own reply—and
with all the replies that went before. No wonder some of those decisions between “yes” and
“no” proved so hard!

— J. A. Wheeler [2]

Wheeler proposed “it from bit” as a clue to help us answer the question “How
come the quantum?”, i.e. to derive the mathematical apparatus of quantum theory
from a set of clear physical principles. In this essay, I discuss whether “it from bit”
implies the quantum probability rule, otherwise known as the Born rule, which would
get us part of the way towards answering Wheeler’s question.

My main argument is that, on the subjective Bayesian interpretation of probability,
“it from bit” requires a generalized probability theory. I explain why this is not ruled
out by the common claim that classical probability theory is not to be violated on
pain of irrationality.

In the context of quantum theory, “it from bit” does not quite get us all the
way to the Born rule because the latter mandates a further constraint known as
noncontextuality. The prospects for understanding noncontextuality as a rationality
requirement or an empirical addition are slim. Extra physical principles are needed
and I argue that these must be about the nature of reality, rather than the nature of
our knowledge. This seems to conflict with “it from bit” as it requires and agent-
independent reality, suggesting “bit from it”. I argue that there is no such conflict
because the sense of “it” used in “it from bit” is different from the sense used in “bit
from it”.

The Interpretation of Probability

Since von Neumann’s work on quantum logic and operator algebras [3, 4], it has been
known that quantum theory can be viewed as a generalization of probability theory
[5, 6]. If we want to understand what this tells us about the nature of reality then we
will need to adopt a concrete theory of how probabilities relate to the world, which is
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the job of an interpretation of probability theory.! Three main classes of interpretation
have arisen to meet this need: frequentism (probability is long run relative frequency),
epistemic probability (probabilities represent the knowledge, information, or beliefs
of a decision making agent), and objective chance (probabilities represent a kind
of law of nature or a disposition for a system to act in a certain way). Getting into
the details of all these options would take us too far afield, but a few comments are
in order to explain why adopting my preferred epistemic interpretation, known as
subjective Bayesianism,? is not a crazy thing to do.

Frequentism is still popular amongst physicists, but it has largely been abandoned
by scholars of the philosophy of probability. It is not able to handle single-case
probabilities, e.g. the probability that civilization will be destroyed by a nuclear
war, and it leads to a bizarre reading of the law of large numbers that does not do the
explanatory work required of it.> A common position in the philosophy of probability
is that subjective Bayesianism is more satisfactory, but that it needs to be backed up
by some theory of objective chance in order to account for probabilistic laws.* My
own view is that subjective Bayesianism suffices on its own, but whether or not one
believes in objective chance is irrelevant for the present discussion, since objective
chances need to be connected to epistemic probabilities in some way in order to
explain how we can come to know statistical laws. The usual way of doing this is
via David Lewis’ principal principle [13]. One of the implications of this is that
objective chances must have the same mathematical structure as subjective Bayesian
probabilities. Therefore, if we can argue that “it from bit” requires a modification
of subjective Bayesian probability then the same will apply to objective chances as
well. It is also worth noting that several modern interpretations of quantum theory
adopt subjective Bayesianism, including “Quantum Bayesianism” [14—17] and the
Deutsch-Wallace variant of many-worlds [18-21] amongst others [22].

Subjective Bayesian Probability

Subjective Bayesianism says that probabilities represent the degrees of belief of a
decision making agent, who is conventionally described in the second person as
“you”. Degrees of belief are measured by looking at your behaviour, e.g. your will-
ingness to enter into bets. The claim is that if you do not structure your beliefs
according to the axioms of probability theory then you are irrational. There are var-
ious ways of deriving this, differing in their simplicity and sophistication. For ease
of exposition, I base my discussion on the simplest approach, known as the Dutch
book argument.

1 See [7] for an accessible introduction and [8] for a collection of key papers.

2 Subjective Bayesianism has its origins in [9, 10]. An accessible introduction is [11].
3 See [12] for a critique of frequentism in statistics.

4 This view originates with David Lewis [13].
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The Dutch book argument defines your degree of belief in the occurrence of an
uncertain event E as the value $p(E) you consider to be a fair price for a lottery
ticket that pays $1 if E occurs and nothing if it does not. “Fair price” here means
that you would be prepared to buy or sell any number of these tickets at that price
and that you would be prepared to do this in combination with fair bets on arbitrary
sets of other events. Your degrees of belief are said to be irrational if a malicious
bookmaker can force you to enter into a system of bets that would cause you to
lose money whatever the outcome, despite the fact that you consider them all fair.
Otherwise, your degrees of belief are said to be rational. The Dutch book argument
then shows that your degrees of belief are rational if, and only if, they satisfy the
usual axioms of probability theory. These axioms are:

e Background framework: There is a set €2, called the sample space, containing the
most fine-grained events you might be asked to bet on, e.g. if you are betting on the
outcome of a dice roll then 2 = {1, 2, 3, 4, 5, 6}. In general, an event is a subset
of 2, e.g. the event that the dice roll comes out odd is {1, 3, 5}. For simplicity,
we assume that €2 is finite. The set of events forms a Boolean algebra, which just
means that it supports the usual logical notions of AND, OR and NOT.

e Al: Forallevents E C Q2,0 < p(E) < 1.

e A2: For the certain event 2, p(2) = 1.

e AJ:If ENF =, i.e. E and F cannot both happen together, then p(E U F) =
p(E) + p(F), where E U F means the event that either E or F occurs.

