Chapter 2
Geometrically Nonlinear Behaviour

2.1 Fundamental Terms of Geometric Nonlinearities

The assumptions of a geometrically linear theory are:

1. equilibrium in the undeformed state

2. small rotations, i.e. linearised kinematics (s. Fig. 2.1)

3. small strain,
i.e. it is useful and sufficient to define strain as changes in length relative to the
initial length /,.

Step by step these assumptions will be given up in the following, i.e.

. equilibrium in the deformed state
. large rotations and
3. large strain

DN —

will be considered.

2.2 Theory of Second Order, Equilibrium in the Deformed
System

2.2.1 Motivation and FE-Formulation

Only assumption 1 is given up. This theory is sufficient for most of the civil
engineering applications and is the base of Euler’s theory of beam buckling and
the usual solutions for plate buckling.

Consider the simply supported beam from Fig. 2.2. In the completely linear
theory the transverse load ¢ and the longitudinal force F are decoupled: the
transverse load leads to shear force and bending moment M, the longitudinal
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force to normal force. If the deformed system is considered for equilibrium the
force F has a moment arm to any point on the deflection line of the beam. In the first
approximation this arm is a result of the transverse load. This results in an
additional moment of

AM = —Fw (2.1)

If a tensional force F, is active this reduces the total moment. This leads to less
deflection and thus to a reduced unloading in the final equilibrium state. The final
moment will be in the range

My —Fwy <M < My (22)

This effect should be taken into account for economic reasons; maybe smaller cross
sections can be used.

If a compressive force F. is active the moment difference in the first approxi-
mation is
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This causes an increase of the deflection and an additional moment and so forth. It
depends on the size of the force whether the final deflection is finite or not. If
Euler’s critical load is exceeded the deflection becomes infinite and no equilibrium
is possible. Thus, accounting for the effect of compressive forces is necessary for
safety reasons.

For the simplest Finite element, the link element (Fig. 2.3), this effect can be
formulated as follows:

Because of the missing bending stiffness no equilibrium with the load P is
possible if the deformation is not taken into account. In the deformed state,
however, the sum of moments around the left node yields:

F(W2 — Wl) = Plo (24)
—_——
Aw

The calculation of Aw would be possible, but solving for P yields:

Pwa =) =P 2.5)
0

Still assumed that the rotations are small the longitudinal force F can be approxi-
mated by the normal force N which in turn can be expressed by stress ¢ times cross
section area A:

cA
T —w) =P (2.6)
0
In matrix notation this yields:
cA wi
—[-1 1 =P 2.7
Aoy 27)

Taking into account that a similar equation can be found for a load at the left node
and that there are longitudinal displacements in addition to the transverse ones this
relation can be extended to
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0 0 0 O u 0
A0 1 0 —1| |w | _|P
b |0 0 0 0 w| |0 (2:8)
0 -1 0 1 Wy P,
S

A term which relates displacements and forces is called a stiffness. The matrix
S also represents a stiffness, however it does not depend on material parameters but
on stresses. That is why S is called “stress stiffening matrix”. The stress, however,
has an algebraic sign, i.e. a compressive stress leads to a weakening.

The matrix S is an addition to the stiffness matrix K according to the linear
theory, in the case of the 2d link element:

1 0 -1 0 0 0 0 0 u Py,

EAl O 0 0 0| o6AlO0 1 0 —1 wi| | Pu

Tl=10 1 olT7]o 0o 0 o w, | | Pay (29)
0 0 0 0 0 -1 0 1 Wy P>,

2.2.2 Why Theory of Second Order?

In the previous chapter fully linearised kinematics has been used. Why is it named
theory of second order? This is illustrated by solving the following stability
problem in two ways, at first by formulating the equilibrium in the deformed state
and using linearised kinematics (Fig. 2.4).

The equilibrium in the deformed state results in:

lp ﬁp

Fig. 2.4 Stability problem 1 =0
with linearised kinematics
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Pu=Fyl (2.10)
The spring force is expressed as
Fr=ku (2.11)
thus
Pu = kul (2.12)
(P—khu=0 (2.13)

This equation has the trivial solution # =0 and the non-trivial one
P =kl (2.14)

This means the critical load of the system because a displacement without change in
load becomes possible then.

Now the principle of the minimum of the potential energy is applied starting
with the fully non-linear kinematics (Fig. 2.5).

The load P looses potential energy whereas the spring gains some. Together a
minimum must be achieved:

1
fPl(lfcosq))+§k(lsin(p)2 —  Min. (2.15)

Now the angular functions are replaced by their Taylor expansions truncated after
the second order term:

3 2
sin(nga‘—%-i----, cosgozl—%—&—u- (2.16)

Then (2.15) becomes

u=I[sing

k 1(1-Cosg)

Icosp

Fig. 2.5 Stability problem
with exact kinematics
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o\ |1
—Pl(7>+§k(l(p)2 —  Min. (2.17)

As necessary condition the derivative must be zero:

~Plp + kI’ =0 (2.18)
(=P +kl)lp =0 (2.19)

Again the critical load (2.14) is obtained as non-trivial solution. Thus this theory is
called “of second order” because terms up to the second order of the Taylor
expansions of the angular functions are necessary if energy methods are applied.

2.2.3 Linear Buckling

In symbolic matrix notation equation (2.9) reads:
(K+S(6))u = (2.20)

The matrix S is linearly depending on the stress, the stress linearly on the axial
force. Therefore, the stress-stiffening due to a reference load f, multiplied by a
factor A is

S(0(2£0)) = S(a(f)) = 2S(o(fo)) (2.21)

A stability problem (buckling) occurs if a (further) deformation without change in
loading is possible. Then (2.20) becomes

(K+18(c)p =0 (2.22)

This is a general matrix eigenvalue problem. @ is used instead of u to mark it as an
eigenvector. The eigenvalue A is the critical load multiplier for the applied load,
i.e. the load which led to the stress 6. However,

fcr,i = /IfO (223)

is the critical load only under the assumption that there are no imperfections
(pre-deflections, eccentricities not be taken into account) and the system behaviour
is completely linear until buckling occurs. That’s why this load level is called ideal
critical load. In reality instability occurs at lower loads. How this is accounted for in
the simulation is described in Chap. 3.

The eigenvector @ replacing the vector of the displacements describes the
direction the system will follow when buckling begins. This state is called buckling


http://dx.doi.org/10.1007/978-3-319-13380-5_3

2.2 Theory of Second Order, Equilibrium in the Deformed System 23

mode. It can only be determined up to an arbitrary factor and is normalised, e.g. in
such a way that the maximum displacement becomes 1.
The steps to follow in a FE buckling analysis are listed as Algorithm 2.1:

Algorithm 2.1 Linear Buckling Analysis
a) fully linear static analysis to determine the (pre-)stress state ¢
b) assembling of the stress-stiffening matrix S
c¢) solving the eigenvalue problem,
usually by vector iteration — @ — 1

The mode @ can be plotted like a usual displacement state. Other results like
strain and stress are of minor meaning; they are increments multiplied by an
unknown factor, but they can be used for error estimation.

Example First Euler Case
As example the first Euler case is considered where one end is clamped and the
other one is free (Fig. 2.6).

For the FE analysis an element is needed which includes a longitudinal and a
bending stiffness. Before applying the boundary conditions the system of equations
reads:

- 0 - 0
12 6 12 6
El|l77 7 ElI| 72 7 uj 0
LR ELW 2o
0 1]6 4 0 l 6 2 wi 0
1 T pr| _| O
_EA 0 EA 0 +8() u || —F
l / wo 0
126 126 ) 0
o E\E 1| o ELlE
1| 6 ) 1] 6 4
L 1 l J

(2.24)

The correct stress-stiffening matrix for the beam is derived not before Sect. 2.2.4.
Here the matrix S for the link element is used because it makes the hand calculation
easier. Taking the constraints of all degrees of freedom of the left node into account
and introducing terms for S the equations read:

Fig. 2.6 Column buckling, F
first Euler case —
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EA o
! 000 u —F
12 A .
g | —? ot off{m| =0 (2.25)
o — 17 00 0] || 0
— 4

In step a) of Algorithm 2.1 ¢ =0 holds, furthermore it is obvious that the bending
and the longitudinal part are decoupled and the right hand side for the bending part
is 0. From the first row,

EA
Tuz =—-F (2.26)
one obtains
Fi
= —— 2.2
U == (2.27)
From there the axial stress follows as
E E Fl F cA F
o=l tu) 1( EA) AT T (228)

This result is used in step b) such that one obtains for step c¢) after multiplication of
S by the load multiplier 4, addition of K and AS and zeroing the right hand side
(because a change in the displacements without a further load is requested):

EA
- 0
0
12E1 6El 2
0 5 6EI 2 0

4E1
l

For the hand calculation no vector iteration is performed as often in FE-calculations
but the classic consideration is followed: Since the right hand side is zero this
system of equations can only be solved in a non-trivial way (u=20 is the trivial
solution) if the determinant of the system matrix equals zero. This is fulfilled if the
lower left subdeterminant belonging to the bending part is zero:
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12E1 6EI

= M -
_6EI 4EL
/
12E1 6EI\>
( - —/1F>4EI— (T) =0 | :EI (2.31)
48E] 36EI  12EI
—— —MF - = —4)F =0 (2.32)
/ / !
12E1
AMF=F, , =—— 2.33
’ 472 (2.33)
El
Foi= 3[—2 (2.34)

where the subscript cr,i means ideal critical.
Since the buckling length s; is twice the length of the beam the analytical
solution reads:

pruter _ TEI El

-@F-E (2.35)

cr,i

With two elements and again the simplified stress-stiffening matrix one obtains
2.60 EI/P.

In a hand calculation the result of (2.28) can be obtained from equilibrium
considerations. Due to the decoupling in this and similar cases step a) can be
omitted and the problem be solved based on

(126 1267

/S

ELl 7% 77 2] cAlo 0 0 offe|_ |0

|12 6 12 6Tt 0 1 0of]||w| |0
TR R / 0 0 0 O ) 0
6 , 6

L / i

(2.36)

i.e. the bending part without considering axial deformation.

For the calculation of the eigenvector, the buckling mode, solution (2.34) is
introduced into (2.29) which makes the two lower rows of the system of equations
linearly dependent. The solution is no longer unique. One unknown must be chosen:

wy =1 (2.37)

The third row of the system of equations (2.29) the reads:
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It is multiplied by the cubic shape functions of the beam element which are related
to the right node (N3 and N,, complete set see Sect. 2.2.4):

[3

1 2, 3
—(—1—§+§ +§)§Z’ —-1<¢é<1 (241)

1
w(§)=1(2+35—53)~1+4

Thus one obtains the deflection line. It is compared with the analytical solution

whtler (£) = 1 — sin <7r <‘3_1 + %5)) (2.42)

See Fig. 2.7 for the similarity of the shapes.

