
Chapter 2

Geometrically Nonlinear Behaviour

2.1 Fundamental Terms of Geometric Nonlinearities

The assumptions of a geometrically linear theory are:

1. equilibrium in the undeformed state

2. small rotations, i.e. linearised kinematics (s. Fig. 2.1)

3. small strain,

i.e. it is useful and sufficient to define strain as changes in length relative to the

initial length l0.

Step by step these assumptions will be given up in the following, i.e.

1. equilibrium in the deformed state

2. large rotations and

3. large strain

will be considered.

2.2 Theory of Second Order, Equilibrium in the Deformed

System

2.2.1 Motivation and FE-Formulation

Only assumption 1 is given up. This theory is sufficient for most of the civil

engineering applications and is the base of Euler’s theory of beam buckling and

the usual solutions for plate buckling.

Consider the simply supported beam from Fig. 2.2. In the completely linear

theory the transverse load q and the longitudinal force F are decoupled: the

transverse load leads to shear force and bending moment M0, the longitudinal
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force to normal force. If the deformed system is considered for equilibrium the

force F has a moment arm to any point on the deflection line of the beam. In the first

approximation this arm is a result of the transverse load. This results in an

additional moment of

ΔM ¼ �Fw ð2:1Þ

If a tensional force Ft is active this reduces the total moment. This leads to less

deflection and thus to a reduced unloading in the final equilibrium state. The final

moment will be in the range

M0 � Ftw0 < M < M0 ð2:2Þ

This effect should be taken into account for economic reasons; maybe smaller cross

sections can be used.

If a compressive force Fc is active the moment difference in the first approxi-

mation is
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ΔM ¼ Fcw0 ) w1 ¼ w M0 þ ΔMð Þ > w0 ð2:3Þ

This causes an increase of the deflection and an additional moment and so forth. It

depends on the size of the force whether the final deflection is finite or not. If

Euler’s critical load is exceeded the deflection becomes infinite and no equilibrium

is possible. Thus, accounting for the effect of compressive forces is necessary for

safety reasons.

For the simplest Finite element, the link element (Fig. 2.3), this effect can be

formulated as follows:

Because of the missing bending stiffness no equilibrium with the load P is

possible if the deformation is not taken into account. In the deformed state,

however, the sum of moments around the left node yields:

F ðw2 � w1Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Δw

¼ Pl0 ð2:4Þ

The calculation of Δw would be possible, but solving for P yields:

F

l0
w2 � w1ð Þ ¼ P ð2:5Þ

Still assumed that the rotations are small the longitudinal force F can be approxi-

mated by the normal force N which in turn can be expressed by stress σ times cross

section area A:

σA

l0
w2 � w1ð Þ ¼ P ð2:6Þ

In matrix notation this yields:

σA

l0
�1 1½ � w1

w2

� �
¼ P ð2:7Þ

Taking into account that a similar equation can be found for a load at the left node

and that there are longitudinal displacements in addition to the transverse ones this

relation can be extended to

F
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undeformed

deformed
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2

Fig. 2.3 Concerning the

equilibrium in the deformed

state for the link element

2.2 Theory of Second Order, Equilibrium in the Deformed System 19



σA

l0

0 0 0 0

0 1 0 �1
0 0 0 0

0 �1 0 1

2
664

3
775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
S

u1
w1

u2
w2

2
664

3
775 ¼

0

P1

0

P2

2
664

3
775 ð2:8Þ

A term which relates displacements and forces is called a stiffness. The matrix

S also represents a stiffness, however it does not depend on material parameters but

on stresses. That is why S is called “stress stiffening matrix”. The stress, however,

has an algebraic sign, i.e. a compressive stress leads to a weakening.

The matrix S is an addition to the stiffness matrix K according to the linear

theory, in the case of the 2d link element:

EA

l
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0 0 0 0

�1 0 1 0

0 0 0 0

2
664
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2
664
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2.2.2 Why Theory of Second Order?

In the previous chapter fully linearised kinematics has been used. Why is it named

theory of second order? This is illustrated by solving the following stability

problem in two ways, at first by formulating the equilibrium in the deformed state

and using linearised kinematics (Fig. 2.4).

The equilibrium in the deformed state results in:

P

Ff

u

k

l

P

Fig. 2.4 Stability problem

with linearised kinematics
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Pu ¼ Ff l ð2:10Þ

The spring force is expressed as

Ff ¼ ku ð2:11Þ

thus

Pu ¼ ku l ð2:12Þ
P� klð Þu ¼ 0 ð2:13Þ

This equation has the trivial solution u¼ 0 and the non-trivial one

P ¼ k l ð2:14Þ

This means the critical load of the system because a displacement without change in

load becomes possible then.

Now the principle of the minimum of the potential energy is applied starting

with the fully non-linear kinematics (Fig. 2.5).

The load P looses potential energy whereas the spring gains some. Together a

minimum must be achieved:

�Pl 1� cosφð Þ þ 1

2
k l sinφð Þ2 ! Min: ð2:15Þ

Now the angular functions are replaced by their Taylor expansions truncated after

the second order term:

sinφ � φ �φ3

3!

���� þ � � �, cosφ � 1� φ2

2!
þ � � � ð2:16Þ

Then (2.15) becomes

P

u=lsin

k

l

P

lcos

l(1-cos )

Fig. 2.5 Stability problem

with exact kinematics
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�Pl φ2

2

� �
þ 1

2
k lφð Þ2 ! Min: ð2:17Þ

As necessary condition the derivative must be zero:

�Plφþ kl2φ ¼ 0 ð2:18Þ
�Pþ klð Þlφ ¼ 0 ð2:19Þ

Again the critical load (2.14) is obtained as non-trivial solution. Thus this theory is

called “of second order” because terms up to the second order of the Taylor

expansions of the angular functions are necessary if energy methods are applied.

2.2.3 Linear Buckling

In symbolic matrix notation equation (2.9) reads:

Kþ S σð Þð Þû ¼ fext ð2:20Þ

The matrix S is linearly depending on the stress, the stress linearly on the axial

force. Therefore, the stress-stiffening due to a reference load f0 multiplied by a

factor λ is

S σ λf0ð Þð Þ ¼ S λσ f0ð Þð Þ ¼ λS σ f0ð Þð Þ ð2:21Þ

A stability problem (buckling) occurs if a (further) deformation without change in

loading is possible. Then (2.20) becomes

Kþ λS σð Þð Þ φ̂ ¼ 0 ð2:22Þ

This is a general matrix eigenvalue problem. φ is used instead of u to mark it as an

eigenvector. The eigenvalue λ is the critical load multiplier for the applied load,

i.e. the load which led to the stress σ. However,

fcr, i ¼ λf0 ð2:23Þ

is the critical load only under the assumption that there are no imperfections

(pre-deflections, eccentricities not be taken into account) and the system behaviour

is completely linear until buckling occurs. That’s why this load level is called ideal
critical load. In reality instability occurs at lower loads. How this is accounted for in

the simulation is described in Chap. 3.

The eigenvector φ replacing the vector of the displacements describes the

direction the system will follow when buckling begins. This state is called buckling
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mode. It can only be determined up to an arbitrary factor and is normalised, e.g. in

such a way that the maximum displacement becomes 1.

The steps to follow in a FE buckling analysis are listed as Algorithm 2.1:

Algorithm 2.1 Linear Buckling Analysis

a) fully linear static analysis to determine the (pre-)stress state σ
b) assembling of the stress-stiffening matrix S

c) solving the eigenvalue problem,

usually by vector iteration! φ! λ

The mode φ can be plotted like a usual displacement state. Other results like

strain and stress are of minor meaning; they are increments multiplied by an

unknown factor, but they can be used for error estimation.

Example First Euler Case

As example the first Euler case is considered where one end is clamped and the

other one is free (Fig. 2.6).

For the FE analysis an element is needed which includes a longitudinal and a

bending stiffness. Before applying the boundary conditions the system of equations

reads:
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The correct stress-stiffening matrix for the beam is derived not before Sect. 2.2.4.

