Chapter 1
Capabilities of Approximate Methods
in Quantum Theory

The majority of physical phenomena in condensed matter, atomic and molecular
systems is defined by electromagnetic interactions and governed by quantum
mechanics laws. The systems possess an entirely defined Hamiltonian and the
physical properties are described by the corresponding solutions of Schrodinger
equation. The quantum description has an universal character, which assumes
the wave functions of complex systems are the solutions of the linear equations,
which have similar mathematical structure for the physical systems with essentially
different physical properties. The mathematics plays a special role in a quantum
mechanics [1], and any new method for the solution of Schrédinger equation results
in essential progress in the description of numerous physical systems.

For the most of the problems in a quantum theory of many-body systems, the
numerical solution of Schrédinger equation using a finite-element approximation
for differential operators is ineffective, even by using modern powerful computers,
because of the complexity of algorithms and large volume of processed information.
The use of the functional integrals for quantum theory [2] faces a similar difficulty.
Therefore, the development of new methods for approximate description of quantum
systems plays a crucial role for both analytical investigations and design of the
algorithms for numerical calculation of physical properties of the objects.

In the Chap. 1, we discuss the general criteria for the effectiveness of the
approximate methods (AM), and make an assessment of most frequently used
AMs in quantum theory. In this monograph, we apply exclusively the operator
(Schrodinger’s) formulation of quantum mechanics, and do not discuss the ap-
proximate methods for quantum theory in the form of Feynman’s functional path
integrals [2]. The analytical and approximate methods in the latter form have
been widely presented in numerous monographs (for example, [3] and references
therein). However, it is worth to mention that the non-perturbative investigations in
both forms of quantum mechanics are pretty similar.
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2 1 Capabilities of Approximate Methods in Quantum Theory
1.1 Effectiveness Criteria for Approximate Methods

The criteria for mathematical methods to be effective listed below have rather
subjective nature, however, they are nevertheless important for the assessment of
general effectiveness. To our opinion, they are:

— universality,

meaning the representation of the calculus scheme in a form, which is not related to
the specific features of the physical problem. However, there is no universal method
exists which delivers exact solution of Schrodinger equation for the system with an
arbitrary Hamiltonian. Instead of, the method should include an iteration algorithm,
which establishes the procedure for the successive approximations. Therefore, the
following criteria have to be added:

— high accuracy of the zeroth approximation,

which has to describe correctly the most principal properties of the physical system,
and

— uniform convergence of successive approximations, for calculation of the
solution with any required accuracy. For practical applications, the following
criterion is important:

— simple enough algorithm for calculation of zeroth and successive approxi-
mations, to be applicable for the systems with a large number of the degrees of
freedom.

The detailed assessment of widely used AMs based on the above-mentioned
criteria will be given in the following sections. The perturbation theory (PT) and its
modifications (for example, [4, 5] and citations therein) seems to possess a highest
universality in the sense of criteria listed above. The PT series can be constructed
by the extraction of the operator H, from the entire Hamiltonian A, which has the
known spectrum of eigenvalues (EV) and eigenfunctions (EF), and the operator of
perturbation V., both satisfying the condition H = Hy + AV. The dimensionless
parameter A < 1 defines the characteristic value of the perturbation amplitude
in relation with the distance between the energetic levels of the non-perturbed
system with Hamiltonian H,. Following a simple receipt, formally applicable to
arbitrary quantum system, the series over the parameter A for both EV and EF can
be constructed. However, for the majority of physical systems, the series over A,
obtained on the basis of canonic form of PT, have an asymptotic nature. These series
[5] are divergent and do not permit to find a solution of Schrodinger equation by a
simple summation of the terms of series. Therefore, the quantitative description of
the physical systems using PT is only possible in narrow diapason of small values
of the parameter A and for low energies of excitation.

All aforesaid is also true for the limit of strong coupling (A > 1), where a small
parameter is A ™! [6], and for the quasi-classic approximation (with Planck constant
h as a small parameter), and for various modifications of adiabatic expansion,
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where a small parameter is placed in a front of the operator of kinetic energy
[7]. The asymptotic character of the expansions is manifested in the fact, that
two-sided approximations being constructed for the same system, for instance,
using parameters A and A~!, result in a different functional dependence of EV on
Hamiltonian parameters, which does not permit the continuous transition from one
series to another. Thus, using the PT in real applications, the important property
of universality is lost, because of the focus is switched from the mathematical
procedure for construction of successive approximations to the deep understanding
of the physics of processes, taking into account the qualitative characteristics of
physical systems in operator H,. This behavior is well described by the statement
after L.Landau “There is no physical theory without a small parameter”.

The modern theoretical physics deals with the problems, the majority of which
do not allow to select a small parameter having a certain physical sense. On the
contrary, there are many problems exist where all parameters of Hamiltonian are
varied in a wide range. Therefore, the development of the methods, which are able
to build a theory of quantum system without a small parameter, or so called non-
perturbative methods, is an actual trend of modern theoretical physics. For certainty,
we mean here the avoidance of small parameters in the Hamiltonian of the system.
At the same time, this does not exclude the use of supplementary or artificially
introduced parameters in non-perturbative methods, which govern the accuracy of
the numerical calculations.