2.2.4 Correct Stress-Stiffness Matrix for the Bernoulli-Beam
2.2.4.1 Derivation

Here a formal way is followed resulting from the differential equation of the beam
in the second-order theory:
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EIW" + Nw' = EIw" + cAw =0 (2.43)
The corresponding minimisation problem (weak form) reads:
1 " " 1 ’ ! .
o Elw dx + 1 cAwdx — Min. (2.44)
) U]

The first part leads to the well known stiffness matrix, the second one to the stress-
stiffness matrix S. For the Bernoulli-beam element the displacement function reads:

w(E) =N@Eu, —-1<¢<1 (2.45)
1
w 22(2—3§+§3) Wy :N1(§)W1
g2 )t .
+?(1 §-¢°+¢ )2 o |+ N2y (2.46)
+Z(2+3§_§3) wy [+ N3(Ew,
1 /
+Z(_l_§+§2 +§3)§ @0y | + N4 (E)pyp
The derivatives with respect to the real coordinate x read:
, dw dwdé 2dN . 2.
=—=——"=-—10=-N 2.47
WO = T wE A 1aet TN (247)
with
dN ,
— =N
dé
= l(—3 +3&) l(—1 -2+ 352)1 1(3 -3&) 1(—1 +28+ 352)£
4 4 2 4 4 2
(2.48)
Thus, the stress-stiffening matrix is calculated with dx = %dé as
l 4 / 2 l
S = J al—zN’TN’AEdg = aAYJ NN de (2.49)

-1 -1

The product of the derivatives of the shape functions creates the matrix
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NT N [N'l Ny, N N'4]
Ny ]\/'12 <o o N'YNYy
N'y : : (2.50)
N'3 : - :
N'y N'y Ny - e N'i

As example the matrix element S, is calculated as

1 1
16 JNQN;dé‘ = [ (-3+38)(-1-2&+ 3§Z)éd5

4 4
1

= [ (3+6£—-9& —3& -6 + 95“)%615

2 (2.51)
1
/
= (3+6§—12§2—653+9§4)§d§
e
9 |' 1 18\/ 81

=348 428 —=(6-84+—|z== =

¢ 5*55712 ( +5)2 52

and
2811 1 oA

—6AZ2 . — A =3 2.52

Si2= 0475576 = 1074 = 330, (2.52)

The complete stress-stiffening matrix reads:

36 31 -36 3l
cA| 31 4PF -3 -P
S=30i1-36 -3 36 -3 (2.53)

3. =P =31 4P

2.2.4.2 Application to the First Euler Case

After the introduction of the boundary conditions and the determination of the axial
stress the eigenvalue problem reads:
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12 6
El| 72 7 —3/
—[EL] 1 !
(K+S)e = G A 301{ 412}>
!
6 !
1 12EI  6EI 6. I,
2 I |_1|5 10 =0
A 2
! 100 15
12E1 6 6El |
-F —F
P 5 110 _0
El
N
1 10 1

The determinant of the matrix is

12EI 6 22 6EI I \?
PRV (4EI-F) - (-S4 F) =0
< 2 5 >< 15 > ( 10 )

2
48(EI? 32EI 4P , (36(EI)* 6EI ? o,
—~ T F4+-—F— ——F+—F*| =0
P 5 1123 P 57100

12(E1)*  26EI . 3P
— T F4+F=0
P 5 120

Thus, one obtains as governing equation for the critical load:

104E1 EI?
10 F+80( )

=0
3P I

with the solutions

52E1 52EI\* 80(EI)*
Fcr i = + -
A2 3R \/( 3P ) I
El 5
Foit2=3n (52 +/52% 720)
EI
Feitpp= 7 (52 + 44.54)
The smaller and thus relevant value is
El
Ferit = 2.4861—2

which is close to the analytical solution of 2.47 from Eq. (2.35).

29

(2.54)

(2.55)

(2.56)

(2.57)

(2.58)

(2.59)

(2.60)

(2.61a)

(2.61b)

(2.61c¢)

(2.62)
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2.3 Large Rotations I: Strain Measure

2.3.1 Kinematic Effects

Large rotation must be accounted for if the linearised kinematics (see assumption
2 in Sect. 2.1) cannot be applied any longer. This is surely the case if rotation angles
>4...5° occur. Figure 2.8 shows the kinematic differences. In the linear theory (red
model) the middle of the free end of the cantilever moves perpendicularly to the
original beam axis, i.e. vertically downwards. It seems as if the system becomes
thicker, however, it is nothing but the fact that the vertical dimension, here noted as
h, remains constant. The fully geometrically non-linear theory leads to a reasonable
deformation behaviour (blue model); here the original height of the cross section is
kept in the deformed system and the free end also moves to the left in the horizontal
direction.

Taking large rotations into account can become necessary for smaller rotations
than mentioned above, especially if the bending deformation has a significant
influence on the axial stress as it can be the case for a rope under a perpendicular
load. Figure 2.9 shows such a rope which has not been pre-stressed and which gets
its axial stress by the vertical deformation. It is to be seen that the forces increase
over-proportionally when doubling the vertical displacement and that the ratio
between the horizontal and vertical force components changes significantly.

This effect cannot be accounted for in the theory of second order because only
the equilibrium in the deformed state is considered but the linear kinematics is kept.
However, if a pre-stressing force is present and is only changed by small portions
due to the deformation, second order theory and fully non-linear theory lead to
nearly the same force reactions (Fig. 2.10) while second order leads to proportional
increments whereas in fully non-linear theory differences occur for larger rotations.
Then the second order theory is no longer valid.

undeformed

ST

linear

Fig. 2.8 Linear and
non-linear kinematics



2.3 Large Rotations I: Strain Measure 31

Fig. 2.9 Rope fixed at both
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force under perpendicular
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2.3.2 Appropriate Strain Measure: Green-Lagrange Strain

2.3.2.1 Exemplary Derivation

Green-Lagrange strains are appropriate to describe the strains, i.e. the relative
deformations of a body undergoing large rotations, in the coordinates determined
by its initial configuration. In the derivation the change of the square of the distance
of two neighboured points is considered. For one direction in the plane this can be

illustrated as follows:

The relative change of the squares of the deformed length / and the undeformed

one [y is
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P—ly_(o+u)y+v2—l5 _l+2lou+u?+v2—1

A = =
2 2 2
0 0, ) 0 (2.63)
— 21 + 1 + 1
lo Iy lo
The transition to the infinitesimal small element dx yields
u aL{ ’ Vv aV /
— > =—= d —— =—= 2.64
l() - ax " an l(] - 5x v ( )
and thus
Ou ou\ > v\’
A=2— = = 2.65
ox (ax) - <8x> (2.65)

For small deformations the quadratic terms become negligible so that only the first
term remains which is twice the linear or engineering strain. Therefore, one half of
A is defined as the Green-Lagrange strain (often only called Green’s strain):

A all 1 al/l 2 1 aV 2 / 12 1.2
GL _ 2 _ - - _ - -
) ax+2(ax> +2<ax> wh Tty (2.66)

Generalised:

o 1(0u, 2 % o D
SU o 2 (5}(, + ax,- * ; axi ax, (267)

with n,;,—considered dimension; i, j—directions
2 2 2
e.g Exy = % + %(%) + %(%) + %(%) in three dimensions
Since the derivatives of the displacements are zero for rigid body translations
the strain is independent of that motion, but that was already the case for engineer-
ing strain.
GL strain is not a series truncated after the quadratic term, but a measure making

sure that a rigid body rotation with arbitrary angles does not cause any strain, as it is
shown in the following example:

u=x(cosp —1)—ysing
v=uxsing +y(cosgp — 1) (2.68)
describes the displacements of arbitrary points in the plane with the coordinates
x and y due to a rotation around the origin by an angle of ¢ while keeping the
distance to the centre of rotation. With
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Ou Ou )
=—=cosp—1 == —sing
Ox Oy (2.69)
Ov sin ov cos 1
e o _
0x ¢ Oy ¢
one normal strain becomes
1 2 1
ey = cos@p — 1 +=(cosp —1)" +=(sing)
? 2 (2.70)
= cosg — 1 +§(coszq) —2cos¢ + 1+ sin’gp)
Due to cos?¢p + sin’@ = 1 one obtains:
€Sl = cosgp—1—cosp+1=0 (2.71)
whereas the engineering strain is
0
€ = 21 = cosg — 1 (2.72)
X

which approaches zero for ¢ — 0 only, i.e. for small rotations. The same holds for
the other strain components.

The strain components keep their direction even in the case of a large rotation; in
the example of Fig. 2.11 x is always the direction of the spar in its initial position in
which the length /, is named.

In one dimension the strain is

o1 1
el =u +5u 2o e +§8"”’*’2 (2.73)

Neither the direction nor the one-dimensional measure are very obvious, but the
Green-Lagrange strain is suitable for arbitrary rotations.

There is no “natural” definition of strain. Strain cannot be measured directly,
not even by strain gauges; they measure differences in length.

<

Fig. 2.11 Illustratingthe @~  <=————----- »
Green-Lagrange strain
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2.3.2.2 Example Truss Element

As example

* the link element

« initially located parallel to the x-axis

» with displacement degrees of freedom in the x-y-plane
¢ with linear shape functions

is formulated for large rotations using Green-Lagrange strain.
The displacement function reads:

Ui uj
R X Vi _ _x i
u(w)=[1-7 0 7 0] "] an v(x)—[O 1-5 0 J | @
%) V2
with é=x/I:
u() =N(u (2.75)

The derivatives with respect to x needed for the strain in the direction of the spar
then are

2 o . o
Ll_ /_1 V1 V_ r_l V1
a—u—j[—l 0 1 O] 1y and E—V—Y[O -1 0 1] 1
% V2
u =Ci v =Di
(2.76)

Remark Unlike in the linear theory this relation is not named B because the
B-Matrix will get a different or better generalised meaning.
The Green-Lagrange strain now reads:

1 1
e=Ci + zﬁTcTCﬁ + EﬁTDTDﬁ (2.77)
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2.3.3 The Principle of Virtual Work for Geometrically
Nonlinear Problems

2.3.3.1 General

The internal virtual work of an element reads:

Wi = J oe’ 6dV (2.78)

V)

In dV area and length are united; stress times area yields force, strain times length
yields displacement, force times displacement yields work. In case of the virtual
work the force is already fully developed and is dislocated by a small virtual
displacement without influence on its magnitude. Thus there is no factor of 2 as
it is known from the total internal energy.

oe is the virtual strain, the strain resulting from the virtual displacement

su(&) = N(&)si (2.79)

Since this must be kinematically possible and small the virtual strain can be derived
by linearisation:

0
oe = £

Sik (2.80)

= (o))
/-\{=>

u)

The derivative of the strain with respect to the nodal displacements is newly called
B-matrix. This is no contradiction to but a generalisation of the B-matrix in the
linear theory.

After forming the derivative of the Finite Element formulation of linear strain

e = Bii (2.81)
with respect to the nodal displacements it is obvious that (2.80) is also valid in the

linear case, i.e. the B-Matrix has only be generalised.
By introducing (2.80) into (2.78) the internal virtual work becomes

Wiy =ou’ J B’ (it )odV (2.82)
)
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The virtual nodal displacements are constant with respect to the integration vari-
ables and can thus be put outside the integral. Since the total term means work the
integral means forces, namely the internal nodal forces:

fin = J B’ (i )edV (2.83)
W)

This relation is very general and will be used several times in the following.