For illustrative purposes, here is the part of the argument showing that violations of
A1l and A2 are irrational. Consider an event E and suppose contra Al that p(E) < 0.
This means that you would be willing to sell a lottery ticket that pays out on E to
the bookie for a negative amount of money, i.e. you would pay her $ p(FE) to take the
ticket off your hands. Now, if E occurs you will have to pay the bookie $1 so in total
you will have paid her $1 + p(E), and if E does not occur you will have paid her a
total of $ p(E). Either way, you will lose money so having negative degrees of belief
is irrational. A similar argument shows that having degrees of belief larger than 1
is irrational. Now suppose contra A2 that p(2) < 1. Then, you would be prepared
to sell the lottery ticket for $p(€2) and pay out $1 if Q occurs. However, since 2 is
certain to occur, you will always end up paying out, which leaves you with a loss.

Is Probability Theory Normative?

Based on this kind of argument, many subjective Bayesians regard probability theory
as akin to propositional logic.? In logic, you start with a set of premises that you regard
as true, and then you use the rules of logic to figure out what other propositions must
be true or false as a consequence. If you fail to abide by those truth values then
there is an inconsistency in your reasoning. However, there is nothing in logic that

5 For example, see [23] where this argument is made repeatedly.
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tells you what premises you have to start with. The premises are simply the input
to the problem and logic tells you what else they compel you to believe. Similarly,
subjective probability does not tell you what numerical value you must assign to any
uncertain event,® but given some of those values as input, it tells you what values you
must assign to other events on pain of inconsistency, the inconsistency here being
exposed in the form of a sure loss. Like logic, subjective Bayesians regard probability
theory as normative rather than descriptive, i.e. they claim that you should structure
your degrees of belief about uncertain events according to probability theory if you
aspire to be ideally rational, but not that humans actually do structure their beliefs in
this way. In fact, much research shows that they do not [25].

The normative view of probability theory presents a problem if we want to view
quantum theory as generalized probability because it implies that it is irrational to
use anything other than conventional probability theory to reason about uncertain
events. Fortunately, the normative view is not just wrong, but obviously wrong.
Unlike logic, it is easy to come up with situations in which the Dutch book argument
has no normative force. Because of this, the idea that it might happen in quantum
theory too is not particularly radical.

For example, the Dutch book argument requires that you view the fair price for
selling a lottery ticket to be the same as the fair price for buying it. In reality, people
are more reluctant to take on risk than they are to maintain a risk for which they have
already paid the cost. Therefore, the fair selling price might be higher than the fair
buying price. This leads to the more general theory of upper and lower probabilities
wherein degrees of belief are represented by intervals on the real line rather than
precise numerical values [26].

At this point, [ should address the fact that the Dutch book argument is not the only
subjective Bayesian derivation of probability theory, so its defects may not be shared
with the other derivations. The most general subjective arguments for probability
theory are formulated in the context of decision theory, with Savage’s axioms being
the most prominent example [27]. These take account of things like the fact that you
may be risk averse and your appreciation of money is nonlinear, e.g. $1 is worth more
to a homeless person than a billionaire, so they replace the financial considerations of
the Dutch book argument with the more general concept of “utility”’. However, what
all these arguments have in common is that they are hedging strategies. They start
with some set of uncertain events and then they introduce various decision scenarios
that you could be faced with where the consequences depend on uncertain events in
some way, e.g. the prizes in a game that depends on dice rolls. Importantly, these
arguments only work if the set of decision scenarios is rich enough. They ask you to
consider situations in which the prizes for the various outcomes are chopped up and
exchanged with each other in various ways. For example, in the Dutch book argument
this comes in the form of the idea that you must be prepared to buy or sell arbitrarily
many tickets for arbitrary sets of events at the fair price. The arguments then conclude

6 This is where it differs from objective Bayesianism [24], which asserts that there is a unique rational
probability that you ought to assign. However, defining such a unique probability is problematic at
best.
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that if you do not structure your beliefs according to probability theory then there is
some decision scenario in which you would be better off had you done so and none
in which you would be worse off. However, in real life, it is rather implausible that
you would be faced with such a rich set of decision scenarios. More often, you know
something in advance about what decisions you are going to be faced with. This is
why decision theoretic arguments are hedging strategies. They start from a situation
in which you do not know what decisions you are going to be faced with and then
they ask you to consider the worst possible scenario. If you know for sure that this
scenario is not going to come up then the arguments have no normative force.