There are also many methods exist, which investigate quantum systems without
introduction of a physical small parameter (see, for example, [8§—11] and citations
therein). In a first turn, the direct numerical integration of Schrodinger equation
using expansion over the artificially introduced parameter, for instance, the step of
the finite-element approximation of derivatives, is an example of non-perturbative
method. Another example is a lattice model of the quantum field theory, where
the non-physical parameter is a lattice constant, which defines the accuracy of
calculation of functional integrals for the transition from integration to summation
[3]. The drawbacks of direct numerical methods are the exponential growth of the
calculation volume and the loss of the algorithm stability when the dimension of the
system s increases, for example, at s > 3 their effectiveness is already essentially
low.

There are more examples of non-perturbative methods having a physical nature:
variational principle, Hartree—Fock method for multi-electron atoms, approximating
Hamiltonian method, etc. In the most cases, these methods deliver an approximate
estimate for the energy of ground state and are not capable to calculate the entire
energy spectrum of the system with a required precision.

In the majority of applications, the divergence of PT series is not related to the
real properties of the physical system, but just points to necessary rearrangement of
the received expansion over the Hamiltonian parameter to provide the analytical
extension of EV and EF outside of the convergence region of the initial series.
This task is partly solved by the summation methods for asymptotic series [12] and
various modifications of Pade-approximation [13]. However, all these methods are
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not really universal in the sense mentioned above, and cannot be generalized for the
systems with the multiple degrees of freedom.

For quantitative characterization of the effectiveness and the accuracy of non-
perturbative methods, the supplementary definitions have been introduced [14]. Let
us assume that some characteristics of the quantum system is described by the func-
tion F, (1), which depends on the quantum number 7 (quantum number set) of the
state and on the parameter A (parameter set), defining the perturbation amplitude in
the system. We assume further that the non-perturbative method delivers both zeroth
Fn(o) (A) and successive F,,(S) (A), s =0, 1, 2,... approximations for the function
in question. Then these functions yield a uniformly available approximation (UAA)
for the physical system, provided the following conditions are fulfilled for the entire
range of parameter A and for all quantum numbers n:

FP (L) — Fu(h)

®)
o) < &Y, (LD

where each parameter £) < 1 is independent on 1 and A and defines the accuracy
of the approximation. The condition of the convergence of non-perturbative method
corresponds to decreasing sequence of parameters £():

lim FO) = F,(A). (1.2)

The asymptotic series obtained from PT are obviously not satisfying the con-
ditions (1.1) and (1.2), because of they approximate the function in question in
a narrow range of n,A and are not convergent. At the same time, the two-side
asymptotic expansions, corresponding to limits A < 1 and A > 1, allow to control
the conditions of UAA for various non-perturbative methods [14]. In contrast to the
asymptotic expansions, the UAA approximates the value with high relative accuracy
£9) in the entire range of the variation of physical parameters and quantum
numbers of states. Thus, the effectiveness of the non-perturbative method can be
quantitatively estimated from the infinitesimality of £ in primary approximations
and the speed of their decay with the increase of s.

In this short introductory chapter dedicated to non-perturbative methods for
quantum systems, we illuminate the techniques, which are to some extent related to
the approach taking a central place in this monograph: operator method (OM). First
of all, one of this techniques is a non-perturbative method utilizing the self-similar
approximation for calculation of the dependence of system characteristics on the
parameters of Hamiltonian. The basic ideas of this approach have been published
for the first time in [15], and later it has been successfully applied to numerous
problems of quantum mechanics and field theory (see, for instance, the review [16]
and citations therein).
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The non-perturbative method for calculation of functional integrals for the
systems with a non-linear operation (see, for example, [17] and citations therein)
has been used in the theory of strong interaction. The scheme of non-linear scaling
of coupling constant in quantum chromodynamics makes possible the calculation of
the processes in the range of energy variables, where the standard form of PT fails.
The application area for this approach can be essentially extended, if the method is
generalized for the theory of condensed matter and quantum mechanics of multiple-
particle systems.

The method presented in this monograph is a kind of universal algorithm for
rearrangement of PT series and it satisfies all the requirements for non-perturbative
techniques listed above. This method is named an operator method in the sense
that both for zeroth approximation and for high-order approximations there is no
necessity to solve differential or integral equations: all calculations are reduced to
the algebraic calculus with matrix elements of operators. In the book, we illustrate
the application of OM to the description of various quantum systems, including the
systems with infinite number of the degrees of freedom. The results demonstrate that
already zeroth approximation gives a uniformly available approximation for EV and
EF of Schrodinger equation at arbitrary values of Hamiltonian parameters, and the
successive approximations converge to the exact solution for all values of quantum
numbers of the system and for the entire range of parameters. The algebraic nature
of calculations simplifies the development of the algorithms to obtain the higher
approximations for the systems with a large number of the degrees of freedom, and
to find the eigenvalues and eigenfunctions with a high accuracy.