2.3.3.2 Application to Link Element

For the link element with Green-Lagrange strain the B-matrix reads:

Oe 0Oe 0u Qe OV

B = ~ = a7 A~ N7 A~ — (1 /)C ,D
96 oW da Tovoam L\ )Ty
=C+a’'C'c+a'D'D (2.84)
while the stress becomes
/ 12 1.2 ~ 1AT T ~~ 1AT TrA
c=Ee=F u+§u +§v =FE|Cu Jriu C'Cu +§u D'Du | (2.85)

In case of the link element the infinitesimal small volume element dV is replaced by
Adx. For the integration one can make use of the fact that all integrands are constant
in case of linear shape functions. Thus

£, — <( 1+ u’)CT n v’DT> oAl (2.86)

Now the first part of the element formulation is done. The remaining question is
how to fulfil the equilibrium of the internal with the external forces f,,,. Since the
stress depends on the nodal displacements a non-linear system of equations must be
solved.

2.3.4 Solution of the Nonlinear Equation by the
Newton-Raphson Method

In the preceding chapter the internal forces became dependent on the nodal dis-
placements in a non-linear way, i.e. they cannot be formulated as a product of a
stiffness matrix and the displacement vector. The equilibrium condition, however,
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remains that the difference between internal and external forces must be zero. These
equations are iteratively solved by the Newton-Raphson scheme from Sect. 1.3.

2.3.4.1 Application to the Nonlinear FEM

For a discretised mechanical problem the equilibrium equation reads in general
terms:

fi (1) =f,(0) < d):=f,0@)—"f,@)=0 (2.87)

An example for displacement-dependent loads is pressure being perpendicular to
the deformed surface.

The tangential matrix, the derivatives of the internal and external forces, is
obtained in the general case as

2 0. D [ur 2
KT = Ef,‘m — Ef&w = aﬁ J B (u) cdV — Efext (288)
V)
30 oe OB (i) 2
_ T - _
Ky = JB (@) 5 5=dV + J sodV — =t (2.89)
V) V)

After (2.80) the derivative of the strain is the B-matrix. The derivative of the
stresses, the material tangent, strongly depends on the type of the material law
(see Chaps. 5-8). It can be a non-symmetric matrix. In case of Hooke’s law it is the
elasticity matrix E so that one obtains as tangential matrix

T A
K; = J B’ (a) EB(i)dV + J aBa éu)cdv —%fm (2.90)
) ) .
P

K, K,

K, can be called initial displacement matrix (this expression is not really fix) and
formally equals the linear stiffness matrix. The material tangent is multiplied from
the left and the right by the B-matrix and its transposed. For linear elasticity it is
positive definite if sufficient constraints exist to suppress the rigid body motions, for
non-linear material it is positive definite as long as the material tangent is positive
definite.

In mathematical terms positive definite means that the matrix has only positive
eigenvalues with the effect that all pivot elements remain positive during Gaussian
elimination process. In mechanical terms that means that increasing displacements
resp. strains cause increasing forces resp. stresses.


http://dx.doi.org/10.1007/978-3-319-13380-5_1#Sec3
http://dx.doi.org/10.1007/978-3-319-13380-5_5
http://dx.doi.org/10.1007/978-3-319-13380-5_8
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K, is sometimes called geometric matrix because only in case of geometric
non-linearity the B-matrix depends on the displacements with the consequence that
its derivative and thus K, exist. More often the expression initial stress matrix is
used because it directly depends on the known stresses. “Initial” means the begin-
ning of the iteration step. Since the stresses can be negative K, can get negative
eigenvalues. This can cause that the total tangential matrix Ky looses its positive
definiteness. This is an indicator for a physical instability. There is a certain analogy
to the stress-stiffening matrix S in the FE-formulation of the theory of second order
from Sect. 2.2 and the stability problem from Sect. 2.2.3.

K, is always symmetric because it is the second derivative of the strain (each
component times a stress component, resulting in a scalar) with respect to the same
vector (the nodal displacements).

The load matrix K, is symmetric because it is the second derivative of the
external work (a scalar) with respect to the displacement vector.

2.3.4.2 Application to the Truss Example

For the link element with Green-Lagrange strain one obtains the components of the
tangential matrix as

K, = [(1+4)CT+vD"] [(1+4)C+VD|EAI
_ [(1 —|—ul>2CTC n v’(1 n u’)DTc n (1 n u’)v’cTD n v’zDTD} EAl
(2.91)

K, = {(1 + u’)chC + (v’ + u’v’) (D'C +C'D) + VQDTD} EAL  (292)

- a ’ Tal/{/ a / TaV/
K, = [M,(HM)C —+ D aﬁ}oAl (2.93)

K, = (C'C +D'D)cAl (2.94)

Herein is

“I][T+1 0 -1 0
flolllo o o of1 (2.95)
I+1]||-1 0 +1 0,2

0l/lo 0o 0 o

and analogously
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0 0 0 0
1{0 1 0 -1
T [
D'D= Z|o 0 0 0 (2.96)
0 -1 0 1
1 0 —1 07
1 0 1 0 -1
c’'C+D'D = d
M Zl-1 o 1 of ™
0 -1 0 1
- N (2.97)
0 1 0 -1
1 1 0 -1 0
C'D+D'C=
Pl o -1 0 1
| —1 0 1 0
After addition one obtains the total tangential stiffness matrix as
(l+u/)2 (V/—‘,—],{/V/) —(l —‘,—1,/)2 _(v/ +u/v/)
EA (V/ + urvr) V/2 . (V/ + u/vl) _V/Z
KT =7 ! 2 ! s ! 2 ! o
[ —(1+u) —(v+uv) (1+u) (v+uv)
—(v +uv) — (v +uv) 2 (2.98)
1 0O -1 0
ﬁ 0 1 0 -1
[ |—-1 O 1 0
0o -1 0 1

This derivation is made in the coordinate system of the element in the initial
configuration (superscript ¢ or ““™). The nodal displacement vector is & = a°.
Before composing the total system (superscript ¢ for global) the transformation

a’=Taé resp. sul =sa¢"T! (2.99)

must be carried out. Withc¢ := cosaand s := sin a the transformation matrix reads:

L O
o OO

(2.100)

(el )
SO0 v
oy OO

The internal forces become
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£ =T £°

int

(2.101)

and the tangential stiffness matrix

M O, D,

Kz Oou,  Ou, Ou,

= TTK{emT (2.102)

2.3.5 Test Problem Two-Legged Truss

The link element is used for a simple example. The two-legged truss from Fig. 2.12
is discretised by one element for symmetry reasons.

As the only global degree of freedom v, is remaining. In the element coordinate
system (superscript ) this is split up into

up ¢ _ S g
H _ H (2.103)
Thus
ou . 1 s ov . 1 c
a =u = 7112 = YV; and E =V = 7\/2 = 7\/5 (2104)
’ 1 ’ 1 !
0':E<u —s—zuz—I—Evz) (2.105)
E=138,889

A=0,1

Fig. 2.12 Two-legged truss
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Out of the vectors and matrices on element level only the terms in position 3 and
4 are of interest because they are related to the active degrees of freedom:

£, =17 (CT +uCT 4 v’DT) Al

—[s c}([(ﬂ(wu’)Jr [?]v’)w\ (2.106)

fi = [s(l—i—u/) —|—cv/} cA (2.107)
K _@[S ] (1+u’)2 (v/+u/v’) S
T — / (V/—f—l,i/vl) V/Z c
+$[s c] {(1) (1)] {z} (2.108)
EA , L C : A
KT:T[s(1+u)2+c(v +uv) s(v +uv)+cv2] [i} +67[S c] {i]
EAT , N2 b 22| [ OAry | o
= s<1+u> +2cs<v+uv>+cv +T[S +C}
(2.109)
Kr = ETA [sz(l + u’>2 + 2cs(1 + u’>v, + sz,z} Jr# (2.110)

Because of symmetry the vector of external loads in global system reduces to

1
o = —_F 2.111
. 111)
Furthermore necessary are
3 5 4 . 3
I=lh=V4 +3"=5, c:cosa:§, s:sma:§ (2.112)

With this formulae one obtains the iteration course of Table 2.1. Therein the
convergence exponent k is shown. It means the following: If the norm of the right
hand side d (disequilibrium forces) decreases by a factor of a from iteration step
i—2 to i—1 it is reduced by &" from i—1 to i. The formula for « is (1.48).

Close to the final solution « tends to 2. This is called “quadratic convergence”.

A Newton-Raphson scheme shows quadratic convergence in the vicinity of
the solution. In practice the iteration is often considered as converged and thus the
iteration is aborted before this effect can fully be seen.

Figure 2.13 shows how the forces and displacements develop during the
solution.
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Table 2.1 Newton-Raphson iteration for the two-legged truss with Green-Lagrange strain

£, v,o¥ Right hand side | Ky Av K
—-0.5 0 —-0.5 1 -0.5
-0.5 -0.5 —0.11805556 0.54166667 | —0.21794872
-0.5 —0.71794872 | —0.01921719 0.36795968 | —0.05222635 1.25764431
-0.5 —0.77017506 | —0.0010295 0.32868654 | —0.00313217 1.61221173
-0.5 —0.77330724 | —3.6442E-06 0.32636011 | —1.1166E-05 1.92832425
—0.5 —0.7733184 —4.6273E-11 0.32635182 | —1.4179E-10 1.99764891
—0.55 | —-0.7733184 —0.05 0.32635182 | —0.15320889
—0.55 | —0.92652729 | —0.00851134 0.21654818 | —0.03930462
—0.55 | —0.96583191 | —0.0005305 0.18963997 | —0.00279738 1.56743928
—0.55 | —0.96862929 | —2.6518E-06 0.18774449 | —1.4124E-05 1.90915951
—0.55 | —0.96864341 | —6.7543E-11 0.18773493 | —3.5978E-10 1.9963818
—0.57 | —0.96864341 | —0.02 0.18773493 | —0.10653319
—0.57 | —1.0751766 —0.00377525 0.11749085 | —0.03213227
—0.57 | —1.10730887 | —0.00032938 0.09704662 | —0.00339405 1.46287675
—-0.57 | —1.11070293 | —3.6317E-06 0.09490724 | —3.8265E-05 1.84809966
—0.57 | —1.11074119 | —4.6106E-10 0.09488314 | —4.8593E-09 1.99037628
—0.58 | —1.1107412 —0.01 0.09488314 | —0.1053928
—0.58 | —1.216134 —0.0034325 0.03036298 | —0.11304878
—0.58 | —1.32918278 | —0.00371938 —0.03472831 0.10709932 | —0.0750662
—0.58 | —1.22208346 | —0.00326237 0.0268312 —0.12158855 | —1.633320064
—0.58 | —1.34367201 | —0.00428086 —0.04276293 0.10010671 | —2.0724101
—0.58 | —1.2435653 —0.00282218 0.01417714 | —0.19906513 | —1.53347465
Fig. 2.13 Course of r-0,7
iteration in the Newton-
Raphson scheme L 06
§ = iteration
L = external force

[«»)

internal force

-1,5

displacement
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2.3.6 Notation in Continuum Mechanical Symbols

The symbolic notation of continuum mechanics is not in the focus of this book.
Details can be found e.g. in Wriggers [27] or Belytschko et al. [2]. It is only
sketched here, but we use it to extend the theory to two or three dimensions.