As an example, consider the following scenario. There is a coin that is going to be
flipped exactly once. You have in your possession $1 and you are going to be forced
to bet that dollar on whether the coin will come up heads or tails, with a prize of
$2 if you get it right. You do not have the option of not placing a bet. How should
you structure your beliefs about whether the coin will come up heads or tails? If the
decision theoretic arguments applied then we would be forced to say that you must
come up with a precise numerical value for the probability of heads p(H). However,
it is clear that the cogitation involved in coming up with this number is completely
pointless in this scenario. All you need to know is the answer to a single question.
Do you think heads is more likely to come up than tails? Your decision is completely
determined by this answer, which is just a single bit of information rather than a
precise numerical value.

It should be clear from this that the decision theoretic arguments are not as strongly
normative as the laws of logic. Instead they are conditionally normative, i.e. normative
if the decision scenarios envisaged in the argument are all possible.

“It from Bit” Implies a Generalized Probability Theory

A universe that obeys “it from bit” is a universe in which not all conceivable decision
scenarios are possible. To explain this, consider again Wheeler’s parable of twenty
questions (surprise version) and imagine that you are observing the game passively,
placing bets with a bookmaker on the side as it proceeds. To make things more
analogous to quantum theory, imagine that the respondents exit the room as soon as
they have answered their question, never to be heard from again. We might imagine
that they are sent through a wormhole into a region of spacetime that will forever be
outside of our observable universe and that the wormhole promptly closes as soon
as they enter it. This rules out the possibility that we might ask them about what they
would have answered if they had been asked a different question, since in quantum
theory we generally cannot find out what the outcome of a measurement that we did
not actually make would have been.

Suppose that, at some point in the game, you make a bet with the bookie that
the object that the fifth respondent has in mind is a dove. However, what actually
happens is that the questioner asks “Is it white?” and the answer comes back “yes”,
whereupon the fifth respondent is whisked off to the far corners of the universe.
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Now, although the answer “yes” is consistent with the object being a dove, this is not
enough to resolve the bet as there are plenty of other conceivable white objects. As
in Wheeler’s story, suppose that the last question asked is “Is it a cloud?” and that
the answer comes back “yes”. In the usual version of twenty questions this would
be enough to resolve the bet in the bookie’s favor because all the respondents are
thinking of a common object. However, in the surprise version this is not the case.
It could well be that “dove” was consistent with all the answers given so far at the
time we made the bet, and that the fifth respondent was actually thinking of a dove.
We can never know and so the bet can never be resolved. It has to be called off and
you should get a refund.

Whilst the bet described above is unresolvable, other bets are still jointly resolv-
able, e.g. a bet on whether the fifth respondent was thinking of a white object together
with a bet on whether the last respondent was thinking of a cloud. The set of bets
that is jointly resolvable depends on the sequence of questions that is actually asked
by the questioner. If you want to develop a hedging strategy ahead of time, then you
need to consider all possible sequences of questions that might be asked to ensure
that you cannot be forced into a sure loss for any of them.

For the subjective Bayesian, the main lesson of this is that, in general, only certain
subsets of all possible bets are jointly resolvable. Define a betting context to be a set of
events such that bets on all of them are jointly resolvable and to which no other event
can be added without violating this condition. It is safe to assume that each betting
context is a Boolean algebra, since, if we can find out whether E occurred at the same
time as finding out whether F occurred, then we can also determine whether they
both occurred, whether either one of them occurred, and whether they failed to occur,
so we can define the usual logical notions of AND, OR and NOT. However, unlike in
conventional probability theory, there need not be a common algebra on which all of
the events that occur in different betting contexts are jointly defined. Because of this,
the Dutch book argument has normative force within a betting context, but it does not
tell us how probabilities should be related across different contexts. Therefore, our
degrees of belief should be represented by a set of probability distributions p(E|B),
one for each betting context 3.’

This framework can be applied to quantum theory where the betting contexts rep-
resent sets of measurements that can be performed together at the same time. The
details of this are rather technical, so they are relegated to Appendix. The probabil-
ities that result from this are more general than those allowed by quantum theory.
To get uniquely down to the Born rule, we need an extra constraint, known as non-
contextuality. This says that there are certain pairs of events from different betting

7 Despite the notation, p(E|B) is not a conditional probability distribution because there need not
be a common algebra on which all the events are defined. Some authors do not consider this to
be a generalization of probability theory [21, 28], since all we are saying is that we have a bunch
of probability distributions rather than just one. However, such systems can display nonclassical
features such as violations of Bell inequalities and no-cloning [29] so they are worthy of the name
“generalization” if anything is.
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contexts, £ € B and F € B, that must always be assigned the same probability
p(E|B) = p(F|B'). Therefore, we need to explain how such additional constraints
can be understood.

Noncontextuality in Subjective Bayesianism

One option is that noncontextuality could simply be posited as an additional fun-
damental principle. Previous Dutch book arguments for the Born rule have done
essentially this [14, 22]. However, subjective Bayesians do not accept fundamen-
tal constraints on probabilities beyond those required by rationality. Imposing such
constraints would be like saying that you are allowed to construct a logical argument
providing one of your starting premises is “the car is red”, but if you start from
“the car is yellow” then any argument you make is logically invalid. Additional con-
straints on probabilities are contingent facts about your state of belief, just as logical
premises are contingent facts about the world. Therefore, noncontextuality needs to
be derived in some way.