A special attention is paid to the generalization of operator method for the quan-
tum statistics. In this case, the physical system obtains one additional parameter:
a temperature. In comparison with the description of pure quantum states, the
calculation of the observed values in statistics involves a complex procedure of
summation over all states of the system. Thus, the operator method for calculation
of EV and EF is supplemented by the algorithm for the summation over the
quantum states. This approach permits to calculate thermodynamical characteristics
of physical systems in a wide range of temperature and is effective for the systems
with the multiple degrees of freedom.

Prior the start of the detailed description of operator method in Chap. 2, we
remind in current chapter the basic relationships from other recognized methods
used for approximate evaluation of quantum systems. Their ability and limitations
will be demonstrated by applying them to the model systems: the quantum
anharmonic oscillator (QAO) and the coupled anharmonic oscillator (CAO), which
both are widely used for approval of approximate methods in quantum [18, 19] as
well as in classic [20] theories. The analysis of these problems shed the light on
the difficulties of approximate methods, which are successfully overcome by the
operator method.
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1.2 Perturbation Theory for Solution of Stationary
Schrodinger Equation

In 1939 Paul Dirac [21] introduced the notations and terminology, which are
perfectly fitting the representation of perturbation theory in algebraic form. The
state of the quantum system in arbitrary representation [22] is given by ket-vector
|¥,), where index n defines the set of quantum numbers corresponding to this
state. In general case, these numbers may have both discrete (discrete spectrum)
and continuous (continuous spectrum) values. The bra-vector (¥, | corresponds to
Hermitian conjugate vector of the state. The wave function is determined by the
projections of the state vector onto the axes of Hilbert space [22], which corresponds
to this representation. For example, for wave functions in coordinate representation:

U, (x) = (x|¥); & (x) = (W]x): /dxlI/;(x)lI/n(x) = (¥, |¥). (1.3)

In these notations, the stationary Schrodinger equation for eigenvalues E, (1),
complete Hamiltonian and normalized eigenfunction |¥,) take the following form:

HW,) = E(0)|¥),  H = Ho+AV: (%]%) = 1. (1.4)
For the unperturbed system:

H0|1//n> = enIWn)a (wnIWn) =L (1.5)
where H, is a Hamiltonian of zeroth approximation, for which a complete set of
eigenvalues ¢, and eigenfunctions |y,) of the solutions of Eq. (1.5) is known.
We assume that the ratio of the matrix elements of perturbation operator AV to
the difference between energy levels of non-perturbed system has an amplitude

determined by the dimensionless physical parameter A.
The state vector |¥,) can be expanded into full set |1/,,):

W) = Counl¥m), (1.6)
m=0

and after substitution it into (1.5), we find an exact system of equations for the
coefficients C,,, [4]:

(En - ek)an =1 Z Vkmcnm; Vkm = (1/fk|l7|1ﬂm), (17)

which include matrix elements V4, of the perturbation operator.
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Formally the perturbation theory corresponds to the expansion of values in
question into series over the A:

Cu=CY +acl +22¢Q + ...
E,(A) = EQ + AED + 22EP 4 ... (1.8)

There are two ways to obtain this expansion: the algorithm of Rayleigh-Schrodinger
for perturbation theory (RSPT) [23, 24] and the method of Brillouin-Wigner for
perturbation theory (BWPT) [25, 26]. They differ each from the other by the
normalization of the state vector. In case of RSPT, the corrections for the coefficient
Cn(,ll) in each approximation order are selected from the condition for normalization
(W,|¥,) = 1 to be satisfied with the accuracy up to the terms of the order A’.
Assuming all the eigenvalues of Hamiltonian ﬁo are non-degenerate ( €, # €, for
all m # n), we obtain [4]:

) | Vun|”
En(A) =€+ AV — A7)~

mn €n — €n
n - ‘" AZ L
1) = 1) gem— —lvm) + [;,;(em—en)(ek—e)"“
Von Vo Vo
Z (em_en)zwm)—y;ml%)} +... (1.9)

In the case of degeneration of the states of unperturbed Hamiltonian, each energy
level ¢, has a corresponding set of the distinguished vectors:

[V 1) [¥n2); - [Ynsn), (1.10)

where s, is a multiplicity of degeneration. In this case, to obtain the RSPT series, a
new set of states for zeroth approximation has to be constructed [4]:

=Y cllYus): 0 =1.2,...5,. (1.11)
o

Here the coefficients ¢ and new eigenvalues €] are calculated from the solution of
the system of linear equations:

(€7 —€n)c? =AZV(")C/, VO = (s’ |V [Yas); (WS |W0) =8, (1.12)
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This additional operation does not influence the convergence and the general form
of the series RSPT, if the set of indices n, ¢ is included in the definition of quantum
number 7.