The deformation gradient

F= [ax’} (2.113)

a)C()j

contains the derivatives of the coordinates x; of the deformed system with respect to
the initial coordinates xg;. The polar decomposition means a multiplicative split of
the deformation gradient into a

rotation R and a

stretching U:

F =RU (2.114)
The rotation is an orthogonal tensor, i.e.
RT=R"' = RR=1I (2.115)

In case of a uniform deformation over the length in a one-dimensional element like
in Sect. 2.3.2.1 there is only one component of the (so-called right) stretch tensor U:

!
Un=7r (2.116)
0

Taking (2.63) to (2.65) into account results in

12—-2 1({F P 1/1 1 1
OL — — O |52 =~ ——1)|=2(U U, -1 2.117
© T 2<13 2 2(10 Io ) ZUnUn=1 @117)

In two and three dimensions this strain measure is obtained as

1

GL T
=-(U'U-1I 2.118
€ 2( ) ( )

Making use of (2.115):
1 1
GL T TRT

=—(U'IU-1I) ==| UR" RU -1 2.119
€ 2( ) 2| ~—~——~~ ( )

F’ F
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e = %(FTF ~1) (2.120)

Thus the expression F'F is equal to the square of the stretch tensor, U?, and directly
independent of the rigid body rotation as it is shown exemplarily in the chapters
above. In this representation the components of strain tensor form a matrix instead
of a vector. The different choices for the notation and their advantages are discussed
in Sect. 5.3.

In detail the deformation gradient comprises terms with the same indices on the
main diagonal:

ox;  O(xoi +uy) ou;
F; = = 2.121
axm aX(),' + 8x0,- ( )
and with different indices on the secondary diagonals:
Ox; O(xoi +u;) Ou
Fj=——t=22""1"0_ , jEI 2.122
J an aX()J' aX()j / 7& ! ( )

Together, while leaving out the index O because only displacements and initial
coordinates are present:

1+5u ou ou ou Ou Ou

ov ov ov ov 0Ov Ov

oo o] |aw aw o

Ox 0y 0z Ox 0Jy Oz
H

H is called displacement gradient. With this quantity the strain can be written as

GL _

€ [(I+H")I+H)-T] :%[I+HT+H+HTH—I] (2.124)

|-

1
gl = E[HT +H-+H'H] (2.125)


http://dx.doi.org/10.1007/978-3-319-13380-5_5#Sec12
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In detail:

o o v
0x dy 0Ox 0z Ox
6 L[ |ou Ov ov ov ow T
o3l e 25 gta | tHH (2.126)
ou Oow av+aw ow
2o %23y oz

seng

The second part requires multiplication:

o
dx dy Oz
oH'u LI
dx dy oz
9w ow ow
dx dy Oz 2.12
T T e
ox  dx  Ox " 12 ‘
v o
dy dy dy
o w w
dz 0z 0z

As examples:

_ (du 2 av 2 aw 2_ ouy 2 duy 2 dus 2_ 3 ou; 2
Hu= <ax> * <5x> * <ax> N (axl) + <ax1> + <ax1> _Z(a)q)
Oulu OvOv OwOw Ou;Ou;  Ouy auz Ous Ous Ou; Ou;
2= 5% ay+ axay+ Ox 5y 0x; 0xy  0x axz 0x1 0x3 Zaxl 0x3

(2.128)

The general formula is given as Eq. (2.67)
For the B-Matrix, necessary to obtain the internal forces and K,,, as well as for
the initial stress matrix K, we switch to the index notation (rules in Sect. 1.1):

1
SUGL = 2(Fkiij — &) , ij.k=1...3 (number of spatial dimensions) (2.129)


http://dx.doi.org/10.1007/978-3-319-13380-5_1#Sec1
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For the B-matrix we note:

B ijn =

0elL . A
81./ . 1<8Fk, aFk]> (2130)

S = Sy + Fls

di, 2\da, 9N,
where the index n runs over all degrees of freedom of the element. The deformation
gradient is expressed as

Ou;
Fl;,:(s,-,+go’j (2.131)
Here we have to distinguish between u; as one direction of the displacement as a
function over the element and ii, as one degree of freedom of the element nodes.
The relation is (for 2d)

i{xl
Ax2
ﬁxS
u] [Ny N N3 --- 0 0 0 :
[uy}[o 0 0 --- N, N N3 --- LA‘ﬂ (2.132)
i,
i3

as long as the order in the nodal displacement vector is

1. all d.o.f.s of the same direction
2. all directions.

This order is unusual for programming (common is firstly all d.o.f.s of a node,
then all nodes) but good for matrix representation. In index notation (2.132) reads:

U :Nkm’:{m (2133)

where m runs over all d.o.f.s of the element including the zeros in Ny,. The
derivative of the deformation gradient with respect to the degrees of freedom is
calculated as

5Fki 8 5uk o 5 aNkm N aNkm o 5N,m

_ 9 ou_ O ONum, _ Nims _ N 2.134
i, O, Oxg B0, vy T Oy o0 (2.134)

n also runs over all d.o.f.s. The derivative of i,, with respect to ii,, is one if m = n and
zero otherwise which is expressed by Kronecker’s delta. The sum over m has only
contributions if m = n. By exchanging index i by j one obtains

aij - aNkn
aI:ln B axo_,-

(2.135)

thus
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1 (ONy, ONn

For the internal forces we need

1/ 0Ny, ONy,
Bijnoij = = =2 Fyjoj + Fu=—"0; 2.137
iinCij z(am k0 + Fi aij Ojj ( )
and for K,
K?, = J kg .dv (2.138)

with m running over all degrees of freedom and

aBi'n 1 aNkn aNkm aNkm a]\]kn
= B 2( xo Oxg 0t xe Oxg "’f) (2.139)
For the symmetric stress tensor this results in
ON  ONg
ko =k k (2.140)

= " i —
nm ain y a ij

It should be kept in mind that in index notation only scalars are handled such that
the order can be changed. The representation above makes it more evident that a
symmetric matrix K, is obtained and how the terms can be prepared for matrix
multiplication routines. Equation (2.140) includes three sums, over £, i and j, each
over the coordinate resp. displacement directions, whereas n and m span the matrix.
The sum over k is expressed for 2d:

aNln aNlm aNZn aNZm

ke = ii ii 2.141
i aXQ,' % aij ain %i aX()j ( )

Now we go a step back to matrix notation. With
N:[Nl Ny, Nj ] and ﬁiT:[l:iili/\lizi{B"' (2142)

i running over the directions, (2.132) can be written as
ue| N 0|0
] 10 &[] 2163

and
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K = I:kl(lym]
N
ONT  ONT ON 0
_ WOI Woz 011 O12 a9601
0 0 021 02 ON 0
Oxo2
0 0 0 ON
011 012 axm
+ | oNT ONT {521 022} N (2.144)
Oxo1  Oxp2 0 Ox0s
_ aN _
ONT ONT|[on 012} Dxor
e d
J[axm axoz}LZl 022 a_N v 0
K“: aX()z aN
ONT ON"1[ey 012} Oxo1
0 J{aTOI aTOJ [021 022 a_N v
L @) aX()z d
(2.145)

In fact the same terms occur as many times as directions (dimensions) are consi-
dered. They can be calculated once and then scattered to the final matrix according
to the order in the vector of degrees of freedom.

For the link element only one coordinate direction but two displacement compo-
nents per node are accounted for. Thus only

ON 1
—=—]—-1 1 2.146
exists. Then
aNT 8N 1 —1 0'11A() 1 —1
—_-— —Apdx = —= -1 1 Aoly = —— 2.147
J %o 6118)(01 odx 1(2){ 1}[ Je11Aolo I [_1 1] ( )

0

must be evaluated and scattered twice to form K, as in (2.98).
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2.4 Large Rotations II: Co-rotational Formulation

2.4.1 Basic Idea

If an element undergoes large rotations but only small relative rotations inside the
element, which can be assumed for sufficiently fine meshes, the following way of an
element formulation is an appropriate alternative. Again the link element serves as
an example.

A nodal displacement state u results in

« arigid body translation
» arigid body rotation
+ adisplacement u,,rleading to a deformation.

Only the latter one causes strain.
The nodal coordinates of the deformed system, X, can be calculated from those of
the undeformed state, X(, by adding the displacements:

X=Xp+Uu (2.148)
Inversely the displacement is the coordinate difference
u=X-—Xp (2.149)

As shown in Fig. 2.14 one obtains the deformatoric displacement by determining
the coordinate difference in a coordinate system moving and rotating with the
element, .i.e. following its rigid body motions:

Fig. 2.14 Concerning the
principle of the
co-rotational formulation
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ugy = T(x —x°) — To(xo — X)) (2.150)

Herein x,° and x° denote the origin of the coordinate system in the undeformed resp.
deformed state. This holds for each node:

g = T(x1 —x) — To(X10 — X5) (2.151)
s = T(x2 — x) — To(X20 — X§) (2.152)

Since only a difference of the nodal displacements yields a strain, in case of the spar

1

£ = 7(“2(14 — ll]def> (2153)

the rigid body translation causes no problem because it is the same for all nodes.
One obtains:

Wger — Uiger = T(X2 — x¢) — To(x20 — x§) — [T(x1 — x¢) — To(x10 — X{)]
= TXZ —Tx® — TQXZO + T()XS - TX] + Tx® + T()X]O — T()Xg (2154)
u2def — uldef = TX2 — TOX20 — [TX] — T()X]O] (2155)
The location of the moving coordinate system is eliminated, only the orientation
is still of importance. Thus, for the calculation of the deformatoric displacement it is
sufficient to transform the coordinates into a rotated system parallel to the element

coordinate system with origin in global origin, so that instead of (2.150) it is newly
defined:

Ugef = Tx — TOX0 (2156)

Figure 2.15 tries to illustrate that the same difference of the deformatoric
displacements is obtained. For the link element the transformation equation reads:

X1

xi| _|cosa sina 0 0 i

X g_ 0 0 cosa sina| | x (2.157)
Y21,

x, = Tx

The location of the link element in the plane can be described in the deformed
state by

Ax =12 +up—xi0—ur , Ay=y,0+Vv2—y;0—W1 (2.158)

(see Fig. 2.16). The length can be calculated as
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Fig. 2.15 Effect of the rotating only coordinate system

Ve, ve

L-)Cg,

)

@
|

ug
| Ax |

Fig. 2.16 Geometric relations of the link element

1= /A2 + Ay? (2.159)

The trigonometric functions can be expressed as

(2.160)

In the undeformed state the trigonometric functions only depend on the initial
coordinates, here:
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(Xzo —xlo) .
cosay =——— , SIlnapg =

()’20 - Ym)
— 2.161

lo

The transformation matrix of the deformed state depends on the global displace-
ments, thus:

Ugef = T(ll) X — T()X() (2162)

2.4.2 Strain, Internal Forces, Tangential Stiffness Matrix

For the co-rotational formulation the linear strain measure remains appropriate (for
accounting for large strain in this formulation see Sect. 2.5.4). With the symbols of
the FE-formulation the strain now reads:

e = B/,',,lldef =By, [T(ll) (Xo + ll) — T()X()] (2163)

Thus the relation between strain and nodal displacements has become non-linear.
This equation can be extended to two- and three-dimensional elements with the
only change that the strain € becomes the vector &.
Again the general B-matrix is obtained as the derivative of the strain with respect
to the (global) nodal displacements:

B = 28— 0 (B, [T(w) (x0 + w) — Toxy])
du Ou
= By 2—: (xo +u) + T(u) (2.164)

=T

It should be emphasized that the general B-matrix B differs from the linear
B-matrix B,;,, by a term depending on the transformation only. Then the internal
nodal forces in the global system read:

i = J BT 6dV = J T B, 6dV
v) v)

o1’
= J |:(X() + ll)T W + TT:| B[,’nTEB[,'n [T(Xo + ll) — T()X()] av
V)

(2.165)

The transformation matrix is constant for the whole element, x and u are indepen-
dent of the integrand so that they can be written in front of the integral:
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L - T
fine = | (X0 + 1) 507 T B, 6dV (2.166)
(V)
T*T N, e’

f elem
int

The remaining integral looks like the internal forces from the linear element
formulation but one must keep in mind that the stress is calculated using (2.163) and
the material model in a non-linear way. If the deformatoric displacements are
passed to the element routine instead of the total ones nothing else must be changed
for this part.