One possibility is that noncontextuality follows from logical equivalence, i.e. if
quantum theory always assigns the same probability to E in context 5 and F in B
then these should be regarded as equivalent logical statements, in the same sense
that £ and NOT (NOTE) are equivalent in a Boolean algebra.® Logical equivalence
implies that it ought to be possible to construct a Dutch book that results in a sure
lossif p(E|B) # p(F|B’). This can only be done if you are willing to accept that the
occurrence of E in betting context B makes it necessary that F' would have occurred
had the betting context been 3’ and vice versa. If this is the case, then you will agree
that abet made on F in betting context 3’ should also pay out if the betting context was
in fact B and the event E occurred and vice versa. If this is the case, then the bookie
can construct a Dutch book against p(E|B) < p(F|B’) by buying a ticket from you
that pays out on E and selling a ticket that pays out on F. The payouts on these
tickets will be the same, so you will lose money in this transaction. By exchanging
the roles of E and F, there would be a Dutch book against p(E|B) > p(F|B’) as
well.

This strategy hinges on whether it is reasonable to make counterfactual assertions,
i.e. assertions about what would have happened had the betting context been different.
However, “it from bit” declares such counterfactuals meaningless because it says that
there is no answer to questions that have not been asked. Even if we do not accept “it
from bit”, the Kochen-Specker theorem [30] implies that counterfactual assertions
cannot all respect noncontextuality, i.e. there would have to be pairs of events £ € B
and F € B’ such that if E occurs in B then F would not have occurred in B’ even
though quantum theory asserts that p(E|B) = p(F|B’) always holds. We conclude
that noncontextuality of probability assignments cannot be a rationality requirement.

8 pitowsky attempts to argue along these lines [22], unsuccessfully in my view.
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Another possibility is that noncontextuality could be adopted simply because we
have performed many quantum experiments and have always observed relative fre-
quencies in accord with the Born rule. Although probabilities are not identified with
relative frequencies in subjective Bayesianism, it still offers an account of statistical
inference wherein observing relative frequencies causes probabilities to be updated.
If certain technical conditions hold, probability assignments will converge to the
observed relative frequency in the limit of a large number of trials. Therefore, we
could assert that noncontextuality is a brute empirical fact.’

The problem with this is that it provides no explanation of why noncontextuality
holds. If we accept this, we might as well just give up and say that the only reason
why we believe any physical theory is because it matches the observed relative
frequencies. It would be like saying that the reason why the Maxwell-Boltzmann
distribution applies to a box of gas is because we have sampled many molecules
from such boxes and always found them to be approximately Maxwell-Boltzmann
distributed. This belies the important explanatory role of stationary distributions in
equilibrium statistical mechanics, and would be of no help in understanding why
nonequilibrium systems tend to equilibrium. Similarly, the Born rule appears to be
playing an important structural role in quantum theory that calls for an explanation.

The remaining option is to view noncontextuality as arising from physical, as
opposed to logical, equivalence. The Dutch book rationality criterion is usually
expressed as the requirement that you should not enter into bets that lead to a sure loss
by logical necessity, but it is equally irrational to enter into a bet that you believe will
lead to a sure loss, whether or not that belief is a logical necessity. Because of this, the
argument that you should assign probability one to the certain event equally applies
to events that you only believe to be certain, regardless of whether that belief is cor-
rect. Now, belief in the laws of physics entails certainty about statements that follow
from the laws so this can be the origin of constraints on probability assignments.

Toillustrate, suppose you believe that Newtonian mechanics is true and that there is
a single particle system with a given Hamiltonian. This means that you are committed
to propositions of the form “If the particle initially occupies phase space point (xg, po)
then at time ¢ it occupies the solution to Hamilton’s equations (x (¢), p(¢)) with initial
condition (xg, po)”. If you bet on such propositions at anything more or less than
even odds then you believe that you will lose money with certainty. Importantly, this
type of argument can also imply constraints on events that you are not certain about.
For example, if you assign a phase space region some probability and then compute
the endpoints of the trajectories for all points in that region at a later time then the
region formed by the end points must be assigned the same probability at that later
time. This shows that the need to assign equal probabilities to different events can
sometimes be derived from the laws of physics.

Crucially, this sort of argument can only really be made to work if there is an
objectively existing external reality. There needs to be some sort of “quantum stuff”
such that events that are always assigned the same probability correspond to physi-
cally equivalent states of this stuff. In the context of the many-worlds interpretation,

° This has been suggested in the context of the many-worlds interpretation [28].
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the Deutsch-Wallace [18-21] and Zurek [31, 32] derivations of the Born rule are
arguments of this type, where the quantum stuff is simply the wavefunction.

“It from Bit” or ‘Bit from It’?