Here the matrix S for the link element is used because it makes the hand calculation

easier. Taking the constraints of all degrees of freedom of the left node into account

and introducing terms for S the equations read:

F

FFig. 2.6 Column buckling,

first Euler case
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In step a) of Algorithm 2.1 σ¼ 0 holds, furthermore it is obvious that the bending

and the longitudinal part are decoupled and the right hand side for the bending part

is 0. From the first row,

EA

l
u2 ¼ �F ð2:26Þ

one obtains

u2 ¼ � Fl

EA
ð2:27Þ

From there the axial stress follows as

σ ¼ E

l
�u1 þ u2ð Þ ¼ E

l
� Fl

EA

� �
¼ �F

A
) σA

l
¼ �F

l
ð2:28Þ

This result is used in step b) such that one obtains for step c) after multiplication of

S by the load multiplier λ, addition of K and λS and zeroing the right hand side

(because a change in the displacements without a further load is requested):
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For the hand calculation no vector iteration is performed as often in FE-calculations

but the classic consideration is followed: Since the right hand side is zero this

system of equations can only be solved in a non-trivial way (u¼ 0 is the trivial

solution) if the determinant of the system matrix equals zero. This is fulfilled if the

lower left subdeterminant belonging to the bending part is zero:
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det

12EI

l2
� λF � 6EI

l

� 6EI

l
4EI

2
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3
75 ¼ 0 ð2:30Þ
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� �
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48EI
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l2
� 4λF ¼ 0 ð2:32Þ

λF ¼ Fcr, i ¼ 12EI

4l2
ð2:33Þ

Fcr, i ¼ 3
EI

l2
ð2:34Þ

where the subscript cr,i means ideal critical.
Since the buckling length sk is twice the length of the beam the analytical

solution reads:

FEuler
cr, i ¼

π2EI

2lð Þ2 ¼ 2:47
EI

l2
ð2:35Þ

With two elements and again the simplified stress-stiffening matrix one obtains

2.60 EI/l2.
In a hand calculation the result of (2.28) can be obtained from equilibrium

considerations. Due to the decoupling in this and similar cases step a) can be

omitted and the problem be solved based on
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i.e. the bending part without considering axial deformation.

For the calculation of the eigenvector, the buckling mode, solution (2.34) is

introduced into (2.29) which makes the two lower rows of the system of equations

linearly dependent. The solution is no longer unique. One unknown must be chosen:

w2 ¼ 1 ð2:37Þ

The third row of the system of equations (2.29) the reads:

2.2 Theory of Second Order, Equilibrium in the Deformed System 25



� 6EI

l
� 1þ 4EIφ2 ¼ 0 ð2:38Þ

φ2 ¼
3

2l
ð2:39Þ

so that one obtains the eigenvector

φ ¼
1

3

2l

2
64

3
75 ð2:40Þ

It is multiplied by the cubic shape functions of the beam element which are related

to the right node (N3 and N4, complete set see Sect. 2.2.4):

w ξð Þ ¼ 1

4
2þ 3ξ� ξ3
� 	 � 1þ 1

4
�1� ξþ ξ2 þ ξ3
� 	 l

2

3

2l
, � 1 � ξ � 1 ð2:41Þ

Thus one obtains the deflection line. It is compared with the analytical solution

wEuler ξð Þ ¼ 1� sin π
3

4
þ 1

4
ξ

� �� �
ð2:42Þ

See Fig. 2.7 for the similarity of the shapes.

2.2.4 Correct Stress-Stiffness Matrix for the Bernoulli-Beam

2.2.4.1 Derivation

Here a formal way is followed resulting from the differential equation of the beam

in the second-order theory:

1st Euler case

0
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-1 -0,5 0 0,5 1
xi

w

w_FE
w_Euler

Fig. 2.7 Deflection line for

the first Euler case with one

beam element and

analytical

26 2 Geometrically Nonlinear Behaviour



EIwiv þ Nw
00 ¼ EIwiv þ σAw

00 ¼ 0 ð2:43Þ

The corresponding minimisation problem (weak form) reads:

1

2

ð
lð Þ

w
00
EIw

00
dxþ 1

2

ð
lð Þ

w
0
σAw

0
dx ! Min: ð2:44Þ

The first part leads to the well known stiffness matrix, the second one to the stress-

stiffness matrix S. For the Bernoulli-beam element the displacement function reads:

w ξð Þ ¼ N ξð Þû , � 1 � ξ � 1 ð2:45Þ

ð2:46Þ

The derivatives with respect to the real coordinate x read:

w
0
ξð Þ ¼ dw
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¼ dw

dξ

dξ
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¼ 2
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dξ
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l
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0
û ð2:47Þ
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Thus, the stress-stiffening matrix is calculated with dx ¼ l
2
dξ as

S ¼
ð1
�1

σ
4

l2
N
0T
N
0
A
l

2
dξ ¼ σA

2

l

ð1
�1

N
0T
N
0
dξ ð2:49Þ

The product of the derivatives of the shape functions creates the matrix
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ð2:50Þ

As example the matrix element S12 is calculated as
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S12 ¼ σA
2

l

8

5
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2

1
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σA ¼ 3l
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30l
ð2:52Þ

The complete stress-stiffening matrix reads:

S ¼ σA

30l

36 3l �36 3l
3l 4l2 �3l �l2
�36 �3l 36 �3l
3l: �l2 �3l 4l2

2
664

3
775 ð2:53Þ

2.2.4.2 Application to the First Euler Case

After the introduction of the boundary conditions and the determination of the axial

stress the eigenvalue problem reads:
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The determinant of the matrix is
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20
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Thus, one obtains as governing equation for the critical load:
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with the solutions
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3l2
52� 44:54ð Þ ð2:61cÞ

The smaller and thus relevant value is

Fcr, i 1 ¼ 2:486
EI

l2
ð2:62Þ

which is close to the analytical solution of 2.47 from Eq. (2.35).
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2.3 Large Rotations I: Strain Measure

2.3.1 Kinematic Effects

Large rotation must be accounted for if the linearised kinematics (see assumption

2 in Sect. 2.1) cannot be applied any longer. This is surely the case if rotation angles

>4. . .5� occur. Figure 2.8 shows the kinematic differences. In the linear theory (red

model) the middle of the free end of the cantilever moves perpendicularly to the

original beam axis, i.e. vertically downwards. It seems as if the system becomes

thicker, however, it is nothing but the fact that the vertical dimension, here noted as

h, remains constant. The fully geometrically non-linear theory leads to a reasonable

deformation behaviour (blue model); here the original height of the cross section is

kept in the deformed system and the free end also moves to the left in the horizontal

direction.

Taking large rotations into account can become necessary for smaller rotations

than mentioned above, especially if the bending deformation has a significant

influence on the axial stress as it can be the case for a rope under a perpendicular

load. Figure 2.9 shows such a rope which has not been pre-stressed and which gets

its axial stress by the vertical deformation. It is to be seen that the forces increase

over-proportionally when doubling the vertical displacement and that the ratio

between the horizontal and vertical force components changes significantly.

This effect cannot be accounted for in the theory of second order because only

the equilibrium in the deformed state is considered but the linear kinematics is kept.

However, if a pre-stressing force is present and is only changed by small portions

due to the deformation, second order theory and fully non-linear theory lead to

nearly the same force reactions (Fig. 2.10) while second order leads to proportional

increments whereas in fully non-linear theory differences occur for larger rotations.

Then the second order theory is no longer valid.

linear

non-linear

h

hh

undeformed

Fig. 2.8 Linear and

non-linear kinematics
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2.3.2 Appropriate Strain Measure: Green-Lagrange Strain

2.3.2.1 Exemplary Derivation

Green-Lagrange strains are appropriate to describe the strains, i.e. the relative

deformations of a body undergoing large rotations, in the coordinates determined

by its initial configuration. In the derivation the change of the square of the distance

of two neighboured points is considered. For one direction in the plane this can be

illustrated as follows:

The relative change of the squares of the deformed length l and the undeformed

one l0 is

l

1/10 l

2/10 l

no
pre-stressing

Fig. 2.9 Rope fixed at both

ends under perpendicular

load, geometrically

non-linear

F = const.

geometrically non-linear

theorie of 2nd order

l

1/10 l

2/10 l

1/10 l

theorie of 2nd order

Fig. 2.10 Rope being

prestressed by a constant

force under perpendicular

load, different theories
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Δ ¼ l2 � l20
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¼ l0 þ uð Þ2 þ v2 � l20
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The transition to the infinitesimal small element dx yields
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For small deformations the quadratic terms become negligible so that only the first

term remains which is twice the linear or engineering strain. Therefore, one half of

Δ is defined as the Green-Lagrange strain (often only called Green’s strain):
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Δ
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Generalised:

εGLij ¼
1

2

∂ui
∂xj
þ ∂uj

∂xi
þ
Xndim
k¼1

∂uk
∂xi

∂uk
∂xj

 !
ð2:67Þ

with ndim—considered dimension; i, j—directions

e.g. εxx ¼ ∂u
∂x þ 1

2
∂u
∂x

� 	2 þ 1
2

∂v
∂x

� 	2 þ 1
2

∂w
∂x

� 	2
in three dimensions

Since the derivatives of the displacements are zero for rigid body translations
the strain is independent of that motion, but that was already the case for engineer-

ing strain.