If the BWPT form of the expansion over the parameter A is used, the following
fact is exploited: due to the linearity of Schrodinger equation (1.4) the solutions are
defined with the accuracy of constant, and therefore the normalization vector can be
found by applying the alternative normalization condition:

H|%,) = E,(0)|,),
(Wnpi,n} =1 Ilpn} = A|q~jn>; A? = [(lijnw}n)]_l (1.13)

As a result, the system of equations for coefficients of the expansion of state vector
is found:

%) = 1¥) + ) Curl¥),

k+#n
E, =¢, +AV,m+KZC~‘nkVnk;
k+#n
C A Vo + Y ComVink |1 k # (1.14)
K= " ' ; n. .
k En—Gk ki mk

m#n

The successive approximations of the BWPT series are found by iterating the last
equation in the expression (1.14):

~ - AV
C(O) — 0; C(l) — n :
nk nk En_ek
~ VimV,
c = E _Ek[anJrAZﬁ}..., (1.15)
n m;én n m

and the energy levels for each approximation are found as the solutions of transcend
equation. For example, in the second order BWPT this equation has a form:

Vnk an

En=6n+AV,m+AZZE =
n — €k

k+#n

(1.16)

The expansion (1.14) is generalized for the case of degenerate states using the
substitution of |y,), €, by the states |7 ), €7 in zeroth approximation. Thus, the

formulas (1.9) and (1.14) define the universal method for calculation of eigenvalues
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and eigenfunctions as a series over the ratio of matrix elements of perturbation
operator to the distance between the energy levels of the zeroth approximation:

AVin
=) — (1.17)

fen €n — €k

However, these series allow to calculate eigenvalues and eigenfunctions within
a limited range of the parameters of perturbation operator even for simple physical
systems. As an example, we consider here one-dimensional QAO, which is often
used for approbation of the solution of Schroddinger equation or as a basic model
in the field theory with non-quadratic Hamiltonian [18]. The problem is reduced to
the solution of the following equation (further we use the units system with Planck
constant # and particle mass m both equal unity) [19]:

H|W,) = E,(V)|¥,),
N 1
H=(p"+x7) + px® + AxYs p=—i-. (1.18)

We start with the consideration of the case with A = 0, which gives a
good illustration of several obstacles in the canonic perturbation theory [27]. The
perturbation operator is chosen as:

N 1 . . 1

Ho = 5(5% +x%); V = px%; > = (1.19)
Here we use the algebraic calculations in the particle number representation [4],
which is based on the canonic transformation to the creation and annihilation
operators for unperturbed oscillator:

fc:%[fﬂrfﬁ],
p= i%[fﬁ—&], (1.20)

The operators of annihilation @ and creation @™ satisfy to the permutation relation:
[aat]=1. (1.21)

In this representation the operators H, and V have the following form:

[1+42a%a], (1.22)

>
DR =

[1+2a%a+ @)’ + @], (1.23)
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The eigenfunctions for unperturbed oscillator in this representation coincide with
the eigenvectors of the operator of the excitation numbers 7:

5t
= —a 0y, n=0,1,2,3,...,

) = =1t o)

i=a%a, iln)=nln),

any=vnln—=1y, atin)=~n+1|n+1), (1.24)

and the ground state of unperturbed system follows from the expression:
alo) =0. (1.25)

Thus, the zeroth approximation for eigenvalues and eigenfunctions in the
Eq. (1.19) is given by:

1
ED = 5@n+1), (@0) = |n). (1.26)

Using the algebra (1.21) for the creation and annihilation operators, the first terms
of the series over the operator V' can be found from the formula (1.9):

ED = (n] V' |n) = %(2;1 +1), (1.27)
. 2
(n+2|V |n) 22
E® = 5 = —?(n +D(n +2), (1.28)
En+2_E”

and in a similar way for further terms. As follows from the expression (1.27), even
for the ground state with n = O the series of the perturbation theory converges
only in the domain |p| < % At the same time, the operator (1.19) is evidently a
Hamiltonian of the harmonic oscillator with frequency:

w(p) =1+ 2pu, (1.29)

with known set of eigenfunctions and exact spectrum of eigenvalues:

E, =w(w (n + %) = (n + l) V142 (1.30)

2

The eigenvalues (1.30), considered as the functions of parameter u, have a
singularity at © = —%, because of at u < —% the Hamiltonian (1.19) does not
possess a discrete spectrum. In general, the convergence radius of the power series
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Fig. 1.1 The potential energy of anharmonic oscillator for different values of A

is determined by the distance to the nearest singular point in complex plane u [5],
that limits the convergence of PT series to the values of perturbation parameter in
1

interval [u| < 5. However, from (1.29) follows that all the values of the parameter

are permissible in the interval (—%; oo). Thus, even in this simple situation the
calculation of EV spectrum for the entire range of Hamiltonian parameter requires
an essential reconstruction of PT series. For the operator (1.18) with u = 0, A # 0
the situation becomes even more complicated:

~ 1 ~
Hy = E(ﬁ2 +x%); V = Ax*. (1.31)

The potential energy U(x) = x2/2 + Ax* at various A for the oscillator is shown
in Fig. 1.1. At the values A < 0, the motion of particle in this potential becomes
infinite due to the subbarrier tunneling. That means the system has not discrete
spectrum at infinitesimal negative A and the functions E,(A) have a singularity at
A = 0. In this case, the power series over this parameter have a zeroth convergence
radius and are not converging at any values of A. Such series are called asymptotic,
and they can be used with a limited number of terms and only for estimate
of eigenvalues at small A [5]. The described above properties of PT series are
confirmed when the formulas (1.9) are used for calculations in the particle number
representation for operators (1.31):