We have arrived at the conclusion that noncontextuality must be derived in terms
of an analysis of the things that objectively exist. This implies a realist view of
physics, or in other words “bit from it”, which seems to conflict with “it from bit”.
Fortunately, this conflict is only apparent because “it” is being used in different senses
in “it from bit” and “bit from it”. The things that Wheeler classifies as “it” are things
like particles, fields and spacetime. They are things that appear in the fundamental
ontology of classical physics and hence are things that only appear to be real from
our perspective as classical agents. He does not mention things like wavefunctions,
subquantum particles, or anything of that sort. Thus, there remains the possibility that
reality is made of quantum stuff and that the interaction of this stuff with our question
asking apparatus, also made of quantum stuff, is what causes the answers (particles,
fields, etc.) to come into being. “It from bit” can be maintained in this picture provided
the answers depend not only on the state of the system being measured, but also on
the state of the stuff that comprises the measuring apparatus. Thus, we would end
up with “it from bit from it”, where the first “it” refers to classical ontology and the
second refers to quantum stuff.

Conclusion

On the subjective Bayesian view, “it from bit” implies that probability theory needs
to be generalized, which is in accord with the observation that quantum theory is a
generalized probability theory. However, “it from bit” does not get us all the way
to the quantum probability rule. A subjective Bayesian analysis of noncontextuality
indicates that it can only be derived within a realist approach to physics. At present,
this type of derivation has only been carried out in the many-worlds interpretation,
but I expect it can be made to work in other realist approaches to quantum theory,
including those yet to be discovered.

Addendum

In editing this essay for publication, I wanted to hew as closely as possible to the
version submitted to the contest, so I have decided to address the discussion that
occurred on the FQXi website in this addendum. I also address some comments
made by Kathryn Laskey in private correspondence, because I think she addressed
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one of the issues particularly eloquently. I am grateful to my colleagues and co-
entrants for their thoughtful comments. It would be impossible to address all of them
here, so I restrict attention to some of the most important and frequently raised issues.
Further details can be found on the FQXi comment thread [33].

Noncontextuality

Both Jochen Szangolies and Ian Durham expressed confusion at my usage of the
term “noncontextuality”, which derives from Gleason’s theorem [34]. Due to the
Kochen-Specker theorem [30], it is often said that quantum theory is “contextual”,
so how can this be reconciled with my claim that the Born rule is “noncontextual”?

In Gleason’s theorem, noncontextuality means that the same probability should
be assigned to the same projection operator, regardless of the context that it is mea-
sured in. Here, by context, I mean the other projection operators that are measured
simultaneously. So, as in the example given in the technical endnotes, |2) should
receive the same probability regardless of whether it is measured as part of the basis
{10), 1), |2)} or the basis {|+), |—), |2)}, where |£) = % (]0) &= |1)). From the per-
spective of this essay, Gleason’s theorem says that, for Hilbert spaces of dimension
three or larger, the only probability assignments compatible with both the Dutch book
constraints and noncontextuality are those given by the Born rule. In this sense the
Born rule is “noncontextual” and indeed it is the only viable probability rule that is.

On the other hand, the Kochen-Specker theorem concerns the assignment of def-
inite values to the outcomes of measurements. Instead of assigning probabilities to
projectors, the aim is to assign them values O or 1 in such a way that, for any set
of orthogonal projectors that can occur together in a measurement, exactly one of
them gets the value 1. This is to be done noncontextually, which means that whatever
value a projector is assigned in one measurement context, it must be assigned the
same value in all other contexts in which it occurs. The Kochen-Specker theorem
says that this cannot be done.

The two theorems are related because 0 and 1 are examples of probability assign-
ments, albeit extremal ones. As first pointed out by Bell [35], Gleason’s theorem
actually implies the conclusion of the Kochen-Specker theorem by the following
argument. For any quantum state, the Born rule never assigns 0/1 probabilities to
every single projector. Gleason’s theorem implies that, in dimension three and higher,
the only noncontextual probability assignments are given by the Born rule. There-
fore, for these dimensions, there can be no noncontextual probability assignment that
only assigns 0/1 probabilities.

From this it should be apparent that the noncontextuality assumption of the
Kochen-Specker theorem is the same as in Gleason’s theorem, only that it is special-
ized to 0/1 probability assignments. The additional assumption that the probabilities
must be either O or 1 is called outcome determinism, so the Kochen-Specker theorem
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shows that it is impossible to satisfy both outcome determinism and noncontextuality
at the same time (in addition to the Dutch book constraints).

Based on this, people often loosely say that the Kochen-Specker theorem shows
that quantum theory is “contextual” and this is the source of the confusion. However,
adopting contextual value assignments is only one way of resolving the contradiction
entailed by the Kochen-Specker theorem, the other being to drop outcome determin-
ism. It is therefore perfectly consistent to say that the Born rule is noncontextual but
that any model that assigns definite values to every observable cannot be.

Scientific Realism

Scientific realism is the view that our best scientific theories should be thought of as
describing an objective reality that exists independently of us. My argument ends up
endorsing the realist position, as it concludes that the world must be made of some
objectively existing “quantum stuff”.

There are good a priori reasons for believing in scientific realism that are inde-
pendent of the specifics of quantum theory, and hence independent of the argument
given in this essay (see [36] for a summary and [37] for a more detailed treatment of
these arguments). Most people who believe in scientific realism are probably swayed
by these arguments rather than anything to do with the details of quantum theory.