GL strain is not a series truncated after the quadratic term, but a measure making

sure that a rigid body rotationwith arbitrary angles does not cause any strain, as it is
shown in the following example:

u ¼ x cosφ� 1ð Þ � y sinφ
v ¼ x sinφþ y cosφ� 1ð Þ ð2:68Þ

describes the displacements of arbitrary points in the plane with the coordinates

x and y due to a rotation around the origin by an angle of φ while keeping the

distance to the centre of rotation. With

32 2 Geometrically Nonlinear Behaviour



∂u
∂x
¼ cosφ� 1

∂u
∂y
¼ � sinφ

∂v
∂x
¼ sinφ

∂v
∂y
¼ cosφ� 1

ð2:69Þ

one normal strain becomes

εxx ¼ cosφ� 1þ 1

2
cosφ� 1ð Þ2 þ 1

2
sinφð Þ2

¼ cosφ� 1þ 1

2
cos 2φ� 2 cosφþ 1þ sin 2φ
� 	 ð2:70Þ

Due to cos 2φþ sin 2φ ¼ 1 one obtains:

εGLxx ¼ cosφ� 1� cosφþ 1 ¼ 0 ð2:71Þ

whereas the engineering strain is

εengxx ¼
∂u
∂x
¼ cosφ� 1 ð2:72Þ

which approaches zero for φ! 0 only, i.e. for small rotations. The same holds for

the other strain components.

The strain components keep their direction even in the case of a large rotation; in

the example of Fig. 2.11 x is always the direction of the spar in its initial position in
which the length l0 is named.

In one dimension the strain is

εGL ¼ u
0 þ 1

2
u
02 ¼ εeng þ 1

2
εeng2 ð2:73Þ

Neither the direction nor the one-dimensional measure are very obvious, but the

Green-Lagrange strain is suitable for arbitrary rotations.

There is no “natural” definition of strain. Strain cannot be measured directly,

not even by strain gauges; they measure differences in length.

u

v

l0

l

Fig. 2.11 Illustrating the

Green-Lagrange strain
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2.3.2.2 Example Truss Element

As example

• the link element

• initially located parallel to the x-axis

• with displacement degrees of freedom in the x-y-plane

• with linear shape functions

is formulated for large rotations using Green-Lagrange strain.

The displacement function reads:

u xð Þ ¼ 1� x

l
0

x

l
0

h i u1
v1
u2
v2

2
664

3
775 and v xð Þ ¼ 0 1� x

l
0

x

l

h i u1
v1
u2
v2

2
664

3
775 ð2:74Þ

with ξ¼ x/l:

u ξð Þ ¼ N ξð Þ û ð2:75Þ

The derivatives with respect to x needed for the strain in the direction of the spar

then are

∂u
∂x
¼ u

0 ¼ 1

l
�1 0 1 0½ �

u1
v1
u2
v2

2
664

3
775

u
0 ¼ Cû

and

∂v
∂x
¼ v

0 ¼ 1

l
0 �1 0 1½ �

u1
v1
u2
v2

2
664

3
775

v
0 ¼ Dû

ð2:76Þ

Remark Unlike in the linear theory this relation is not named B because the

B-Matrix will get a different or better generalised meaning.

The Green-Lagrange strain now reads:

ε ¼ Cû þ 1

2
û TCTCû þ 1

2
û TDTDû ð2:77Þ

34 2 Geometrically Nonlinear Behaviour



2.3.3 The Principle of Virtual Work for Geometrically
Nonlinear Problems

2.3.3.1 General

The internal virtual work of an element reads:

δWint ¼
ð
Vð Þ

δεTσdV ð2:78Þ

In dV area and length are united; stress times area yields force, strain times length

yields displacement, force times displacement yields work. In case of the virtual

work the force is already fully developed and is dislocated by a small virtual

displacement without influence on its magnitude. Thus there is no factor of ½ as

it is known from the total internal energy.

δε is the virtual strain, the strain resulting from the virtual displacement

δu ξð Þ ¼ N ξð Þδû ð2:79Þ

Since this must be kinematically possible and small the virtual strain can be derived

by linearisation:

δε ¼ ∂ε
∂û|{z}
B ûð Þ

δû ð2:80Þ

The derivative of the strain with respect to the nodal displacements is newly called

B-matrix. This is no contradiction to but a generalisation of the B-matrix in the

linear theory.

After forming the derivative of the Finite Element formulation of linear strain

εlin ¼ Bû ð2:81Þ

with respect to the nodal displacements it is obvious that (2.80) is also valid in the

linear case, i.e. the B-Matrix has only be generalised.

By introducing (2.80) into (2.78) the internal virtual work becomes

δWint ¼ δû T

ð
Vð Þ

BT ûð ÞσdV ð2:82Þ
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The virtual nodal displacements are constant with respect to the integration vari-

ables and can thus be put outside the integral. Since the total term means work the

integral means forces, namely the internal nodal forces:

f int ¼
ð
Vð Þ

BT ûð ÞσdV ð2:83Þ

This relation is very general and will be used several times in the following.

2.3.3.2 Application to Link Element

For the link element with Green-Lagrange strain the B-matrix reads:

B ¼ ∂ε
∂û
¼ ∂ε

∂u0
∂u

0

∂û
þ ∂ε
∂v0

∂v
0

∂û
¼ 1þ u

0
� �

Cþ v
0
D

¼ Cþ û TCTCþ û TDTD ð2:84Þ

while the stress becomes

σ ¼ Eε ¼ E u
0 þ 1

2
u
02 þ 1

2
v
02

� �
¼ E Cû þ 1

2
û TCTCû þ 1

2
û TDTDû

� �
ð2:85Þ

In case of the link element the infinitesimal small volume element dV is replaced by

Adx. For the integration one can make use of the fact that all integrands are constant

in case of linear shape functions. Thus

f int ¼
�

1þ u
0

� �
CT þ v

0
DT

�
σAl ð2:86Þ

Now the first part of the element formulation is done. The remaining question is

how to fulfil the equilibrium of the internal with the external forces fext. Since the

stress depends on the nodal displacements a non-linear system of equations must be

solved.

2.3.4 Solution of the Nonlinear Equation by the
Newton-Raphson Method

In the preceding chapter the internal forces became dependent on the nodal dis-

placements in a non-linear way, i.e. they cannot be formulated as a product of a

stiffness matrix and the displacement vector. The equilibrium condition, however,

36 2 Geometrically Nonlinear Behaviour



remains that the difference between internal and external forces must be zero. These

equations are iteratively solved by the Newton-Raphson scheme from Sect. 1.3.

2.3.4.1 Application to the Nonlinear FEM

For a discretised mechanical problem the equilibrium equation reads in general

terms:

f int ûð Þ ¼ fext ûð Þ , d ûð Þ :¼ f int ûð Þ � fext ûð Þ ¼ 0 ð2:87Þ

An example for displacement-dependent loads is pressure being perpendicular to

the deformed surface.