The symbol i, in the following terms emphasises that the nodal displacements in
the global coordinate systems are meant whereas the superscript ““” expresses that
the terms are related to the element coordinate system and are calculated like in the
linear theory.

Under the assumption of constant loads the tangential stiffness matrix then is

0 0
Ky ==—fiu==— | BloaV
"~ %u, ™ oa, J °
W)
*T T * aT*T T
=T | B;,EB;dVT" + 5 | Bj,cdV (2.167)
V) )
aT*T
Ky = TTKI T  ———f 2 (2.168)
lin 5u int
K, S——
K,
or
aT*T
Kr = | BTEBaV + £ (2.169)
aug int
V) N——
—_———
K, K,

In (2.168) it can again be seen that this method makes use of the element forces and
stiffness matrix of a geometrically linear formulation. That means once the terms
from the rotation are known this method can be applied to any existing element.

In order to understand the structure of the following terms it must be kept in
mind that

+ afirst derivative with respect to the vector of global degrees of freedom 1, has
been formed where the derivatives with respect to each degree form a row,
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* a transposition has been carried out such that the derivatives with respect to 1,
now form a column,

+ afurther derivative with respect to i1, has been formed where these derivatives
with respect to each degree form a row.

The meaning of the notation is explained in Sect. 1.2.

o r O*17 T’ T’
— 0 = (X + ) e Fo e o (2170
aug t ( 0 g) aﬁ;aﬁg t aﬁgT t aug t ( )

The last two summands are not equal but it will be shown below by means of the
index notation that the second one is the transposed of the third one:

T*T
O getom — (xg + ity

R i or’ 1" o1’
) felem + f clem + —___felem (2171)
au o nt

AT A~ int ~ int ~ int
ou, ou, ou, ou,

The expressions leading to the B-matrix, the internal forces and the tangential
matrix comprise derivatives of the transformation matrix with respect to a vector.
This leads to a three-dimensional matrix (hypermatrix), the second derivative to a
four-dimensional one. Then usual matrix notation is not sufficient to describe how
the summations must be performed. One way to overcome this difficulty is at first to
execute the matrix multiplication in the given context, then form the derivative of
the components of T within these products. The first term of (2.170) form a scalar
after multiplying T” by the pre- and succeeding vectors, thus a matrix after forming
the two derivatives.

This is shown in the following by the example of the link element. An alternative
way is to use the index notation including the sum convention (rules explained in
Sect. 1.1). The strain then reads:

& = By [T (xgy + u) — Tixy] (2.172)

where j runs—over the degrees of freedom in element coordinates, k—over the
degrees of freedom in global coordinates.

Here the strain components form a column matrix (Voigt notation). The total
B-matrix can be expressed as

88,‘ _ plin 8Tjk

_ 0 (o, + )
- ouf V| ouf

B;
! ouf

(x5 + uf) + Ty (2.173)

where [ runs over the degrees of freedom in global coordinates.
The derivative of a displacement component with respect to a displacement
component is 1 if they carry the same index, otherwise 0.
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OTj
By = Blzn |:a 2 (ka + uk) + Tjk5kl:| (2.174)

The last product has non-zero contributions only if k=1:

OT
B Blm |:ag ( Ok + ”k) + Tj[:| (2175)

For the multiplication with B the first index must be used for summation, for K,:

K = JBilE,-J-BJ-de (2.176)

Im
V)
for the internal forces:
= JBim,-dV (2.177)
V)
For the initial stress matrix the following term is needed (keep in mind that only

scalars are handled such that their order in products, but not the indices, can be
changed):

0Bj O’y OTu O(xg +uf) Tyl
g la Faug 0 ) o oy Faag)e Y
0By P ’Ta [, 0Ty T |
30 = [W (o + 14 )+ﬁ6m+a—’ Bl's (2.179)
14 aszk 3 aij Tj lin
i = lau}gau,f, (6 + 48 + ouj + oup J By oudv (2.180)
V)
—_———
fim,elem

J
There are sums over i, j and k whereas / and m span the resulting matrix.

T
a g

Ty

. o°T;
fmt,elem Jk aug] (2 181 )

[ —
Kin = [j Ou} Ouy,

The first summand produces a scalar before forming the derivatives, the second and
third one a vector, all three terms matrices after executing the derivative(s) where

int, elem
+f;

(xgk T ”f) +f;nt,elen1



56 2 Geometrically Nonlinear Behaviour

the second and third term have exchanged indices / and m, i.e. the second one forms
the transposed of the third one when being ordered in matrices.

Instead of one coordinate system per element one system per integration point
can be chosen. This increases the accuracy and can even account for curved
elements.

2.4.3 Direction of Strain and Stress

In the co-rotational formulation stresses and strains are calculated in the rotated
element coordinate system. This is very helpful for beams and shells using the beam
axis resp. the mid-surface as reference for kinematic assumptions and is useful for
the interpretation of results for other types, too. The latter can be seen in Fig. 2.18
compared with Fig. 2.17. Especially in beam- or shell-/ike structures stress and

MX

SX=26091
S¥=-36517
8X=10764
BX=-18826
S¥=1305

8Y=64096

8Y=-58696
SY=44470
8¥=-37815
85Y=20358

S¥=-0640 sY=-15552

Fig. 2.17 Stress components in the initial coordinate system

sX=91304
gY=-1117
SX=-93994 8Y=-1219
8X=55225 5Y=10.273
sK=-56126 5Y=-515.748
SX=23089 gY=-1426
SY=-4534

8¥=-23098

8Y=-1094

Fig. 2.18 Stress components in the rotated coordinate system
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strain components being parallel or perpendicular to the edges after a large rotation
are most meaningful. Another example are anisotropy axes.

2.4.4 Example Link Element

For the link element dV becomes Aydx. In case of the linear shape functions all
terms in the integrand are independent of x. Thus:

filem = B 6Aoly (2.182)

£ = TTE0L" (2.183)

int
T «T

oT
felm — TTBT B, T*EAoly + fo" (2.184)

oT
K; = B'BEAl, + int
ou

a u int

Furthermore, the stress has only one component which is related to the nodal
displacements by

o = EB],‘n [T(XO + ﬁg) — TQXO] (2185)

The B-Matrix on element level is

1

B, = (-1 1] (2.186)
0

where [, is the original length which the derivative is not formed from.
With the abbreviations

€= cosa (2.187)
s:= sina
the transformation matrix reads:
c s 0 0
T= {O 0 ¢ J (2.188)

Together this means:
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X10 + U1 X10
a—E[—l 1 c s 0 Offyo+vi|_|co so 0 0]y
A 0 0 ¢ s||x0+u 0 0 co sol|x0
Yoo T V2 Y20 |
(2.189)
X10 + U1 X10
_E Yo T Vi Y10
a—lo [-¢c —s ¢ 5] oo + 1tz [—co —so co o] o
Y20 + V2 Y20
(2.190)
Furthermore from (2.186) follows:
Bl o= 1| ° (2.191)
lin® — IO o .
and thus:
1| -0 —0A
elem __ ~ _ 0
fiin = o [ a }Aolo [ oo } (2.192)

Some terms contain the derivative of the transformation matrix with respect to the
nodal displacements. This would be a hypermatrix, difficult to show on paper.
Therefore, it is recommended either to use the index notation or to multiply it by the
preceding or succeeding vector:

X10 + U
aT a C S O 0 yl() + Vi
a(xo—ku) ~ Ou [O 0 ¢ s] X0 + Up
Yoo —+ v
Oc Os
ﬂ(xlo +up) +%(Y10 +v1)
= | gu 90 (2.193)
Ju (x20 + u2) + Zu (Y20 +2)
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Q(x +u): o X10 T U1 ou; Yio T™V1 o, X10 T U1 o, YioTV1
ou dc Os oc

0
a—m(x20 +uz) +a—ul(}’2o +vy) - a—vz(xzo +up) +a—vs2()’20 +2)
(2.194)

Within (2.164) one term becomes

—_ e oS avz(xlo-i-m)-i-a (Y10 + 1)
.. . E( + )_|_ ( + )_|_
+c ovs X20 + U2 5 Yoo T V2 N
(2.195)
Herein the derivatives are:
OAx O0Ay
So=l-t o ol S2=[0 —1 0 1] (2.196)
o 1 O0Ax OAy 0Ax OAy
TR (2Ax S+ 20y au) l(A =t Ay W) (2.197)
ol 1
i l[ —Ax —Ay Ax Ay]|=[-c¢ —-s c¢ 5] (2.198)
Jdcosa 1 [OAx 0l
“ou ﬂz(au"“al)
112<[1 0 1 0]1fo%[fo ~Ay Ax Ay]) (2.199)
Geosa 1 1o 1 o]—Ltad—ar —ay Ar ay] (2.200)
du 1 [ v A '
Ocosa 1

1
= 7[—1 +c s 1= —cs] (2.201)
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Osina 1 1
a—u:7[0 -1 0 l]—l—3Ay[—Ax —Ay Ax Ay]
:7[65‘ —14+s* —cs 1—s2]
Furthermore,
* 1 *
B=B,T"=—[-1 1]T
lo
If one defines
T —- I tip Hi3 hg

Iy T 3 Iy

the B-matrix becomes

1
B:l—[*fllﬂzl s e =ty g ]
0

and the internal forces in the global coordinate system follow as
fiu = B oAly =

The derivative of T™7 (2.195) is multiplied by f;,,"":

K :aT*nglem
c aflg int
2 T
o*1” T’ oT”
= (R0 + 1) o B | S| s
ou ¢ Ju, Ju,

The first term yields:

(2.202)

(2.203)

(2.204)

(2.205)

(2.206)

(2.207)
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2 i
aA;’ 0
dug i
5
2T aa"; 0 A
A °T" o u, — Oz
9 getem | M g T
(Xo +llg)T aﬁz, int o agc oA
,,,,,,,,,, i
Y
0 o
e
2
—(x19 +up) aA;: oA
dig
82 : 2 82
(Xlo +u1) A; : (x20+u2)A—§ _(le +V1)A7;O'A
X10 + X0ty dug dug dug
Yo+ Y20+ V2 9%s | 02 2
+(y]0 +V])A7; +(y20 +V2)A7; +(x20 +U2)A7§GA
i, i i
g g g
32
+(y20 +V2)%O-A
dlig
Herein is for example:
[ 0% o%c o%c 0%
Ou?  Ouyvi Ouyup Oupvy
o%c
o%c 0?2
502 = 1 2 (2.208)
u, g
ou;
0*c
symm. =
L Y ov3 |
Therein for example:
0*cosa 3 0Ol 1 0Ax 1 0Ay
——— == AxAy — m=— Ay — Ax — 2.209
av% 14 8vz 4 13 8vz 4 13 a\/z ( )
—~~ —~~ ——
Ay/l 0 1
*cosa 3 1 1
———— = =AxAY* — SAx = 5(3cs” — ¢) (2.210)
o; P P 12(

and in the same way:
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O*sine 10l 30l 1 0Ay 1. 0Ay