[1+2aa]. V=2 [a*+d]". (1.32)

ﬁ =
0 16

| =
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Using the Eq. (1.24) for matrix elements of the creation and annihilation
operators, the following expressions are found for the first terms of the RSPT
series [4]:

1
E,(A) = (n + 5) + %A[an +2n+1]—

AZ
—§[34n3 +51n% +59n + 21] +

AS
+E[375n4 +750n% + 1416n% + 1041n 4+ 333] 4+ ... (1.33)

For the ground state of the system (rn = 0), the calculations are easier, and we show
here more terms of the series [19]:

21 333 30885 916731
iy R Sy L A+

»—
8 16 128 256

(1.34)

..., 1 3
Eyh) =) A Ay =5+ A
s=0

In the formula (1.33) the effective expansion parameter is An, and for high
excitation levels the RSPT series can only be used for very small A. The graph
on the Fig. 1.2, calculated on the basis of expression (1.34) for the function

I
EQ'() = Y N A,
s=0

2,5
2,0—-
1,5—-
1,0—.
05

0,0

0,5

-1,0 -

Fig. 1.2 The estimate for the energy of ground state of QAO for different numbers of terms

Eé]) in (1.34). The accurate values for E((1) are obtained in [28] from numerical solution of
Schrodinger equation
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illustrates the asymptotic character of the series with zeroth convergence radius:
the larger the number of the involved terms in the expansion, the narrower is the
applicability range of the series.

The divergence of RSPT series for the eigenvalues follows from its representation
as power series, for example, for ground state:

Eod) =Y a4y (1.35)
=0

The general behavior of the coefficients of the series at s >> 1 was found in [18]:

6\"? 1
AY & (1) (—3) r (s + -) 3%, (1.36)
T 2

and using the general expression for the convergence radius R of the power series
[5], we obtain:

(5)

Ao !
Aés+1)

R=1i ~ lim ———— =0
o oo 3(s 1 1/2)

§—>00

(1.37)

Summarizing all written above, the demonstrated in this section examples show
that even for relatively simple physical systems the canonic perturbation theory is
not able to find an uniformly available approximation for the solution of Schrodinger
equation.

1.3 Non-perturbative Methods for Stationary Schrodinger
Equation

The other than canonic perturbation theory methods are usually formulated not
universally and relate to the specific properties of quantum system. To illustrate
the principle idea of these methods, we again use the quantum anharmonic
oscillator problem. One of the effective non-perturbative method is the strong
coupling approximation (SCA), which is conveniently formulated in the coordinate
representation of Schrodinger equation:

14

2 dy? + %xzq/n(x) + Ax*, (x) = En(A)W (x). (1.38)

The basic idea of SCA in the range A >> 1 consists of the transformation of
independent variable in such a way that new small parameter is introduced in the
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equation, which depends on A~! < 1. By re-scaling the variable in the Eq. (1.35)
as:

X = Ey; an(yS) = an(y);

1 d*®,(y) 1
s FEV B0 +AEY B, (p) = B,V Pu(y). (139)

and choosing the parameter ¢ under the condition that the coefficients at highest
derivative in the equation and the largest term in the limit A >> 1 coincide:

5—2 — Agél’ g — A—l/();
1d2d,(y) 1
24 T 572 Y P + Y B () = €M) Pu(y);

E,(A) = A 3¢, (1), (1.40)

we reduce the problem to the form, which can be treated by the perturbation theory
with the effective parameter A =>/3 < 1 and the equation for zeroth approximation,
which is independent on A:

Ld’u(y)
— 5 V() = €V (). (141
2 dy
In strong coupling approximation, contrary to the case A < 1, the equation
for zeroth approximation does not have an analytical solution for eigenvalues and
eigenfunctions, and therefore the dependence on A is manifested as a series:

E,(A) =AY B>, (1.42)
s=0

and for the coefficients B; the numerical calculation of EV and EF is required from
the differential equation (1.41) and matrix elements of the perturbation operator
MLM y? (see, for example, [19]). In the next chapters we compare the analytical
results after OM with the numerical calculations, and here we show some few
results for the coefficients B to demonstrate the asymptotic character of SCA series,
illustrated in Fig. 1.3, where the following functions are presented:

i
Eél)(k) — 13 ZB;;A_ZS/S;
s=0

B ~ 0.6680; B} ~ 0.1437; B? ~ —0.0088. (1.43)
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I
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IEU

Fig. 1.3 The estimate for the energy of ground state of QAO for different numbers of terms EN(()I)
in (1.43) for the case of SCA

As has been previously discussed in the Sect. 1.2, the applicability area of
the perturbation theory is determined both by parameter A and small values of
a quantum number #n. In the range n > 1, the quasi-classic approximation of
Wentzel-Kramers-Brillouin (WKB) [4] can be used for calculation of eigenvalues.
For the Eq. (1.38), this method is reduced to the Bohr-Sommerfeld quantization
procedure:

X/ 1
/ RE, — x> —2Ax*"dx = n (n + 5) + O(1/n), (1.44)

where stationary points x,, x;, are defined as real solutions of the equation:
2E, —x*—22x* =0.