The tangential matrix, the derivatives of the internal and external forces, is

obtained in the general case as

KT ¼ ∂
∂û

f int � ∂
∂û

fext ¼ ∂
∂û

ð
Vð Þ

BT ûð Þ σdV � ∂
∂û

fext ð2:88Þ

KT ¼
ð
Vð Þ

BT ûð Þ ∂σ
∂ε

∂ε
∂û

dV þ
ð
Vð Þ

∂BT ûð Þ
∂û

σdV � ∂
∂û

fext ð2:89Þ

After (2.80) the derivative of the strain is the B-matrix. The derivative of the

stresses, the material tangent, strongly depends on the type of the material law

(see Chaps. 5–8). It can be a non-symmetric matrix. In case of Hooke’s law it is the

elasticity matrix E so that one obtains as tangential matrix

KT ¼
ð
Vð Þ

BT ûð Þ EB ûð ÞdV

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Ku

þ
ð
Vð Þ

∂BT ûð Þ
∂û

σdV

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Kσ

� ∂
∂û

fext|fflfflfflfflffl{zfflfflfflfflffl}
Kp

ð2:90Þ

Ku can be called initial displacement matrix (this expression is not really fix) and

formally equals the linear stiffness matrix. The material tangent is multiplied from

the left and the right by the B-matrix and its transposed. For linear elasticity it is

positive definite if sufficient constraints exist to suppress the rigid body motions, for

non-linear material it is positive definite as long as the material tangent is positive

definite.

In mathematical terms positive definite means that the matrix has only positive

eigenvalues with the effect that all pivot elements remain positive during Gaussian

elimination process. In mechanical terms that means that increasing displacements

resp. strains cause increasing forces resp. stresses.
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Kσ is sometimes called geometric matrix because only in case of geometric

non-linearity the B-matrix depends on the displacements with the consequence that

its derivative and thus Kσ exist. More often the expression initial stress matrix is

used because it directly depends on the known stresses. “Initial” means the begin-

ning of the iteration step. Since the stresses can be negative Kσ can get negative

eigenvalues. This can cause that the total tangential matrix KT looses its positive

definiteness. This is an indicator for a physical instability. There is a certain analogy

to the stress-stiffening matrix S in the FE-formulation of the theory of second order

from Sect. 2.2 and the stability problem from Sect. 2.2.3.

Kσ is always symmetric because it is the second derivative of the strain (each

component times a stress component, resulting in a scalar) with respect to the same

vector (the nodal displacements).

The load matrix Kp is symmetric because it is the second derivative of the

external work (a scalar) with respect to the displacement vector.

2.3.4.2 Application to the Truss Example

For the link element with Green-Lagrange strain one obtains the components of the

tangential matrix as

Ku ¼ 1þ u
0� 	
CT þ v

0
DT


 �
1þ u

0
� �

Cþ v
0
D

h i
EAl

¼ 1þ u
0

� �2
CTCþ v

0
1þ u

0
� �

DTCþ 1þ u
0

� �
v
0
CTDþ v

02
DTD

� �
EAl

ð2:91Þ

Ku ¼ 1þ u
0

� �2
CTCþ v

0 þ u
0
v
0

� �
DTCþ CTD
� 	þ v

02
DTD

� �
EAl ð2:92Þ

Kσ ¼ ∂
u0

1þ u
0

� �
CT ∂u

0

û
þ ∂
v0
v
0
DT ∂v

0

∂û

� �
σAl ð2:93Þ

Kσ ¼ CTCþ DTD
� 	

σAl ð2:94Þ

Herein is

ð2:95Þ

and analogously
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DTD ¼ 1

l2

0 0 0 0

0 1 0 �1
0 0 0 0

0 �1 0 1

2
664

3
775 ð2:96Þ

CTCþ DTD ¼ 1

l2

1 0 �1 0

0 1 0 �1
�1 0 1 0

0 �1 0 1

2
6664

3
7775 and

CTDþ DTC ¼ 1

l2

0 1 0 �1
1 0 �1 0

0 �1 0 1

�1 0 1 0

2
6664

3
7775

ð2:97Þ

After addition one obtains the total tangential stiffness matrix as

KT ¼ EA

l

1þ u
0� 	2

v
0 þ u

0
v
0� 	 � 1þ u

0� 	2 � v
0 þ u

0
v
0� 	

v
0 þ u

0
v
0� 	

v
02 � v

0 þ u
0
v
0� 	 �v02

� 1þ u
0� 	2 � v

0 þ u
0
v
0� 	

1þ u
0� 	2

v
0 þ u

0
v
0� 	

� v
0 þ u

0
v
0� 	 �v02 v

0 þ u
0
v
0� 	

v
02

2
66664

3
77775

þ σA

l

1 0 �1 0

0 1 0 �1
�1 0 1 0

0 �1 0 1

2
664

3
775

ð2:98Þ

This derivation is made in the coordinate system of the element in the initial

configuration (superscript e or elem). The nodal displacement vector is û ¼ û e.

Before composing the total system (superscript g for global) the transformation

û e ¼ Tû g resp: δû eT ¼ δû gTTT ð2:99Þ

must be carried out. With c :¼ cos α and s :¼ sin α the transformation matrix reads:

T ¼
c s 0 0

�s c 0 0

0 0 c s
0 0 �s c

2
664

3
775 ð2:100Þ

The internal forces become
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f int ¼ TTf eint ð2:101Þ

and the tangential stiffness matrix

KT ¼ ∂f int
∂ug

¼ TT ∂f
e
int

∂ue

∂ue
∂ug
¼ TTK elem

T T ð2:102Þ

2.3.5 Test Problem Two-Legged Truss

The link element is used for a simple example. The two-legged truss from Fig. 2.12

is discretised by one element for symmetry reasons.

As the only global degree of freedom v2
g is remaining. In the element coordinate

system (superscript e) this is split up into

u2
v2

� �e
¼ s

c

� �
vg2 ð2:103Þ

Thus

∂u
∂x
¼ u

0 ¼ 1

l
u2 ¼ s

l
v
g
2 and

∂v
∂x
¼ v

0 ¼ 1

l
v2 ¼ c

l
v
g
2 ð2:104Þ

σ ¼ E u
0 þ 1

2
u
02 þ 1

2
v
02

� �
ð2:105Þ

F

0

Example two-legged truss

E=138,889
A=0,1

4

3

-v2
g

4

2
F

1

2

4

Fig. 2.12 Two-legged truss
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Out of the vectors and matrices on element level only the terms in position 3 and

4 are of interest because they are related to the active degrees of freedom:

f int ¼ TT CT þ u
0
CT þ v

0
DT

� �
σAl

¼ s c½ � 1

0

� �
1þ u

0
� �

þ 0

1

� �
v
0

� �
σA ð2:106Þ

f int ¼ s 1þ u
0

� �
þ cv

0
h i

σA ð2:107Þ

KT ¼ EA

l
s c½ � 1þ u

0� 	2
v
0 þ u

0
v
0� 	

v
0 þ u

0
v
0� 	

v
02

" #
s
c

� �

þ σA

l
s c½ � 1 0

0 1

� �
s
c

� �
ð2:108Þ

KT ¼ EA

l
s 1þ u

0� 	2 þ c v
0 þ u

0
v
0� 	

s v
0 þ u

0
v
0� 	þ cv

02
h i

s
c

� �
þ σA

l
s c½ � s

c

� �
¼ EA

l
s2 1þ u

0
� �2

þ 2cs v
0 þ u

0
v
0

� �
þ c2v

02
� �

þ σA

l
s2 þ c2

 �

ð2:109Þ

KT ¼ EA

l
s2 1þ u

0
� �2

þ 2cs 1þ u
0

� �
v
0 þ c2v

02
� �

þ σA

l
ð2:110Þ

Because of symmetry the vector of external loads in global system reduces to

fext ¼ �1
2
F ð2:111Þ

Furthermore necessary are

l ¼ l0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
42 þ 32

p
¼ 5 , c ¼ cos α ¼ 4

5
, s ¼ sin α ¼ 3

5
ð2:112Þ

With this formulae one obtains the iteration course of Table 2.1. Therein the

convergence exponent κ is shown. It means the following: If the norm of the right

hand side d (disequilibrium forces) decreases by a factor of a from iteration step

i�2 to i�1 it is reduced by aκ from i�1 to i. The formula for κ is (1.48).
Close to the final solution κ tends to 2. This is called “quadratic convergence”.

A Newton-Raphson scheme shows quadratic convergence in the vicinity of

the solution. In practice the iteration is often considered as converged and thus the

iteration is aborted before this effect can fully be seen.