TS = sty A 5= Ay - FAy =

ov3 20v, [*0vy P Ovy B 0w,
0% sina 3

3 0, 1
Y Ay + oAy = 5(~35+ 35
oy~ Y TRl

The third term of the initial stress matrix (2.207) yields:

Oc ]
ou,
c 0 7&
OT" w0 |s O|[-0A] | Ou, "
ou, ™ 0h, [0 ¢ cA| oc |
0 s ou,
Os
[ Oug]
its transposed:
{aTde(,mT [ dc O dc B
— 1, = | TAAT T AAT AAT AT |O
ou, ™ oal  oal oal oaf
The total tangential stiffness matrix then reads:
0* 0*
Kr = B'BEAly + Ax— 0Ag + Ay~ 64y
ou, ou,
" oe
ou,
_ 0
N oc Os Oc Os po Ou, "
AT TAT AT 37 |0A0 0o
oul’ oul oul oul de
ou,
Os
[ i ]

2.4.5 Numerical Example Two-Legged Truss

For the two-legged truss from Fig. 2.12 the coordinates and constraints are

X10=0 y0=0 xp0=4 y,)=3
M1:O V1=O Lt2=0

(2.211)

(2.212)

(2.213)

(2.214)

(2.215)

(2.216)
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Thus, v, is the only degree of freedom and only the derivatives with respect to v,
must be taken into account. The equilibrium at node 2 in y-direction only is of
interest. That means:

fe.\‘t = - u =y

Ax=4, Ay=3+w

~

3
Ayy=34+v2, lh=5, cosay=—-, sinaozg,

|

[=1\/4+ (3 +w)

3+,
[

cosa:7 , sina=

E E
= §(4C + (3 + Vz)S —4co — 3S0) = §(4C + (3 + Vz)s - 5)

aa—vlz:%(?)—i-vz)
aivzcosa:—%ﬁ—i—vz) , aivzsina:%—l%(’j_Fsz
iy - 43 0
= .. 13 %.4+aa_52(3+V2)+s
B:%m
mz—fzon

cosa = <353+V2 —§> -4
3

= gt%4EA0

5v2 [
aZ
8v2 sina = ( 13 5 (3 +w) )(3 +w)

0%c ’s O0s Os o%c 0% _ Os
K,= ( avz (3+V2)a av2+av> 6Ag = ( ov 2 (3+V2)a 2+za_‘)2 cAg

Kr =K, + K,

Then the following algorithm leads to the solution:

given: £,
set i=1, Ao =0, 01 =W0convergea from last load increment resp. ;=0
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Table 2.2 Newton-Raphson iteration for the two-legged truss in the co-rotational formulation

External
load Av, Vs Kr r.h.s. Convergence
-0.5 0 0 1.0000008 -0.5
—0.5 —0.4999996 —0.4999996 0.66042952 | —0.08334799
—0.5 —0.6262023 —0.6262023 0.56949548 | —0.00572057 1.4953006
—0.5 —0.63624727 | —0.63624727 0.56218932 | —3.6687E-05 1.88483506
—0.5 —0.63631253 | —0.63631253 0.56214182 | —1.5497E-09 1.99471873
—0.5 —0.63631254 | —0.63631254 0.56214182 | —1.0547E-15 1.40986474
—0.6 0 —0.63631254 0.56214182 | —0.1
—0.6 —0.17789105 | —0.81420359 0.43143732 | —0.01159205
—0.6 —0.20475949 | —0.84107203 0.41152375 | —0.00026745 1.74914856
—0.6 —0.20540939 | —0.84172192 0.41104167 | —1.5665E-07 1.97462355
-0.6 —0.20540977 | —0.8417223 0.41104139 | —5.2958E-14 2.00197669
—0.6 —0.20540977 | —0.8417223 0.41104139 2.2204E-16 0.36740652
-0.7 0 —0.8417223 041104139 | —0.1
-0.7 —0.2432845 —1.08500681 0.22992876 | —0.02201854
-0.7 —0.33904694 | —1.18076924 0.15882583 | —0.00340757 1.23300293
-0.7 —0.36050169 | —1.202224 0.14295845 | —0.00017027 1.60588135
—0.7 —0.36169271 | —1.20341502 0.14207845 | —5.2405E-07 1.93016356
—0.71 0 —1.20341502 0.14207845 | —0.01000052
—0.71 —0.07038734 | —1.27380235 0.09025931 | —0.00182599
-0.71 —0.09061782 | —1.29403284 0.07544379 | —0.00014993 1.46997863
-0.71 —0.09260511 | —1.29602012 0.07399056 | —1.4441E-06 1.85728841
-0.71 —0.09262462 | —1.29603964 0.07397629 | —1.3925E-10 1.99166208
—0.71 —0.09262462 | —1.29603964 0.07397629 | —4.4409E-16 1.3686783
—0.71 —0.09262462 | —1.29603964 0.07397629 | —8.8818E-16 | —0.05476934
—0.72 0 —1.29603964 0.07397629 | —0.01
—0.72 —0.13517844 | —1.43121809 | —0.02379526 | —0.0066341
-0.72 0.14362066 | —1.15241898 0.17983348 | —0.02820801 | —3.52708527
-0.72 —0.01323561 | —1.30927525 0.06430777 | —0.00908488 | —0.7827879
—0.72 —0.15450753 | —1.45054718 | —0.03757155 | —0.00722727 0.20189861
-0.72 0.03785274 | —1.25818691 0.10172079 | —0.01332489 | —2.67441291
1) calculate f;,,(0;)
2) solve Af; = Ati;_ + Ky (forr — fint)
3) calculate W, ; =1, + Au;

when converged.
new f,.,i=1
continue with 1)

The iteration progress is shown in Table 2.2 and illustrated in Fig. 2.19. The
convergence exponent approaches two in the vicinity of the solution which is the
typical value in the Newton-Raphson scheme (quadratic convergence). When
reaching the processor accuracy it can become worth. Usually the iteration is
terminated before.
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Fig. 2.19 Course of the --0,8
iteration in the Newton-

Raphson scheme for the -0,7
co-rotational formulation

= iteration

force

e external load
internal force

-1 -1,5 -2

displacement

2.4.6 Comparison with Green Strain

The results being different from Sect. 2.3.5 can amongst others be explained by the
fact that different strain measures are used which already differ in one dimension,
i.e. deliver different values for the same changes in length.

In the last converged state in Table 2.2 the external and for equilibrium reasons
the internal force is

" = —0.71 (2.217)
and the global displacement

v§ = —1.2960 (2.218)

For the same system and the same v,® but with Green'’s strain the displacement
components after (2.103) in the element coordinate system would follow as

e .
up | | sinag | o [0.6], | —=0.7776
LQ] - [cosao]vz - [0.8}( 1.2960) = {—1.0368 (2219)
According to (2.104) the derivatives with respect to the x-coordinate are

/_1

Col
W =(-07776) = ~0.1555 . v =(~1.0368) = ~0.2074  (2.220)

After (2.66) the Green-Lagrange strain is

! l ! 1 !
9L =y +§u2 —|—§v2 — 0.1219 (2.221)

and the stress reversely calculated from the internal force after (2.107), the value
taken from the corotational solution:
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£ B ~0.71

CA-(s(T+u)+ev) 0.1-(0.6-(1—0.1555) +0.8-(—0.2074))
= —20.83 (2.222)

In order to fulfil this stress—strain relation Young’s modulus would have to be

c —20.83

Epoa =

If one extrapolates the last converged solution of the system with Green-Lagrange
strain, f* = 0.58, for the modified modulus one obtains

170.87

fext =0. .
0.58 138.89

mod

=0.714 (2.224)

which means the same load-carrying capacity as in case of the co-rotational
formulation. The force-displacement curve for the system with Green’s strain and
modified Young’s modulus is shown in Fig. 2.22 in Sect. 2.6.3.

However, Young’s modulus is a material parameter and one may be in doubt
whether it may be changed for a different theory for large rotations. On the other
hand it is obtained from a force-displacement measurement from which a certain
strain and a certain stress measure is calculated (so-called engineering measures).
In the corotational formulation they are used directly. After (2.190) one obtains in
the considered state

£ = —0.1304 (2.225)

Green-Lagrange strains are defined in a different way. The one-dimensional rela-
tion (2.73) delivers:

1
€L = —0.1304 + E(_O'13O4)2 = —0.1219 (2.226)

like in (2.221). The strain-displacement relation is non-linear such that a linear
force-displacement characteristic can only be modelled by a non-linear stress—
strain relation. Indeed Hooke’s law is not valid for such large strain.

For the stress there are differences, too. For the co-rotational formulation one
obtains after the formulae following (2.216):

= \/42 + (3 — 1.2960)* = 4.3478 (2.227)
4 , 3 —1.2960
COSa = e = 0.9200 , sina= a8 - 0.3919 (2.228)

o = 138.889/5 - (4-0.9200 + (3 — 1.2960) - 0.3919 — 5) = —18.12  (2.229)
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This is the engineering stress being calculated from the deformatoric displacements
whereas the stress (2.222) (—20.83) is the second Piola-Kirchhoff stress which is
explained in Sect. 2.6.3.

2.4.7 Determination of the Element Coordinate Systems

In two dimensions the orientation of an element can be determined by the distance
vector of two nodes in their actual configuration, i.e. taking the displacement into
account, as could be seen in the example above. In three dimensions three orien-
tation vectors are necessary, e.g.

» the distance vector A; of two nodes
« the distance vector A, from the first to a third node

*

« the cross product A3 = A X A}
« the cross product A, = A3 X A}

completing the orthogonal base. After normalising the vectors to unit length
getting A; one obtains the transformation matrix

T=[A A, A;] (2.230)

Following the isoparametric concept where real coordinates {x,y,z} can be calcu-
lated for any point in unit coordinates {&,n,(} by using the shape functions

_ [ox 0y oz . [Ox Oy oz
s={Gaw ™ s-{Gan, 02

can also be chosen. These are the tangents to the unit coordinate lines. They can be
determined at different points in the element, e.g. at integration points.

Another technique is based on the polar decomposition of the deformation
gradient F (see Sect. 2.3.6):

F'F = U'R'RU = U? (2.232)

Then

U™' = (F'F) * (2.233)

which can be calculated e.g. after the theorem of Cayley-Hamilton or the spectral
decomposition like in (2.247). Now the Rotation matrix can be determined as
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R=RUU'=FU"' =F(F'F) (2.234)

R is used as the transformation matrix T. The advantage of this method is that the
rotation matrix can be determined at each integration point, thus taking into account
bending of the element or curved elements. Therefore, this method has a higher
accuracy and is appropriate for higher order elements. The same holds for the
orientations of (2.231).