In general case of arbitrary A, the use of WKB is ineffective because of requires
the time-consuming calculation of the elliptic integrals [29]. However, in the limit
A > 1 these integrals can be approximated by using the expansion over the
parameter A~'/3 and the series similar to (1.42) is obtained with approximate
analytical expressions for coefficients [19]:

1 —8/3 1 4/3
s [r (9] o)
4 2
1 4/3,4_3 1 o 1 23 2 1 4 1 -
B! ~ 3*34x [r(z)} (n+§) ;Bnm—3—2+67t [r(z)} :
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Another asymptotic expression used further for the analysis of the effectiveness
of methods is obtained from the numerical solution of the Eq. (1.38) by using
the power series [5]. To execute this procedure, the asymptotic behavior of wave
function at x| >3>> 1 has to be studied, where the wave function is determined from
the solution of the equation:

1d2w, (x) \ o
3 A & 0
W, (x) ~ e f+0(|)1c|) (1.46)

Using the design of the wave function in the form:

o0
W, (x) = e PV Z anx",

k=0

the coefficients a,; satisfy to the system of recurrent equations, which can be
investigated analytically in the limiting case:

A—>0n—>o0, An=8<1,

and for eigenvalues the following asymptotic expansion is obtained [19]:

1 3 17 4+ 98 2
_(n+2)[1+2ﬂ 16(1+3,3)2'3 } (1.47)
Summarizing the above presented approaches, all the approximate methods
described in this chapter are able to estimate the functions E, (1), each method in
a particular domain of the parameters n, A. However, neither algorithm provides
the uniformly available approximation in the entire range of the parameters.
Another essential drawbacks of all methods are the divergence of the successive
approximations and cumbersome form of wave functions for zeroth approximations.
The variational method (VM) is used often for the evaluation of ground state
energy for arbitrary amplitude of perturbation. This method is based on the fact that
Schrédinger equation for the wave function ¥y({¢}), which depends on the set of
variables {} parameterizing the physical system, corresponds to the extremum of
the following functional [5]:

Io[¥] = /d{é}%*({é“})[ﬁ — Eol¥o({2}):

e RIG G IR (1.48)
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The principle idea of VM consists of the replacement of the exact solution of
Schrodinger equation by the function, which is modeled by analytical expression
(trial function) containing the set of variational parameters w;,i = 1,2,...s:

BE}) ~ YoliL). (r): / dEVAUE) = 1. (1.49)

By substituting (1.49) into (1.48), we find the approximate value of the energy,
which depends on these parameters:

Eo — eollon}) = [ ) Ao (i),

and the best approximation for the energy on the selected class of functions is
obtained on the basis of the choice of variational parameters from the minimum
condition for €y ({w; }):

M =0;i=12,...5; = {w,-(o)};
aa),-
Eo ~ eo({0"}). (1.50)

In general case, the function € ({w; }) is non-linear. Therefore, in this formulation
of VM it is difficult to design the regular procedure for improvement of the accuracy
of zeroth approximation as well as to evaluate the convergence of the resulted
estimate for the large number of parameters. Moreover, the use of VM for excited
states becomes complicated due to the accounting of additional orthogonality
of wave function to the wave functions of all lower states, which have to be
implemented in the variation of the functional.

1,[¥] = /d{é“}‘l’n*({é})[ﬁ — Eq ¥ ({0)): /d{é}‘l’n*({é“})%({é}) =1

/ AL = 0, m = 0.1.....(n - 1). (L51)

To some extent, these problems are eliminated when using the variational
principle based on the Ritz-Bubnov-Galerkin method [30]. In this method, the trial
function consists of limited number of terms of the series (1.6) in the expansion of
the state vector:

N
™) =" CulYim)- (1.52)
m=0

The set of the coefficients C,, represents the variational parameters in this case. By
substituting expression (1.52) into functional (1.48), and calculating the variational
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derivatives, the system of N linear uniform equations for these coefficients is found
and the determinant Ay is written as:

N
(E=e)Ce =AY VinC:

m=0

AN(EaA) :” (E - Gk)gkm — AVim ” . (1.53)

The solution of the equation Ay(E,A) = 0 delivers (N + 1) eigenvalues
EN(X);n =0,...N and corresponding eigenvectors |l1/,§N) ). This method is one of
the techniques to numerically solve the Schrodinger equation, which has been used
in [28] for calculation of eigenvalues and eigenfunctions for QAO. However, this
method is not able to investigate analytically the qualitative behavior of quantum
system for various ranges of physical parameters, which is a key subject for the
presented in this monograph operator method. There are also substantial difficulties
of the application of Ritz-Bubnov-Galerkin method for the physical systems with
a large number of the degrees of freedom because of the cumbersome matrix
elements and the increase of the dimension of the determinant in (1.53). To illustrate
the non-perturbative nature of VM, we consider here the functional (1.48), which
corresponds to the Eq. (1.38) for the ground state of anharmonic oscillator:

1o[¥] = /_ axtt PO o1 1 2t — Edu o

/OO dx|¥o(x))* = 1. (1.54)