Figure 2.13 shows how the forces and displacements develop during the

solution.
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Table 2.1 Newton-Raphson iteration for the two-legged truss with Green-Lagrange strain

fext v2
g Right hand side KT Δv к

�0.5 0 �0.5 1 �0.5
�0.5 �0.5 �0.11805556 0.54166667 �0.21794872
�0.5 �0.71794872 �0.01921719 0.36795968 �0.05222635 1.25764431

�0.5 �0.77017506 �0.0010295 0.32868654 �0.00313217 1.61221173

�0.5 �0.77330724 �3.6442E-06 0.32636011 �1.1166E-05 1.92832425

�0.5 �0.7733184 �4.6273E-11 0.32635182 �1.4179E-10 1.99764891

�0.55 �0.7733184 �0.05 0.32635182 �0.15320889
�0.55 �0.92652729 �0.00851134 0.21654818 �0.03930462
�0.55 �0.96583191 �0.0005305 0.18963997 �0.00279738 1.56743928

�0.55 �0.96862929 �2.6518E-06 0.18774449 �1.4124E-05 1.90915951

�0.55 �0.96864341 �6.7543E-11 0.18773493 �3.5978E-10 1.9963818

�0.57 �0.96864341 �0.02 0.18773493 �0.10653319
�0.57 �1.0751766 �0.00377525 0.11749085 �0.03213227
�0.57 �1.10730887 �0.00032938 0.09704662 �0.00339405 1.46287675

�0.57 �1.11070293 �3.6317E-06 0.09490724 �3.8265E-05 1.84809966

�0.57 �1.11074119 �4.6106E-10 0.09488314 �4.8593E-09 1.99037628

�0.58 �1.1107412 �0.01 0.09488314 �0.1053928
�0.58 �1.216134 �0.0034325 0.03036298 �0.11304878
�0.58 �1.32918278 �0.00371938 �0.03472831 0.10709932 �0.0750662
�0.58 �1.22208346 �0.00326237 0.0268312 �0.12158855 �1.63332064
�0.58 �1.34367201 �0.00428086 �0.04276293 0.10010671 �2.0724101
�0.58 �1.2435653 �0.00282218 0.01417714 �0.19906513 �1.53347465

-0,7

-0,6

-0,5

-0,4

-0,3

-0,2

-0,1

0
-1,5-1-0,50

displacement

fo
rc

e

iteration
external force
internal force

Fig. 2.13 Course of

iteration in the Newton-

Raphson scheme
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2.3.6 Notation in Continuum Mechanical Symbols

The symbolic notation of continuum mechanics is not in the focus of this book.

Details can be found e.g. in Wriggers [27] or Belytschko et al. [2]. It is only

sketched here, but we use it to extend the theory to two or three dimensions.

The deformation gradient

F ¼ ∂xi
∂x0j

� �
ð2:113Þ

contains the derivatives of the coordinates xi of the deformed system with respect to

the initial coordinates x0j. The polar decomposition means a multiplicative split of

the deformation gradient into a

rotation R and a

stretching U:

F ¼ RU ð2:114Þ

The rotation is an orthogonal tensor, i.e.

RT ¼ R�1 ) RTR ¼ I ð2:115Þ

In case of a uniform deformation over the length in a one-dimensional element like

in Sect. 2.3.2.1 there is only one component of the (so-called right) stretch tensor U:

U11 ¼ l

l0
ð2:116Þ

Taking (2.63) to (2.65) into account results in

εGL ¼ 1

2

l2 � l20
l20
¼ 1

2

l2

l20
� l20
l20

 !
¼ 1

2

l

l0

l

l0
� 1

� �
¼ 1

2
U11U11 � 1ð Þ ð2:117Þ

In two and three dimensions this strain measure is obtained as

εGL ¼ 1

2
UTU� I
� 	 ð2:118Þ

Making use of (2.115):

εGL ¼ 1

2
UTIU� I
� 	 ¼ 1

2
UTRT|fflffl{zfflffl}
FT

RU|{z}
F

�I

0
B@

1
CA ð2:119Þ
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εGL ¼ 1

2
FTF� I
� 	 ð2:120Þ

Thus the expression FTF is equal to the square of the stretch tensor, U2, and directly

independent of the rigid body rotation as it is shown exemplarily in the chapters

above. In this representation the components of strain tensor form a matrix instead

of a vector. The different choices for the notation and their advantages are discussed

in Sect. 5.3.

In detail the deformation gradient comprises terms with the same indices on the

main diagonal:

Fii ¼ ∂xi
∂x0i
¼ ∂ x0i þ uið Þ

∂x0i
¼ 1þ ∂ui

∂x0i
ð2:121Þ

and with different indices on the secondary diagonals:

Fij ¼ ∂xi
∂xj
¼ ∂ x0i þ uið Þ

∂x0j
¼ ∂ui

∂x0j
, j 6¼ i ð2:122Þ

Together, while leaving out the index 0 because only displacements and initial
coordinates are present:

F ¼

1þ ∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

1þ ∂v
∂y

∂v
∂z

∂w
∂x

∂w
∂y

1þ ∂w
∂z

2
6666664

3
7777775 ¼ Iþ

∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

∂w
∂x

∂w
∂y

∂w
∂z

2
6666664

3
7777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
H

ð2:123Þ

H is called displacement gradient. With this quantity the strain can be written as

εGL ¼ 1

2
IþHT
� 	

IþHð Þ � I

 � ¼ 1

2
IþHT þHþHTH� I

 � ð2:124Þ

εGL ¼ 1

2
HT þHþHTH

 � ð2:125Þ
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In detail:

εGL ¼ 1

2

2
∂u
∂x

∂u
∂y
þ ∂v
∂x

∂u
∂z
þ ∂w

∂x
∂u
∂y
þ ∂v
∂x

2
∂v
∂y

∂v
∂z
þ ∂w

∂y
∂u
∂z
þ ∂w

∂x
∂v
∂z
þ ∂w

∂y
2
∂w
∂z

2
6666664

3
7777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
εeng

þHTH

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

ð2:126Þ

The second part requires multiplication:

ð2:127Þ

As examples:

H11 ¼ ∂u
∂x

� �2

þ ∂v
∂x

� �2

þ ∂w
∂x

� �2

¼ ∂u1
∂x1

� �2

þ ∂u2
∂x1

� �2

þ ∂u3
∂x1

� �2

¼
X3
i¼1

∂ui
∂x1

� �2

H12 ¼∂u
∂x

∂u
∂y
þ∂v
∂x

∂v
∂y
þ∂w

∂x
∂w
∂y
¼∂u1
∂x1

∂u1
∂x2
þ∂u2
∂x1

∂u2
∂x2
þ∂u3
∂x1

∂u3
∂x2
¼
X3
i¼1

∂ui
∂x1

∂ui
∂x2

ð2:128Þ

The general formula is given as Eq. (2.67)

For the B-Matrix, necessary to obtain the internal forces and Ku, as well as for

the initial stress matrix Kσ we switch to the index notation (rules in Sect. 1.1):

εGLij ¼
1

2
FkiFkj � δij
� 	

, i, j, k ¼ 1 . . .3 number of spatial dimensionsð Þ ð2:129Þ
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For the B-matrix we note:

Bijn ¼
∂εGLij

∂û n
¼ 1

2

∂Fki

∂û n
Fkj þ Fki

∂Fkj

∂û n

� �
ð2:130Þ

where the index n runs over all degrees of freedom of the element. The deformation

gradient is expressed as

Fij ¼ δij þ ∂ui
∂x0j

ð2:131Þ

Here we have to distinguish between ui as one direction of the displacement as a

function over the element and ûn as one degree of freedom of the element nodes.

The relation is (for 2d)

ux
uy

� �
¼ N1 N2 N3 � � � 0 0 0 � � �

0 0 0 � � � N1 N2 N3 � � �
� �

ûx1
ûx2
ûx3
⋮
ûy1
ûy2
ûy3
⋮

2
66666666666664

3
77777777777775

ð2:132Þ

as long as the order in the nodal displacement vector is

1. all d.o.f.s of the same direction

2. all directions.