2.5 Large Strain

2.5.1 One-Dimensional Considerations

Engineering strains are calculated from changes in length relative to the initial
length [y. However, this is not suitable for every order of magnitude of the strain
appearing in technical applications as the following example shows.

In Fig. 2.20 three cases are shown for which the strain—at first engineering
strain—must be determined. In case a) this is

e Al AL
e == (2.235)

in case b)

AL
e =27 (2.236)

because the initial length is twice as large.
In case c) the spar is deformed to the double length in the first step and then by
another AL. After the definition of engineering strain the increment is

AL
A === (2.237)

i.e. comparable to case a), because the initial length is L. More appropriate,
however, would be the same result as in case b), because the lengths before the

a— ..
=L AL
h_
Fig. 2.20 Concerning the =2 AL pAg=9
introduction of logarithmic Cc e
strain ly=L Aly=L AL
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deformation by AL are equal. The actual, i.e. the deformed length / would have to
be taken to achieve this result:

Al AL

Ae = — =——_ 2.238
T T (2.238)
This leads to the principle:
Al
= Ae = — 2.239
=Y ae= Y 22%)
In terms of infinitesimal small increments one obtains:

1 / /
e=|de= Ydl = [Inf];, = In/ — In/y = In T (2.240)

0

lo Io

These strains are called logarithmic strains. They can be transformed in the
following way to get a better comparison with engineering strains:

) lo + Al Al
¢ =In(—) =In(2 i =lIn{1+— (2.241)
l(] l() 10

€% =In(1 + &) (2.242)

Especially in three dimensions the logarithmic strains are also called Hencky
strains (cf. 2.5.2). In Table 2.3 and Fig. 2.21 the different strain measures are
compared with each other. The values of the Green-Lagrange strain seem not to
be very useful; it is made for large rotations. The logarithmic strain shows a “non-
symmetry” between tension and compression. Remarkable is that for engineering
strain —1 the logarithmic strain tends to —oo. Engineering strain —1 means that a
part is compressed to the length of 0. This is the largest imaginable deformation.
Thus, a strain measure of —oo is appropriate.
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Table 2.3 Comparison of different strain measures

Engineering strain Green-Lagrange strain Logarithmic strain
—1 —0.5000 —00
—0.99 —0.5000 —4.6052
-0.5 —0.3750 —0.6931
—-0.3 —0.2550 —0.3567
—0.1 —0.0950 —0.1054
—0.05 —0.0488 —0.0513
—0.03 —0.0296 —0.0305
—0.01 —0.0100 —0.0101
—0.001 —0.0010 —0.0010
0 0.0000 0.0000
0.001 0.0010 0.0010
0.01 0.0101 0.0100
0.03 0.0305 0.0296
0.05 0.0513 0.0488
0.1 0.1050 0.0953
0.3 0.3450 0.2624
0.5 0.6250 0.4055
1 1.5000 0.6931
Fig. 2.21 Graphic 24
comparison of different .
strain measures 14 /_ —

e 4 -1 4

'I
24
/
4 05 0 05 1 15

— €Ngineering

= == Green-Lagrange

= = = |ogarithmic

strain

2.5.2 Transition to Two- and Three-Dimensional Systems

Since it is probable that large strain occurs in combination with large rotations the

two phenomena must be represented within the same theory.

There a several ways. One is—based on the relation between logarithmic and
engineering strain in 1d (2.242)—to replace the engineering strain by a measure
accounting for large rotations, here the Green-Lagrange strain:
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1
i A R L(P—2 B\ 1 (P-P
log —1n(—) =1 — =—In|l=| =<1 04 01= 941
‘ n(10> nl(h))] 2n<l§ N N

£t = %m(zga +1)

(2.243)
In 3d the measure defined in that way is called Hencky strain:

gltencky — %ln (2¢F +1) (2.244)

where I denotes the unit matrix.

One can immediately see that this measure is suitable for large rotations because
for arbitrary rigid body rotations the Green-Lagrange strain becomes 0 so that one
obtains

ghencky — %m(l) =0 (2.245)

The remaining question is how to determine the logarithm of a matrix. Mathemati-
cally this is defined in the following way:

A symmetric matrix A can be represented by the matrix Q of its normalised
eigenvectors and the diagonal matrix

A = diag[A] (2.246)
of its eigenvalues:
A=Q A QT (2.247)

Since this covers the total spectrum of the eigenvalues this is called spectral
decomposition.

A function of the matrix A is calculated by applying the function to the
eigenvalues, again forming a diagonal matrix from the results and multiplying it
by the eigenvectors from both sides:

f(A) = Q diag[f(%:)] Q" (2.248)

This method is rather complicated (keep in mind that for the iteration in a
FE code derivatives with respect to the displacements are necessary) but it is for
example the base of the formulation of the (legacy) elements VISCO106 to 108 in
ANSYS.

For the second method one has to remember the incremental form (2.239) of the
logarithmic strain. The strain increment is determined by calculating engineering
strain but with respect to a deformed reference configuration. The rigid body
rotation can be accounted for in the same way as for small strain. If this is done
by the co-rotational formulation the strain increment is called Green-Naghdi rate.
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The definition of the logarithmic strain and true stress with their relation to the
actual configuration requires to use the actual volume (or Adx for the link element)
when integrating over dV. In the numerical integration this means that the Jacobian
J and its determinant accounting for the relation between real and unit coordinates
must be formed from the coordinates xo+u of the (deformed) reference configu-
ration. The limits of the unit coordinates and thus the numerical integration
procedure itself are not directly affected but element distortions must be measured
in deformed, not initial coordinates to judge the accuracy.

2.5.3 Hencky Strain in Terms of Continuum Mechanical
Symbols

Following Eq. (2.241) the one-dimensional logarithmic strain can be written
infinitesimally as

o dx 1
£ = In (E) =In(F) = Eln(F%I) (2.249)

With the considerations from Sect. 2.3.6 one obtains for the three-dimensional case
Henck 1 T 1 2
€ Y = Eln(F F) = Eln(U ) (2.250)
2.5.4 Logarithmic Strain and Corotational F ormulation

Since the co-rotational formulation accounts for large rotations only the increment-
ally changing reference configuration must be added according to (2.239). Strains
are composed from derivatives in the rotated system, now strain increments.
Changes in length must be calculated from the deformatoric displacements uy.

The basic formula for the calculation of strain in the co-rotational formulation
has been

& = Biinaer = Byin[T(w) (X0 + 1) — Toxo (2.163)

Herein B,;,, was determined from the derivatives of the shape functions N with
respect to the initial coordinates in the element coordinate system

Xg = T()XO (2251)

Instead of that the element coordinates in a deformed reference state
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XSy = T (Urer) (X0 + Uper) (2.252)

are now used to calculate a strain increment:

Ae = By, (x;;f) Augy

=By (ngf> [T(uiy1)(Xo + uip 1) — T(w;)(x0 + ;)] (2.253)

Herein i is the last converged solution and i + 1 the new one in the actual iteration.
u,., can be chosen between u; and u;, see below.

When forming derivatives with respect to the real coordinates the element
geometry is usually accounted for by the inverse of the Jacobian matrix J. In case
of the corotational formulation with small strain J is determined from the initial
coordinates:

Jo = {ax&} (2.254)

For large strain the coordinates of a reference configuration actualised by
deformatoric displacements must be used, see (2.252):

J= {ax’if } (2.255)
L og '

Analogously the related Jacobian determinant det]J is used for the integration
over the element volume. This will be done numerically with ngp Gaussian points,
e.g. the internal forces in 3d:

J B6dV ~ XGP:WiBT (%) o(&iym;, §i)detd (Xfefé Sis M Ci) (2.256)

V) i=1

where w—means the weighting factor and &;,i;,{—the coordinates of the Gaussian
point i

For higher accuracy and stability an implicit method is preferred, i.e. the refer-
ence configuration depends on the deformation at the end of the load increment
which is the goal of the iteration (that makes it implicit). One choice is the midpoint
rule, i.e. the reference configuration is located in the middle between the beginning
(last converged solution u;) and the actual end of the load increment (iterative
solution u,, ;):

In one and two dimensions it must be made sure that the correct (deformed)
volume is calculated. In general this depends on the material model used. In case of
Von-Mises plasticity (s. Chap. 8) and dominant plastic strain the volume is con-
stant, in 1d:
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V =Al = Aply (2.257)
The strain increment for the link element then reads:

Ae = Biin (lRef)Alldef
= i[ —1 1] [T(UHI)(XQ + ll,‘+1) — T(ll,‘)(Xo + ll,-)] (2.258)

&ir1 = & + Ae (2259)

When using the midpoint rule the reference length is taken as

Ly +1;
Iref = % (2.260)

For comparison with the small-strain formulation it is written:

lo 2 2
Biin(lger) = —Biin =——Bjiy = ———Bux 2.261
in(lre) P A e (T ( )
2,
Eir1 =& + l(lli+1—§)+lf Biin[T(uig1) (X0 + uiy1) — T(w;) (X0 + u;)] (2.262)

A €smal 1

All terms with index i are constant during the actual load increment and not subject
to differentiation. Therefore, the derivative of Ae™* with respect to the displace-
ment vector u is the B-matrix for small strain (2.164). For large strain B then reads
following the product rule:

Blarse — 2y small 2o Olit small
liy1 +1; (i1 + l~)2 Ou
! ! 2.263
_ l_OBsmall _ ZO ali'H Aesmal/ ( )
Lref 21, Ou

Analogously the second derivative of €, including the derivative of B%¢, needed
for K, can be formed.

In general derivatives of the Jacobian matrix are needed, all other terms are
known from the small strain formulation.
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2.6 Related Stress

2.6.1 General 1d-Relation to Strain

In the two spar examples with different formulations (Sects. 2.3.5 and 2.4.5)
different force-displacement relations, especially different limit loads, were
obtained although the behaviour was qualitatively similar. The reason was the use
of the same stress—strain and stress—force relation. For the maximum load this was
explained in Sect. 2.4.6.

It is unlikely that Hooke’s law applies to the whole range of a deformation of
such size but more general is the fact that stresses must be calculated from forces
and cross sections in different ways according to the strain measure used, so-called
conjugate stresses. Base is the relation

fir = J BledV (2.83)
W)
f;,, means the internal nodal forces. Since B is the derivative of € with respect to the

nodal displacements there is a different relation between force and stress for each
distinct strain measure. In 1d from (2.83) one obtains

fin = JBTaAdx (2.264)
U]
for constant strain and stress over the element length
fi, = BT6Al (2.265)
and for one degree of freedom u only (the other one be fixed)

de

fir=F= EgAl (2.266)
This formula is solved for o:
F
=— (2.267)
Al

where for small strain the undeformed area A, and the undeformed length /, must
be used.