As pointed out by Ken Wharton, this would seem to open the possibility of short-
circuiting my argument. Why not simply make the case for scientific realism via one
or more of the a priori arguments? From this it follows that the world must consist
of some objectively existing stuff, and hence “bit from it”.

Whilst I agree that this is a valid line of argument, my intention was not to provide
an argument that would convince realists, for whom “bit from it” is a truism. It is
evident from the popularity of interpretations of quantum theory that draw inspira-
tion from the Copenhagen interpretation, which I collectively call neo Copenhagen
interpretations, that not everyone shares such strong realist convictions. Wheeler’s “it
from bit” is usually read as a neo-Copenhagen principle. It says that what we usually
call reality derives from the act of making measurements rather than from something
that exists independently of us. As I argue in the essay, “it from bit” can be given a
more realist spin by interpreting “it” as referring to an emergent, effective classical
reality rather than to the stuff that the world is made of at the fundamental level.
Nevertheless, most endorsers of “it from bit” are likely to have the neo Copenhagen
take on it in mind.

The most effective way of arguing against any opponent is to start from their
own premises and show that they lead to the position they intend to oppose. This is
much more effective than arguing against their premises on a priori grounds as it is
evident from the fact that they have chosen those premises that the opponent does
not find such a priori arguments compelling. My aim here is to do this with “it from
bit”—a premise accepted by many neo Copenhagenists—and to argue that it needs
to be supplemented with realism, or “bit from it”, in order to obtain a compelling
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derivation of the Born rule. This presents a greater challenge to the neo Copenhagen
view than simply rehashing the existing arguments for realism. I expect my fellow
realists to find this line of argument overly convoluted, but it is not really aimed at
them.

Has Probability Theory Really been Generalized?

In this essay, I argued that “it from bit” requires a generalization of probability
theory. Specifically, I argued that there are a number of different betting contexts
By, By, ..., that within each betting context the Dutch book argument implies a well
defined probability measure over the Boolean algebra of events in that context, but
that it does not imply any constraints on events across different betting contexts. This
gives rise to a theory in which there are a number of different Boolean algebras, each
of which has its own probability measure, instead of there being just one probability
measure over a single Boolean algebra. Giacomo Mauro D’ Ariano, Howard Barnum
and Kathryn Laskey (the latter in private correspondence) questioned whether it is
really necessary to think of this as a generalization of probability theory.

D’ Ariano’s method for preserving probability theory is to assign probabilities to
the betting contexts themselves. That is, we can build a sample space of the form
(B1 x Qp,, By x Qp,,...), where SZBj is the sample space associated with betting
context B;. We can then just specify an ordinary probability measure over this larger
space, and the separate probability measures for each context would then be obtained
by conditioning on ;.

I admit that this can always be done formally, but conceptually one might not want
to regard betting contexts as the kind of thing that should be assigned probabilities.
They are defined by the sequences of questions that we decide to ask, so one might
want to regard them as a matter of “free choice”. To avoid the thorny issue of free will,
we can alternatively imagine that the betting context is determined by an adversary.
Recall that, for a subjective Bayesian, assigning a probability to an event means
being willing to bet on that event at certain odds. Therefore, assigning probabilities
to betting contexts means you should be willing to bet on which context will occur.
However, if the bookie is also the person who gets to choose the betting context
after all such bets are laid, then she can always do so in such a way as to make your
probability assignments to the betting contexts as inaccurate as possible. Therefore,
there are at least some circumstances under which it would not be meaningful to
assign probabilities to betting contexts.

Laskey’s response is quite different. She simply denies that what I have described
deserves the name “generalization of probability theory”. Since her comments were
made in private communication, with her permission I reproduce them here.

Let me first take issue with your statement that quantum theory requires generalizing prob-
ability theory because the Boolean algebras of outcomes are different in different betting
contexts. Dependence of the Boolean algebra of outcomes on the betting context is by no
means restricted to quantum theory. It happens all the time in classical contexts—in fact,
it’s a fixture of our daily life. Ever see the movie “Sliding Doors”? The Boolean algebra of
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outcomes I face today would be totally different had I not chosen to marry my husband; had
I taken a different job when I came out of grad school; had my husband and I not had four
children; had I not chosen an academic career; had I not put myself into a position in which
other people depend on me to put food on the table; or any number of other might-have-been
in my life.

Consider, for example, a town facing the question of whether to zone a given area for resi-
dential development or to put a wind farm there. If the town chooses residential development,
we might have, for example, a probability distribution over a Boolean algebra of values of
the average square footage of homes in the area. There would be no such Boolean algebra if
we build the wind farm. (I am specifically considering averages because they are undefined
when N is zero.) If we choose the wind farm, we would have a distribution over the average
daily number of kilowatt hours of wind-powered electricity generated by the wind farm.
There would be no such Boolean algebra if we choose the residential development. What
is the intrinsic difference between this situation and the case of a quantum measurement,
in which the algebra of post-measurement states depends on the experiment the scientist
chooses to conduct?