This order is unusual for programming (common is firstly all d.o.f.s of a node,

then all nodes) but good for matrix representation. In index notation (2.132) reads:

uk ¼ Nkmû m ð2:133Þ
where m runs over all d.o.f.s of the element including the zeros in Nkm. The

derivative of the deformation gradient with respect to the degrees of freedom is

calculated as

∂Fki

∂û n
¼ ∂

∂û n

∂uk
∂x0i
¼ ∂

∂û n

∂Nkm

∂x0i
û m ¼ ∂Nkm

∂x0i
δmn ¼ ∂Nkn

∂x0i
ð2:134Þ

n also runs over all d.o.f.s. The derivative of ûmwith respect to ûn is one ifm¼ n and
zero otherwise which is expressed by Kronecker’s delta. The sum over m has only

contributions if m¼ n. By exchanging index i by j one obtains

∂Fkj

∂û n
¼ ∂Nkn

∂x0j
ð2:135Þ

thus
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Bijn ¼ 1

2

∂Nkn

∂x0i
Fkj þ Fki

∂Nkn

∂x0j

� �
ð2:136Þ

For the internal forces we need

Bijnσij ¼ 1

2

∂Nkn

∂x0i
Fkjσij þ Fki

∂Nkn

∂x0j
σij

� �
ð2:137Þ

and for Kσ

K σ
nm ¼

ð
Vð Þ

k σ
nmdV ð2:138Þ

with m running over all degrees of freedom and

k σ
nm ¼

∂Bijn

∂û m
σij ¼ 1

2

∂Nkn

∂x0i

∂Nkm

∂x0j
σij þ ∂Nkm

∂x0i

∂Nkn

∂x0j
σij

� �
ð2:139Þ

For the symmetric stress tensor this results in

k σ
nm ¼

∂Nkn

∂x0i
σij

∂Nkm

∂x0j
ð2:140Þ

It should be kept in mind that in index notation only scalars are handled such that

the order can be changed. The representation above makes it more evident that a

symmetric matrix Kσ is obtained and how the terms can be prepared for matrix

multiplication routines. Equation (2.140) includes three sums, over k, i and j, each
over the coordinate resp. displacement directions, whereas n and m span the matrix.

The sum over k is expressed for 2d:

k σ
nm ¼

∂N1n

∂x0i
σij

∂N1m

∂x0j
þ ∂N2n

∂x0i
σij

∂N2m

∂x0j
ð2:141Þ

Now we go a step back to matrix notation. With

N ¼ N1 N2 N3 � � �½ � and û T
i ¼ û i1 û i2 û i3� � �½ � ð2:142Þ

i running over the directions, (2.132) can be written as

ux
uy

� �
¼ N 0

0 N

� �
û1
û2

� �
ð2:143Þ

and
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kσ :¼ k σ
nm


 �

¼
∂NT

∂x01

∂NT

∂x02
0 0

2
4

3
5 σ11 σ12

σ21 σ22

� � ∂N
∂x01

0

∂N
∂x02

0

2
664

3
775

þ
0 0

∂NT

∂x01

∂NT

∂x02

2
64

3
75 σ11 σ12

σ21 σ22

� � 0
∂N
∂x01

0
∂N
∂x02

2
664

3
775 ð2:144Þ

Kσ ¼

ð
Vð Þ

∂NT

∂x01

∂NT

∂x02

� �
σ11 σ12
σ21 σ22

� � ∂N
∂x01
∂N
∂x02

2
664

3
775dV 0

0

ð
Vð Þ

∂NT

∂x01

∂NT

∂x02

� �
σ11 σ12
σ21 σ22

� � ∂N
∂x01
∂N
∂x02

2
664

3
775dV

2
666666666664

3
777777777775

ð2:145Þ

In fact the same terms occur as many times as directions (dimensions) are consi-

dered. They can be calculated once and then scattered to the final matrix according

to the order in the vector of degrees of freedom.

For the link element only one coordinate direction but two displacement compo-

nents per node are accounted for. Thus only

∂N
∂x
¼ 1

l0
�1 1½ � ð2:146Þ

exists. Then

ð
lð Þ

∂NT

∂x0
σ11

∂N
∂x01

A0dx ¼ 1

l20

�1
1

� �
�1 1½ �σ11A0l0 ¼ σ11A0

l0

1 �1
�1 1

� �
ð2:147Þ

must be evaluated and scattered twice to form Kσ as in (2.98).
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2.4 Large Rotations II: Co-rotational Formulation

2.4.1 Basic Idea

If an element undergoes large rotations but only small relative rotations inside the

element, which can be assumed for sufficiently fine meshes, the following way of an

element formulation is an appropriate alternative. Again the link element serves as

an example.

A nodal displacement state u results in

• a rigid body translation

• a rigid body rotation

• a displacement udef leading to a deformation.

Only the latter one causes strain.

The nodal coordinates of the deformed system, x, can be calculated from those of

the undeformed state, x0, by adding the displacements:

x ¼ x0 þ u ð2:148Þ

Inversely the displacement is the coordinate difference

u ¼ x� x0 ð2:149Þ

As shown in Fig. 2.14 one obtains the deformatoric displacement by determining

the coordinate difference in a coordinate system moving and rotating with the

element, .i.e. following its rigid body motions:

1

2

u1

u2

udef

xe0

xe

0

x0
e

xe

xg

yg

Fig. 2.14 Concerning the

principle of the

co-rotational formulation
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udef ¼ T x� xeð Þ � T0 x0 � x e
0

� 	 ð2:150Þ

Herein x0
e and xe denote the origin of the coordinate system in the undeformed resp.

deformed state. This holds for each node:

u1def ¼ T x1 � xeð Þ � T0 x10 � x e
0

� 	 ð2:151Þ
u2def ¼ T x2 � xeð Þ � T0 x20 � x e

0

� 	 ð2:152Þ

Since only a difference of the nodal displacements yields a strain, in case of the spar

ε ¼ 1

l
u2def � u1def
� 	 ð2:153Þ

the rigid body translation causes no problem because it is the same for all nodes.

One obtains:

u2def � u1def ¼ T x2 � xeð Þ � T0 x20 � x e
0

� 	� T x1 � xeð Þ � T0 x10 � x e
0

� 	
 �
¼ Tx2 � Txe � T0x20 þ T0x

e
0 � Tx1 þ Txe þ T0x10 � T0x

e
0 ð2:154Þ

u2def � u1def ¼ Tx2 � T0x20 � Tx1 � T0x10½ � ð2:155Þ

The location of the moving coordinate system is eliminated, only the orientation

is still of importance. Thus, for the calculation of the deformatoric displacement it is

sufficient to transform the coordinates into a rotated system parallel to the element

coordinate system with origin in global origin, so that instead of (2.150) it is newly

defined:

udef :¼ Tx� T0x0 ð2:156Þ

Figure 2.15 tries to illustrate that the same difference of the deformatoric

displacements is obtained. For the link element the transformation equation reads:

x1
x2

� �
e

¼ cos α sin α 0 0

0 0 cos α sin α

� � x1
y1
x2
y2

2
664

3
775
g

xe ¼ Tx

ð2:157Þ

The location of the link element in the plane can be described in the deformed

state by

Δx ¼ x20 þ u2 � x10 � u1 , Δy ¼ y20 þ v2 � y10 � v1 ð2:158Þ

(see Fig. 2.16). The length can be calculated as
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l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δx2 þ Δy2

p
ð2:159Þ

The trigonometric functions can be expressed as

cos α ¼ Δx uð Þ
l uð Þ , sin α ¼ Δy uð Þ

l uð Þ ð2:160Þ

In the undeformed state the trigonometric functions only depend on the initial

coordinates, here:

1

2

u1

u2

udef

xe x

y

u1def

u2def

u1def
udef

xe0

Fig. 2.15 Effect of the rotating only coordinate system

1

2

x g , u g

yg , v g

x

y

Fig. 2.16 Geometric relations of the link element
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cos α0 ¼ x20 � x10ð Þ
l0

, sin α0 ¼ y20 � y10ð Þ
l0

ð2:161Þ

The transformation matrix of the deformed state depends on the global displace-

ments, thus:

udef ¼ T uð Þ x� T0x0 ð2:162Þ

2.4.2 Strain, Internal Forces, Tangential Stiffness Matrix

For the co-rotational formulation the linear strain measure remains appropriate (for

accounting for large strain in this formulation see Sect. 2.5.4). With the symbols of

the FE-formulation the strain now reads:

ε ¼ Blinudef ¼ Blin T uð Þ x0 þ uð Þ � T0x0½ � ð2:163Þ

Thus the relation between strain and nodal displacements has become non-linear.