The one dimensional consideration is important in particular because it is often
the base for the determination of material parameters from experiments.
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2.6.2 Engineering Quantities

Companion to engineering strain is engineering stress, in one dimension:

F
0" = (2.268)
0

This definition is common. Nevertheless Eq. (2.267) is applied to test its validity.
The change in length here is u, the strain and its derivative consequently

u de 1
_ a€_ 2 2.269
n T a1y (2.269)
thus
F F
6= — = — 2.270
Aoloﬁ Ag ( )

The engineering stress is also valid in the basic form of the co-rotational formula-
tion, naturally in the rotated coordinate system, where the deformatoric displace-
ment is determined and hence the engineering strain. As a test the results of the
two-legged truss in Sect. 2.4.5 are taken. For the last converged state one obtained
f;,,;=—0.71, sina =0.3919 and 6 = —18.12. The force in the truss F can be calcu-
lated from the internal force in the global system as

£ F £, 1 —0.71
Fe_im o =t - — _18.12 2271
sing °T A, sinaA, 03919-0.1 (2.271)

2.6.3 Green-Lagrange Strain

Companion to the Green-Lagrange strains are the second Piola-Kirchhoff stresses.
In one dimension the strain after (2.63) in conjunction with (2.65) and its derivative
read:

o 1P _1otu' = de_120otw) 1,0
) lé 2 [% du 2 1(2) l% .

Then the related stress after (2.267) is
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ok F_Flo_ o

= = dfng— 2273
Aolos Aol / ( )
0
or, in order to include the engineering strain, too:
K =g L g 1 (2.274)
B lotu 1 4 glne ’

lo

Its physical interpretation is limited in the same degree as the meaning of this strain
which is suitable for large rotations—nothing else.

Test: For the two-legged truss the deformed length in the last converged state has
been calculated as / =4.3478 at the end of Sect. 2.3.6. The initial length has been
lo=5. By solving (2.107) for the stress 6 = —20.83 has been calculated for this
deformation and the context of Green-Lagrange strain whereas engineering stress
had been ¢°"* = —18.12. By applying (2.273) one now obtains:

5
oK = —18.12, -0 = —20.83 (2.275)

If the 1d-relation between Green-Lagrange and engineering strain (2.73) is solved
for £“* via the mixed quadratic equation

_De0L | e | geng® _ () (2.276)

one obtains:
ey = —1£ 1+ 2% (2.277)

Since the engineering strain is limited to ¢ > —1 the Green-Lagrange strain has
as lower bound

1
et > ) (2.278)

Thus the square root is always real. From the same condition follows that only the
positive sign is meaningful:

e = —1 4+ /1 + 2¢0L (2.279)

Replacing the engineering stress in (2.274) by Young’s modulus times engineering
strain according to Hooke’s law:

oK = Egi
1 4 g8

eng

(2.280)
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Fig. 2.22 Course of the r-0,8
iteration when using the

modified Young’s modulus F-0,7
(2.223) (dashed line) resp.

the correct relation between --06

GL-strain and displacement = iteration

as well as second Piola-
Kirchhoff stress and force
from Sect. 2.6.3

e @Xternal force

force

internal force

E=170 only, internal

X corotational, internal

-1 1,5 2

displacement

Inserting (2.279) for the engineering strain:

7E—1+\/1+28GL
V1 4 2¢CL

This is a non-linear material law but leading to a linear force-displacement relation.
After Sect. 2.3.4.1 the derivative of the stress with respect to the strain is needed for
the tangential matrix:

oK (2.281)

VIT2eOL _ — 1413260
dO'PK — E\/l+2§GL \/1+2é‘Gf — E (2 282)
dedt 1+ 2¢0L (1 + 2¢6L): '

In this way Young’s modulus in the example of the two-legged truss can remain at
E =138.889 leading to the solution in Fig. 2.22. Like in the co-rotational formula-
tion the limit load is calculated as 0.71 at a tip displacement of 1.296. Now even the
curves of the internal force as well as the converged solutions match those from the
co-rotational example.

2.6.4 Logarithmic Strain

The logarithmic strain is used as a measure for large deformations. Thus the volume
of the deformed body, in (2.267) the deformed cross section area A and the
deformed length / must be considered. The derivative of the strain is

dés d (1N d. (1 b 1 1 1
_d (4L, _ L — (2283
du  du “(10> du n(lo( 0 ”)> htah ltu_1 2%

By introducing in (2.267) one obtains
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F

= (2.284)
TAl

o =

|

Thus the appropriate stress measure for logarithmic strain where the change in
length is related to the deformed length is the so-called “frue” stress, the force
divided by the deformed area, in 1d:

o F
o =7 (2.285)

These stresses are also called—especially in two or three dimensions—Cauchy
stress.

A uniaxial stress state usually produces a triaxial strain state. From this fact the
deformed cross section area can be calculated. Poisson’s ratio v in Hooke’s law
yields for a uniaxial stress state:

& = & = —V& (2.286)

(2.241) gives for the loading direction

. Ouy
e = ln(l + ax) (2.287)

Analogously this relation delivers for the transverse directions:
e, =In(1+% (2.288)
y 5y '

Inserted into (2.286) this means:

auv _ allj _ au.\‘ v
ln(l + ay> - —yln(l + 5x) —anl + 5x) } (2.289)
Applying the exponential function to both sides:
Ouy\ Ou,\ 7Y
<1 +ay> = (1 + ax) (2.290)

This intermediate result leads to the following effect:
If a cube of edge length [/ is stretched by / for v=0.3 one obtains as change in
length in transverse direction:
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Table 2.4 Comparison of Point £8 e £los oCauchy
strain and stress measures
1 0.00168 348 0.00167859 348.58464
2 0.0386 348 0.03787365 361.4328
3 0.04 371 0.03922071 385.84
4 0.072 428 0.06952606 458.816
5 0.101 455 0.09621886 500.955
6 0.143 467 0.13365638 533.781
7 0.192 471 0.17563257 561.432
8 0.272 463 0.24059046 588.936
i _O‘3Al,. N 03 N 03
1+&:(1+2) T):(HZ) —lAly:[<1+l> —1}1
= —0.18771 (2.291)

whereas for engineering strain the result would be —0.3 1.
More important, however, is that the cross section area of the deformed system is

. Ouy ou\ _ duy\
that means
. F 1 F du\
Cauchy _ -~ _(1 + u”‘) 2.293
o .
Ao(1 + %) Ao Ox ( )

Hooke’s law does not hold for strains in a range where a significant difference
between the strain measures can be noticed. More important is e.g. plasticity of
metals where it is assumed that the plastic strain

* dominates the elastic one and
 is incompressible, i.e. no volume change occurs.

This is equivalent to a Poisson’s ratio of 0.5, thus

F uN205 R ou.

Cauchy __ ~ Ux [ U
” _A0<1 n ax) _A0<1 i ax> (2.294)
O_Cauchy _ O.eng(l + ging) (2295)

If a FE-program uses large strain the measured yield curves (usually engineering
measures) must be transformed into true stress vs. logarithmic strain via (2.242) and
(2.295).

Table 2.4 and Fig. 2.23 show stress—strain data for a certain type of steel. One
can see that the stresses differ more than the strain. Furthermore, the Cauchy stress
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Fig. 2.23 Comparison of 700
strain and stress measures
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400 A
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shows hardening where the engineering stress indicates softening which physically
is not the case: The decrease in stress is caused by a reduction of the cross section
area.

2.6.5 Continuum Mechanics Aspect

Equation (2.295) can also be written as

) [—1 I
& — 58 (1 + ; 0) = "8 _ (2.296)
0

whereas (2.273) can be solved for

I
" = o (2.297)
lo
thus
me _ L opx! (2.298)
lo Io

In Sect. 2.3.6 I/l was identified as the 1d representation of the stretch tensor U.
Thus the 3d extension is
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6" = Us KU (2.299)

but this hold for the measure in the initial coordinate system due to the nature of the
Piola-Kirchhoff stress and of U. For the actual configuration a rotation is necessary:

6 = RU ¢"¥ UDRT (2.300)
F F’
¢ = F6"*F7 (2.301)

This is called push-forward operation. The result, however, is called Kirchhoff
stress tensor.

2.7 Updated-Lagrange Formulation

2.7.1 Classic Approach

Lagrange formulation—in contrast to Euler’s approach dominating fluid dyna-
mics—means that the motion of a material point is observed. If the kinematics of
a system is totally described in terms of the initial configuration this method is
called Total-Lagrange formulation.

A simple but less accurate way to account for large rotations and—more or less
as a side effect—for large strain is the following:

e perform a geometrically linear analysis for a load increment evolving small
rotations only

¢ add the displacements to the initial coordinates to get new coordinates

e add a new load increment

e sum up the strain and stress increments.

In terms of “time”-integration this is an explicit method which can show a larger
error and even numerical instability when the increment is chosen too large.

Example
The stiffness matrix of a linear link element rotated by an angle of a reads (with the
abbreviations below)

c: cos aand
s:  sin a:

2 s —c* —cs
EA | - 2 . 2
K =T'K""T = l —sz —Scs cgs ci (2.302)
2 2

—Ccs —S cs N

Be u = 0 and ¢ = 0 initial values of displacement and strain.
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In the first load increment the displacement in the global system can be calcu-

lated by solving
KAu="f,,
The displacement is updated:
u—u+ Au
Now a new transformation matrix can be determined:

T; =T(xo +u)

The displacement increment in the element coordinate system reads:

Au, = T{Au
The strain can then be updated to
e — ¢+ Bj,Au,
This strain leads to the stress
oc=EFEe

Thus the internal forces read:

T _
iinoV =

fint =T ]TB

SO wu o

Under the assumption of constant volume in large strain one obtains:

—C

1 —s I
7[—1 1]oAoly = c 6A070

fint =

SO w o
u o OO

(2.303)

(2.304)

(2.305)

(2.306)

(2.307)

(2.308)

(2.309)

(2.310)

In this position a new load increment is applied leading to a new external force f,,;.

Now the displacement increment is determined by solving
KAu = fext - fim

and the procedure starts again with Eq. (2.304).

(2.311)
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Fig. 2.24 Behaviour of the 0 -
classic updated-Lagrange !
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What is needed for the two-legged truss is listed in the chapter above. Some
values are repeated here:

I=\/#+(B+wn) (2.312)

4 . 3+,
CZCOSO!:Y, S = SIhga = ]

(2.313)

With these values K can be formed. Only

EA

kas = ;

(2.314)

is needed for this example. The displacement on element level has one component
only:

Aty = sAv, (2.315)
et Ae=¢+ A';“z (2.316)
o =Ee (2.317)

£ = saA0170 (2.318)

The results, especially the maximum load, strongly depend on the step size as
shown in Fig. 2.24. The behaviour is compared with the ANSYS LINK 180 element
with co-rotational formulation for large strain.
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It can be seen that too large a step size leads to large errors in the result when the
behaviour of the system becomes strongly non-linear. The non-linearity can be
measured in terms of internal and external forces because the internal forces in the
updated configuration i+ 1 do not match exactly the external forces from the
configuration before (i). A certain difference is remaining enlarging the right
hand side of (2.241). Therefore, for the curve marked as “adaptive step size” the
increments of the external forces are chosen so that the error is restricted to a certain
fraction of the external load:

f?XI _ fir-:-tl — CfleX’ (2319)

If this is not the case the last load increment is scaled to get the next result nearly in
the desired range:

. pext
cf;

ext int
fi - fi+1

ALY = AFY

(2.320)

When choosing ¢ = 0.01 the result shown in Fig. 2.24 is obtained with significantly
less increments then with step size 0.01 but with higher accuracy.

2.7.2 Generalisation

Nowadays the term “updated Lagrange” is used for nearly every incremental
method, nearly everything which is not formulated based on the initial configu-
ration. Such methods can be of high accuracy. Co-rotational with large strain is of
this type because the strain is updated.
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