Just about any time we make a decision, the Boolean algebra of possible future states of the
world is different for each choice we might make. Decision theorists are accustomed to this
dependence of possible outcomes on the decision. It does not mean we need to generalize
probability theory. It simply means we have a different Boolean algebra conditional on some
contexts than conditional on others.

In some ways this is a matter of semantics. I argue in the essay that the breakdown
of some of the usual conventions of probability theory is commonplace and should not
be surprising. We just disagree on whether this deserves the name “generalization”.

My argument for a generalization of probability theory is mainly directed against
dogmatic Bayesians who endorse the view that ordinary probability theory on a
single Boolean algebra is not to be violated on pain of irrationality. There are plenty
of dogmatic Bayesians still around. If modern Bayesians have a more relaxed attitude
then that is all to the good as far as I am concerned. However, I do think it is worth
making the argument specifically in the context of physics, as physicists are often
a bit timid about drawing implications for the foundations of probability from their
subject, and I do not think they should be if violations of the standard framework are
commonplace.

I therefore do not wish to spill too much ink over whether or not the bare-bones
theory of multiple Boolean algebras should be called a generalization of probability
theory. However, quantum theory has much more structure than this, in the form
of Hilbert space structure and the noncontextuality requirement. For me, the more
important question is whether quantum theory should be viewed as a generalization
of probability theory.

Must Quantum Theory be Viewed as a Generalization
of Probability Theory?

The short answer to this is no. The underdetermination of theory by evidence implies
that there will always be several ways of formulating a theory that are empirically
equivalent. We can always apply D’ Ariano’s trick or take Laskey’s view, since they
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apply to any set of probabilities on separate Boolean algebras, and quantum theory
is just a restriction on that set. Therefore, I cannot argue that it is a logical necessity
to view quantum theory as a generalized probability theory, but I can argue that it is
more elegant, simpler, productive, etc. to do so.

As an analogy, note that it is also not logically necessary to view special relativity
as ruling out the existence of a luminiferous ether. Instead, one can posit that there
exists an ether, that it picks out a preferred frame of reference in which it is stationary,
but that forces act upon objects in such a way to make it impossible to detect motion
relative to the ether, e.g. they cause bodies moving relative to the ether to contract
in just such a way as to mimic relativistic length contraction. This theory makes
the exact same predictions as special relativity and is often called the Lorentz ether
theory.!? Special relativity is normally regarded as superior to the Lorentz ether
theory because the latter seems to require a weird conspiracy of forces in order to
protect the existence of an entity that cannot be observed. The former has proved to
be a much better guide to the future development of physics. What I want to argue is
that not adopting a view in which quantum theory is a generalization of probability
theory is analogous to adopting the Lorentz ether theory, i.e. it is consistent but a
poor guide to the future progress of physics.

When we add Hilbert spaces and noncontextuality into the mix, Gleason’s theorem
implies that our beliefs can be represented by a density operator p on Hilbert space,
at least if the Hilbert space is of dimension three of higher. I have argued elsewhere
that regarding the density operator as a true generalization of a classical probability
distribution leads to an elegant theory which unifies a lot of otherwise disparate
quantum phenomena [6]. Here, [ will confine myself to a different argument, based
on the quantum notion of entropy.

Classically, the entropy of a probability distribution p = (py, p2, ..., py) Overa
finite space is given by

H(p)=— pjlogp;. @.1)
J

Up to a multiplicative constant, this describes both the Shannon (information theo-
retic) entropy and the Gibbs (thermodynamic) entropy. In other words, it describes
the degree of compressibility of a string of digits drawn from independent instances
of the probability distribution p and also quantifies the amount of heat that must be
dissipated in a thermodynamic transformation. In quantum theory, the entropy of a
density operator is given by the von Neumann entropy,

S(p) = =Tr(plogp), (2.2)

which is the natural way of generalizing the classical entropy if you think of density
operators as the quantum generalization of probability distributions. It turns out

107t is similar to the theory in which Lorentz first derived his eponymous transformations, although,
unlike the theory described here, the actual theory proposed by Lorentz failed to agree with special
relativity in full detail.
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that this plays the same role in quantum theory as the classical entropy does in
classical theories, i.e. it is both the information theoretic entropy, quantifying the
compressibility of quantum states drawn from a source described by p, and it is
the thermodynamic entropy, quantifying the heat dissipation in a thermodynamic
transformation.

Now, this definition of quantum entropy only really makes sense on the view that
density operators are generalized probability measures. What would we get if we
took D’ Ariano or Laskey’s views instead?

On D’Ariano’s view we have a well-defined classical probability distribution,
just over a larger space that includes the betting contexts. If this is just an ordinary
classical probability distribution then arguably we should just use the formula for the
classical entropy, although one might want to marginalize over the betting contexts
first. This is not the von Neumann entropy, and it does not seem to quantify anything
of relevance to quantum information or thermodynamics.

On Laskey’s view we just have a bunch of unrelated probability distributions over
different betting contexts. Should we take the entropy of just one of these and, if so,
which one? None of them seems particularly preferred. Should we take some kind of
weighted average of all of them and, if so, what motivates the weighting given that
betting contexts are not assigned probabilities? Arguably the only relevant betting
context is the one we actually end up in, so one should just apply the classical entropy
formula to this context, but this is unlikely to match the von Neumann entropy.!!