This equation can be extended to two- and three-dimensional elements with the

only change that the strain ε becomes the vector ε.
Again the general B-matrix is obtained as the derivative of the strain with respect

to the (global) nodal displacements:

B ¼ ∂ε
∂u
¼ ∂

∂u
Blin T uð Þ x0 þ uð Þ � T0x0½ �ð Þ

¼ Blin
∂T
∂u

x0 þ uð Þ þ T uð Þ
� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼:T	

ð2:164Þ

It should be emphasized that the general B-matrix B differs from the linear

B-matrix Blin by a term depending on the transformation only. Then the internal

nodal forces in the global system read:

f int ¼
ð
Vð Þ

BTσdV ¼
ð
Vð Þ

T	TBlin
TσdV

¼
ð
Vð Þ

x0 þ uð ÞT ∂T
T

∂uT
þ TT

� �
Blin

TEBlin T x0 þ uð Þ � T0x0½ �dV
ð2:165Þ

The transformation matrix is constant for the whole element, x and u are indepen-

dent of the integrand so that they can be written in front of the integral:
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f int ¼ x0 þ uð ÞT ∂T
T

∂uT
þ TT

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

T	T

ð
Vð Þ

Blin
TσdV

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
f elemint

ð2:166Þ

The remaining integral looks like the internal forces from the linear element

formulation but one must keep in mind that the stress is calculated using (2.163) and

the material model in a non-linear way. If the deformatoric displacements are

passed to the element routine instead of the total ones nothing else must be changed

for this part.

The symbol ûg in the following terms emphasises that the nodal displacements in

the global coordinate systems are meant whereas the superscript elem expresses that

the terms are related to the element coordinate system and are calculated like in the

linear theory.

Under the assumption of constant loads the tangential stiffness matrix then is

KT ¼ ∂
∂û g

f int ¼ ∂
∂û g

ð
Vð Þ

BTσdV

¼ T	T
ð
Vð Þ

BT
linEBlin dVT	 þ ∂T	T

∂û g

ð
Vð Þ

BT
linσdV ð2:167Þ

KT ¼ T	TK elem
lin T	|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Ku

þ∂T	T

∂û g
f elemint|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Kσ

ð2:168Þ

or

KT ¼
ð
Vð Þ

BTEBdV

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Ku

þ ∂T	T

∂û g
f elemint|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Kσ

ð2:169Þ

In (2.168) it can again be seen that this method makes use of the element forces and

stiffness matrix of a geometrically linear formulation. That means once the terms

from the rotation are known this method can be applied to any existing element.

In order to understand the structure of the following terms it must be kept in

mind that

• a first derivative with respect to the vector of global degrees of freedom ûg has

been formed where the derivatives with respect to each degree form a row,
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• a transposition has been carried out such that the derivatives with respect to ûg
now form a column,

• a further derivative with respect to ûg has been formed where these derivatives

with respect to each degree form a row.

The meaning of the notation is explained in Sect. 1.2.

∂T	T

∂û g
f elemint ¼ x0 þ û g

� 	T ∂2
TT

∂û T
g ∂û g

f elemint þ
∂TT

∂û T
g

f elemint þ
∂TT

∂û g
f elemint ð2:170Þ

The last two summands are not equal but it will be shown below by means of the

index notation that the second one is the transposed of the third one:

∂T	T

∂û g
f elemint ¼ x0 þ û g

� 	T ∂2
TT

∂û T
g ∂û g

f elemint þ ∂TT

∂û g
f elemint

� �T
þ ∂TT

∂û g
f elemint ð2:171Þ

The expressions leading to the B-matrix, the internal forces and the tangential

matrix comprise derivatives of the transformation matrix with respect to a vector.

This leads to a three-dimensional matrix (hypermatrix), the second derivative to a

four-dimensional one. Then usual matrix notation is not sufficient to describe how

the summations must be performed. One way to overcome this difficulty is at first to

execute the matrix multiplication in the given context, then form the derivative of

the components of T within these products. The first term of (2.170) form a scalar

after multiplying TT by the pre- and succeeding vectors, thus a matrix after forming

the two derivatives.

This is shown in the following by the example of the link element. An alternative

way is to use the index notation including the sum convention (rules explained in

Sect. 1.1). The strain then reads:

εi ¼ Blin
ij Tjk xg0k þ ug

k

� 	� Tjkx
g
0k


 � ð2:172Þ

where j runs—over the degrees of freedom in element coordinates, k—over the

degrees of freedom in global coordinates.

Here the strain components form a column matrix (Voigt notation). The total

B-matrix can be expressed as

Bil ¼ ∂εi
∂ug

l

¼ Blin
ij

∂Tjk

∂ug
l

x
g
0k þ u

g
k

� 	þ Tjk

∂ x
g
0k þ u

g
k

� 	
∂ug

l

� �
ð2:173Þ

where l runs over the degrees of freedom in global coordinates.

The derivative of a displacement component with respect to a displacement

component is 1 if they carry the same index, otherwise 0.
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Bil ¼ Blin
ij

∂Tjk

∂ug
l

x
g
0k þ u

g
k

� 	þ Tjkδkl

� �
ð2:174Þ

The last product has non-zero contributions only if k¼ l:

Bil ¼ Blin
ij

∂Tjk

∂ug
l

xg0k þ ug
k

� 	þ Tjl

� �
ð2:175Þ

For the multiplication with BT the first index must be used for summation, for Ku:

Ku
lm ¼

ð
Vð Þ

BilEijBjmdV ð2:176Þ

for the internal forces:

f intl ¼
ð
Vð Þ

BilσidV ð2:177Þ

For the initial stress matrix the following term is needed (keep in mind that only

scalars are handled such that their order in products, but not the indices, can be

changed):

∂Bil

∂ug
m
σi ¼ ∂2

Tjk

∂ug
l ∂u

g
m

xg0k þ ug
k

� 	þ ∂Tjk

∂ug
l

∂ xg0k þ ug
k

� 	
∂ug

m
þ Tjl

∂ug
m

" #
Blin
ij σi ð2:178Þ

∂Bil

∂ug
m
σi ¼ ∂2

Tjk

∂ug
l ∂u

g
m

x
g
0k þ u

g
k

� 	þ ∂Tjk

∂ug
l

δkm þ Tjl

∂ug
m

" #
Blin
ij σi ð2:179Þ

K σ
lm ¼

∂2
Tjk

∂ug
l ∂u

g
m

x
g
0k þ u

g
k

� 	þ ∂Tjm

∂ug
l

þ Tjl

∂ug
m

" # ð
Vð Þ

Blin
ij σidV

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
f int,elemj

ð2:180Þ

There are sums over i, j and k whereas l and m span the resulting matrix.

K σ
lm ¼ f int,elemj

∂2
Tjk

∂ug
l ∂u

g
m

xg0k þ ug
k

� 	þ f int,elemj

∂Tjm

∂ug
l

þ f int,elemj

Tjl

∂ug
m

" #
ð2:181Þ

The first summand produces a scalar before forming the derivatives, the second and

third one a vector, all three terms matrices after executing the derivative(s) where
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the second and third term have exchanged indices l and m, i.e. the second one forms

the transposed of the third one when being ordered in matrices.

Instead of one coordinate system per element one system per integration point

can be chosen. This increases the accuracy and can even account for curved

elements.

2.4.3 Direction of Strain and Stress

In the co-rotational formulation stresses and strains are calculated in the rotated

element coordinate system. This is very helpful for beams and shells using the beam

axis resp. the mid-surface as reference for kinematic assumptions and is useful for

the interpretation of results for other types, too. The latter can be seen in Fig. 2.18

compared with Fig. 2.17. Especially in beam- or shell-like structures stress and

Fig. 2.17 Stress components in the initial coordinate system

Fig. 2.18 Stress components in the rotated coordinate system
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strain components being parallel or perpendicular to the edges after a large rotation

are most meaningful. Another example are anisotropy axes.