—0o0

The trial function is chosen in compliance with the wave function of harmonic
oscillator, but with arbitrary frequency w [4]:

2
Wo(x) ~ Fo(x) = Cexp [—%} , (1.55)

and the normalizing constant C and the frequency w are treated as variational
parameters. The calculation of integrals in (1.54) with the function (1.55) results
in:

i 1 1 3 -
L] ~ Ihlw, €] = C? |~ |:—(a)+ )+ 3—2 —E0:|; 2 /X =1. (156
w |2 w w w

The calculation of the derivatives over C from the functional gives to the equation
for energy, and the value C is found from the normalization condition:

- 1 1 31 1/4
Ey= - (w + _) + = C = (g) , (1.57)
w w
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and the derivative over w determines the dependence of the variational parameter
on the coupling constant A:

0 —w—61=0. (1.58)
Thus, the Egs. (1.57) and (1.58) define the parametric form of the function Eo L),
which can be used for the estimate of the eigenvalue E((A) in the entire range of the

parameter A. The analytical solution of these equations at A < 1 and A > 1 results
in the following expansions:

- 1 3 9

P sl (3 1 1
o(A) ~ A - +o A 1L (1.59)

i) T 4(360)23 1442473

These expansions are in a good agreement with the asymptotic series RSPT (1.34)
and SCA (1.43), respectively, but contrary to them are convergent for all A.
Thereby the variational method delivers an uniformly available approximation for
the eigenvalues in a zeroth approximation. It is worth to notice that in VM the wave
function of physical system is modeled and not the Hamiltonian, as in the case of
perturbation theory. Being used in the systems with several degrees of freedom,
VM faces some specific issues, which can be illustrated by a simple model of two
coupled harmonic oscillators [31]. The dimensionless form of Hamiltonian for this
system is written as [32]:

N 1 , 1, 1,
H——px—i-mpy—i-ix +§y + A xy, (1.60)
where M is the ratio of the oscillator masses and A is the interaction parameter.
In spite of its simplicity, this Hamiltonian is often used for the approbation of
various approximate methods in many-particle quantum theory [31]. The classical
trajectories of the system are described by rather complicated Lissajous figures
which demonstrates the essential dependence of the quantum levels on the inter-
action and mass parameters. The exact eigenvalues of the Hamiltonian are found

straightforward:
1 1
E..=v (n—i—z) + vy (m—}—z), (1.61)

where v , are defined by the expression:

1
Vi = g1+ M £ /(1= M) + 422 M), (1.62)
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The formula (1.62) shows that the system energy has singularities if it is
considered as an analytical function in the complex plane of the parameters A
and M. Thus, the series in terms of powers of these parameters have the finite
convergence radii. This is the mathematical reason of the restrictions for various
approximate methods, as has been discussed earlier for one-dimensional system.

The analogous restrictions for the convergence of the series appear when the
interactions between the oscillators are considered by some approximate method.
Let us consider the results of VM in one-particle approximation used for the
Hamiltonian (1.60). The wave functions of the system in the zeroth order are chosen
as the product of one-particle functions, i.e. Hartree approximation is applied (the
symmetrization of the function in the case of M = 1 is not essential for our
discussion):

lIJVM(x,y)=<p(x})((y):/_ dx|<p(X)I2=/_ dylx(»*=1. (1.63)

o0

The system of the approximate equations for one-particle functions follows from
the exact variational principle (1.48):

1, 1
{_p% + _x2+kxymm_6n} Pn =0;

2 2
X, — €me Xm . .
2Mpy 2y YXnn X

Both equations correspond to the uncoupled harmonic oscillators with displaced
equilibrium positions defined as:

o0 o0

== [ A1) 7 =5 = [ o050 (1659)
—00 —00

The energy spectrum of the system in this approximation is:

1 1 1 1
EM — — — —) = =A%(x? 2 Y — XX Vi 1.66
2= (r43) g (43) =308+ ok . 160

This expression is actually the power series of the parameter A, and taking into
account the conditions of self-consistency for the values X, y:
X =—Ay; y = —AX,

one finds ¥ = y = 0 for arbitrary value of A.
Thus, the zeroth-order approximation of EYM differs essentially from the
corresponding exact value. Certainly, the consequent corrections take into account
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the particle correlations, but in any case VM fails to describe the energy levels over
the entire range of parameters A and M. The so-called adiabatic approximation
(M > 1) being applied to the Schrédinger equation with the Hamiltonian (1.60)
leads to analogous problem. A similar calculation has also been considered in [31]
to illustrate the general method for calculation of high-order corrections for the
adiabatic approximation. In the adiabatic zeroth-order approximation the operator
135 should be neglected and the “adiabatic” terms €,(y) are defined by the energy
levels of that part of the Hamiltonian which depends on the “quick” variable x:

I 1
— - AZ 2'
a(y)=n+5—5A%
These values play the role of the potential energy in the Schrodinger equation
for the “slow” oscillator y in the next order of the approximation. In the result, the

energy spectrum of the system, taking into account two orders of the series in the
parameter 1/+/ M, has the form:

" 1 [1=2 1

Comparing this expression with formula (1.62), it becomes evident that the adi-
abatic (Born-Oppenheimer) [33] approximation also does not lead to the uniformly
suitable estimation for the energy levels, even for such a simple system. Certainly,
the same restrictions of the considered methods appear for more complicated model
when the anharmonicity of the oscillators is included. In any case, the singularities
of the energy, considered as an analytical function of the Hamiltonian parameters,
define the finite radii of convergence for the power series in these parameters and do
not allow to find an uniformly suitable approximation.