Now admittedly, there is probably some convoluted way of getting to the von
Neumann entropy in these other approaches, just as there is a way of understanding
the Lorentz transformations in the Lorentz ether theory, but I expect that it would look
ad hoc compared to treating density operators as generalized probability distributions.

In summary, I am arguing that quantum theory should be regarded as a bona fide
generalization of probability theory, not out of logical necessity, but because doing
so gives the right quantum generalizations of classical concepts. People who view
things in this way are liable to make more progress in quantum information theory,
quantum thermodynamics, and beyond, than those who do not. In this sense I think
the situation is analogous to adopting special relativity over Lorentz ether theory.

Technical Endnotes

In general, a betting context B is a Boolean algebra, which we take to be finite for
simplicity. All such algebras are isomorphic to the algebra generated by the subsets
of some finite set 253, where AND is represented by set intersection, OR by union,
and NOT by complement.

1 1t will match if we are lucky enough to choose the context that minimizes the classical entropy,
but again there is no motivation for doing this in Laskey’s approach.
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In quantum theory, a betting context corresponds to a set of measurements that
can be performed together that is as large as possible. A measurement is represented
by a self-adjoint operator M and all such operators have a spectral decomposition of
the form

M ="\, (2.3)
j

with eigenvalues A; and orthogonal projection operators IT; that sum to the identity
>_; I; = 1. The eigenvalues are the possible measurement outcomes and, when the
system is assigned the density operator p, the Born rule states that the outcome A ;
is obtained with probability

p(Aj) =Tr(M;p). (2.4)

The eigenvalues just represent an arbitrary labelling of the measurement outcomes,
so a measurement can alternatively be represented by a set of orthogonal projection
operators {I1;} that sum to the identity Z j I1; = I, which is sometimes known as
a Projection Valued Measure (PVM).'?

TwoPVMs A = {I1}and B = {l'I’j} can be measured together if and only if each
of the projectors commute, i.e. IT; T = IT, IT; for all j and k. If this is the case then
IT; T} is also a projector and _ ;; TT;TT; = I. Therefore, one way of performing the
joint measurement is to measure the PVM C = {I"I’j/k} with projectors I"I’j/k = I1;IT;
and, upon obtaining the outcome (jk), report the outcome j for A and k for B.
This fine graining procedure can be iterated by adding further commuting PVMs
and forming the product of their elements with those of C. The procedure terminates
when the resulting PVM is as fine grained as possible and this will happen when it
consists of rank-1 projectors onto the elements of an orthonormal basis. The outcome
of any other commuting PVM is determined by coarse graining the projectors onto
the orthonormal basis elements.

Therefore, in quantum theory, we can take the sets 25 that generate the betting
contexts B to consist of the elements of orthonormal bases. An event E € B is
then a subset of the basis elements and corresponds to a projection operator [1g =
lee £ 1¥)(¢]. The Boolean operations on B can be represented in terms of these
projectors as

e Conjunction: G = EAND F = Tl = [IgIlF.

e Disjunction: G = EORF = Ilg = IIg + 1 — IIgI1F, which reduces to
I[g =Tlg + I when EN F = @.

e Negation: G =NOTE = TIlg=1—Ilg.

From the Dutch book argument applied within a betting context, we have that
our degrees of belief should be represented by a set of probability measures p(E|5)
satisfying

e Forany event £ C Qp, p(E|B) > 0.

12 More generally, we could work with Positive Operator Valued Measures (POVMs) or sets of
consistent histories, but this would not substantially change the arguments of this essay.
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e For the certain events Qp, p(Qgp|B) = 1.
e For disjoint events within the same betting context E, F € Qg, ENF = (J,
p(E U F|B) = p(E|B) + p(F|B).

The Born rule is an example of such an assignment, and in this language it takes the
form
p(E|B) =Tr(Ilgp) . (2.5)

The Born rule also has the property that the probability only depends on the
projector associated with an event, and not on the betting context that it occurs in.
For example, in a three dimensional Hilbert space, consider the betting contexts
Qp = {l0),11), 12)} and Qp = {[+),|-), 2)}, where |+) = %@ (10) £ 1)). The

Born rule implies that p({|2)}|B) = p({|2)}|B’) and also that p({|0), |1)}|B) =
p{1+), |=)}IB) because, in each case, the events correspond to the same projectors.
The Dutch book argument alone does not imply this because it does not impose any
constraints across different betting contexts.

A probability assignment is called noncontextual if p(E|B) = p(F|B’) whenever
[Tg = IIF. Gleason’s theorem [34] says that, in Hilbert spaces of dimension 3 or
larger, noncontextual probability assignments are exactly those for which there exists
a density operator p such that p(E|B) = Tr (Ilgp), i.e. they must take the form of
the Born rule. Therefore, the Born rule follows from the conjunction of the Dutch
book constraints and noncontextuality, at least in Hilbert spaces of dimension 3 or
greater.
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