As we have shown above, while working with the real physical systems, the
perturbation methods applied for the solution of the Schrédinger equation have led
to the divergent asymptotic series for the energy corrections. However in some cases
it is possible to develop the methods of regular summation of such series. We will
mention here one of these methods—the Borel’s summation [34], which is very
effective for calculation of the divergent or very slowly convergent series. This
method was developed in the end of the nineteenth century by Emile Borel and
then generalized by Gosta Mittag-Leffler [35].

First of all, we recall some main ideas of the method, starting with the
investigation of power series:

+o00
f@) =) a (1.68)
k=0
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The series (1.68) could be divergent at a certain area of value z, or very slowly
convergent. Therefore, instead of (1.68) we consider another series called the Borel
transform of (1.68):

+o00 1
F(z) = Fckz" . (1.69)
k=0""

The Borel transform (1.69) is obviously converging faster than (1.68), and
assuming it converges to the analytical function near the point z = 0, the analytical
continuation can be performed along the positive real axis. The following integral is
defined:

+o00

f(2)(Borel) = / e F(zt)dt, (1.70)
0

which is called the Borel summation of (1.68). The function (1.70) can converge to
a certain value even in the region where the series (1.68) is divergent.

This method is very effective for the calculation of divergent series, which
depends on single variable. The method was generalized and adjusted to different
problems, for example, in [36—40]. Here we generalize the Borel summation (1.69)
by applying the Pade approximant [38,39] of the order m/n to obtain the result with
a better convergence:

ag+aiz+ ...+ an”

P(z) = , 1.71
Y Sy T (70
where the coefficients are defined by the following equations:
P(0) = F(0), P'(0) = F'(0), P"(0) = F"(0),...
... PUT(0) = FOmtm((), (1.72)

These equations reflect the fact that the Taylor expansion of P(z) at zero point has
the first m +n terms coinciding with the first m +n terms of F(z). Using the notation
for Pade approximant as [m/n]r(z), the Borel summation (1.70) is rewritten as:

+o00
£/ (2)(Borel — Pade) = / e'[m/n]F(zt)dt. (1.73)
0

The method of Borel summation with the Pade approximant can be applied
to the problem of the anharmonic oscillator. In quantum mechanics, the use of
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the perturbation theory delivers the energy in the form of a power series of the
perturbation parameter:

+o0
EQ) =EQ+) Gk (1.74)
k=1

Here we consider a specific case of the anharmonic oscillator with the perturbation
term Ax*. Using the Rayleigh-Schrodinger scheme, the energy of the ground state
is written in the form:

7 72\?
Eo(A) = 1+ 0.214286 x (7) —0.107143 x (7)

2\’ 720\
+0.121356 x (7) —0.200990 x (7) (1.75)

2> 72\ °
+0.426130 x (7) —1.087689 x (7) + O[]

The series (1.75) has a zero radius of convergence [40], which means even for a
very small parameter A, the high-order corrections for the energy do not result in a
right value. For large values of A, the terms of high order in (1.75) grow very fast,
and the series (1.75) quickly becomes divergent. However, applying the Borel-Pade
technique described above in the formulae (1.68—1.73), the correct values of energy
Ey(L) can be obtained from (1.75) in the wide range of the parameter A.

For the illustration of this technique, we reproduce in the Table 1.1 the energy
values with the different orders of Pade approximation [38]. The results show the
convergence to the known values of the energy for anharmonic oscillator. In the
work [39], the Borel-Pade method of regular summation has been applied to obtain
the asymptotic energy values for large parameter A > 1: Eo(1) ~ A1/3.

[m/n

Table 1.1 Energy of ground state E ]()t) for different orders of Pade approximant
m/n=m A=0.1 A=02 A=1.0

1 1.063829787234 1111111111111 1.272727272727
2 1.065217852490 1.117540578275 1.348289096707
3 1.065280680051 1.118183011861 1.373799864956
4 1.065285049128 1.118272722955 1.383756497228
5 1.065285455239 1.118288405206 1.388075603389
6 1.065285502030 1.118291631128 1.390103754651
7 1.065285508357 1.118292382860 1.391116612108
8 1.065285509335 1.118292576357 1.391648018148
9 1.065285509503 1.118292630404 1.391938365335
10 1.065285509535 1.118292646573 1.392102495074
11 1.065285509541 1.118292651703 1.392198009942
12 1.065285509543 1.118292653416 1.392255010021
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The table demonstrates the fast convergence of the method, however, the
generalization of this technique for calculation of the energies of high excited
states, and especially for multi-dimensional case, encounters substantial difficulties.
Moreover, the partial summation of the series (1.74) for energy does not define the
wave function and other physical characteristics of the system.
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