2.4.4 Example Link Element

For the link element dV becomes A0dx. In case of the linear shape functions all

terms in the integrand are independent of x. Thus:

f elemint ¼ BT
linσA0l0 ð2:182Þ

f int ¼ T	Tf elemint ð2:183Þ

KT ¼ BTBEA0l0 þ ∂T	T

∂u
f elemint ¼ T	TBT

linBlinT
	EA0l0 þ ∂T	T

∂u
f elemint ð2:184Þ

Furthermore, the stress has only one component which is related to the nodal

displacements by

σ ¼ EBlin T x0 þ û g

� 	� T0x0

 � ð2:185Þ

The B-Matrix on element level is

Blin ¼ 1

l0
�1 1½ � ð2:186Þ

where l0 is the original length which the derivative is not formed from.

With the abbreviations

c :¼ cos α
s :¼ sin α

ð2:187Þ

the transformation matrix reads:

T ¼ c s 0 0

0 0 c s

� �
ð2:188Þ

Together this means:
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σ ¼ E

l0
�1 1½ � c s 0 0

0 0 c s

� � x10 þ u1
y10 þ v1
x20 þ u2
y20 þ v2

2
664

3
775� c0 s0 0 0

0 0 c0 s0

� � x10
y10
x20
y20

2
664

3
775

0
BB@

1
CCA

ð2:189Þ

σ ¼ E

l0
�c �s c s½ �

x10 þ u1
y10 þ v1
x20 þ u2
y20 þ v2

2
664

3
775� �c0 �s0 c0 s0½ �

x10
y10
x20
y20

2
664

3
775

0
BB@

1
CCA
ð2:190Þ

Furthermore from (2.186) follows:

BT
linσ ¼

1

l0

�σ
σ

� �
ð2:191Þ

and thus:

f elemlin ¼ 1

l0

�σ
σ

� �
A0l0 ¼ �σA0

σA0

� �
ð2:192Þ

Some terms contain the derivative of the transformation matrix with respect to the

nodal displacements. This would be a hypermatrix, difficult to show on paper.

Therefore, it is recommended either to use the index notation or to multiply it by the

preceding or succeeding vector:

∂T
∂u

x0 þ uð Þ ¼ ∂
∂u

c s 0 0

0 0 c s

� � x10 þ u1
y10 þ v1
x20 þ u2
y20 þ v2

2
664

3
775

¼
∂c
∂u

x10 þ u1ð Þ þ ∂s
∂u

y10 þ v1ð Þ
∂c
∂u

x20 þ u2ð Þ þ ∂s
∂u

y20 þ v2ð Þ

2
64

3
75 ð2:193Þ
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∂T
∂u

x0þuð Þ¼
∂c
∂u1

x10þu1ð Þþ ∂s
∂u1

y10þ v1ð Þ � � � ∂c
∂v2

x10þu1ð Þþ ∂s
∂v2

y10þ v1ð Þ
∂c
∂u1

x20þu2ð Þþ ∂s
∂u1

y20þ v2ð Þ � � � ∂c
∂v2

x20þu2ð Þþ ∂s
∂v2

y20þ v2ð Þ

2
664

3
775

ð2:194Þ

Within (2.164) one term becomes

T	 ¼
� � � þ c � � � þ s � � � ∂c

∂v2
x10 þ u1ð Þ þ ∂s

∂v2
y10 þ v1ð Þ

� � � � � � � � � þ c
∂c
∂v2

x20 þ u2ð Þ þ ∂s
∂v2

y20 þ v2ð Þ þ s

2
664

3
775
ð2:195Þ

Herein the derivatives are:

∂Δx
∂u
¼ �1 0 1 0½ � , ∂Δy

∂u
¼ 0 �1 0 1½ � ð2:196Þ

∂l
∂u
¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δx2 þ Δy2

p 2Δx
∂Δx
∂u
þ 2Δy

∂Δy
∂u

� �
¼ 1

l
Δx

∂Δx
∂u
þ Δy

∂Δy
∂u

� �
ð2:197Þ

∂l
∂u
¼ 1

l
�Δx �Δy Δx Δy½ � ¼ �c �s c s½ � ð2:198Þ

∂ cos α

∂u
¼ 1

l2
∂Δx
∂u

l� Δx
∂l
∂u

� �

¼ 1

l2
�1 0 1 0½ �l� Δx

1

l
�Δx �Δy Δx Δy½ �

� �
ð2:199Þ

∂ cos α

∂u
¼ 1

l
�1 0 1 0½ � � 1

l3
Δx �Δx �Δy Δx Δy½ � ð2:200Þ

∂ cos α

∂u
¼ 1

l
�1 0 1 0½ � � c �c �s c s½ �ð Þ

¼ 1

l
�1þ c2 cs 1� c2 �cs
 � ð2:201Þ

2.4 Large Rotations II: Co-rotational Formulation 59



∂ sin α

∂u
¼ 1

l
0 �1 0 1½ � � 1

l3
Δy �Δx �Δy Δx Δy½ �

¼ 1

l
cs �1þ s2 �cs 1� s2

 � ð2:202Þ

Furthermore,

B ¼ BlinT
	 ¼ 1

l0
�1 1½ �T	 ð2:203Þ

If one defines

T	 ¼: t11 t12 t13 t14
t21 t22 t23 t24

� �
ð2:204Þ

the B-matrix becomes

B ¼ 1

l0
�t11 þ t21 � � � � � � �t14 þ t24½ � ð2:205Þ

and the internal forces in the global coordinate system follow as

f int ¼ BTσAl0 ¼
�t11 þ t21ð ÞσA
�t12 þ t22ð ÞσA
�t13 þ t23ð ÞσA
�t14 þ t24ð ÞσA

2
664

3
775 ð2:206Þ

The derivative of T*T (2.195) is multiplied by fint
elem:

Kσ ¼ ∂T	T

∂û g
f elemint

¼ x0 þ û g

� 	T ∂2
TT

∂û

2

g
f elemint þ ∂TT

∂û g
f elemint

� �T
þ ∂TT

∂û g
f elemint ð2:207Þ

The first term yields:
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Herein is for example:

∂2
c

∂û 2
g

¼

∂2
c

∂u21

∂2
c

∂u1v1

∂2
c

∂u1u2

∂2
c

∂u1v2
∂2

c

∂v21
⋮

∂2
c

∂u22
⋮

symm:
∂2

c

∂v22

2
6666666666664

3
7777777777775

ð2:208Þ

Therein for example:

∂2
cos α

∂v22
¼ 3

l4
∂l
∂v2|{z}
Δy=l

ΔxΔy� 1

l3
∂Δx
∂v2|{z}
0

Δy� 1

l3
Δx

∂Δy
∂v2|ffl{zffl}
1

ð2:209Þ

∂2
cos α

∂v22
¼ 3

l5
ΔxΔy2 � 1

l3
Δx ¼ 1

l2
3cs2 � c
� 	 ð2:210Þ

and in the same way:
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∂2
sin α

∂v22
¼ �1

l2
∂l
∂v2
þ 3

l4
∂l
∂v2

Δy2 � 1

l3
∂Δy
∂v2

Δy� 1

l3
Δy

∂Δy
∂v2

ð2:211Þ

∂2
sin α

∂v22
¼ �3

l3
Δyþ 3

l5
Δy3 ¼ 1

l2
�3sþ 3s3
� 	 ð2:212Þ

The third term of the initial stress matrix (2.207) yields:

∂TT

∂û g
f elemint ¼

∂
∂û g

c 0

s 0

0 c
0 s

2
664

3
775 �σAσA
� �

¼

� ∂c
∂û g

� ∂s
∂û g

∂c
∂û g

∂s
∂û g

2
666666666664

3
777777777775
σA ð2:213Þ

its transposed:

∂TT

∂û g
f elemint

� �T
¼ � ∂c

∂ûTg
� ∂s

∂ûTg

∂c
∂ûTg

∂s
∂ûTg

� �
σA ð2:214Þ

The total tangential stiffness matrix then reads:

KT ¼ BTBEA0l0 þ Δx
∂2

c

∂û 2
g

σA0 þ Δy
∂2

s

∂û 2
g

σA0

þ � ∂c
∂uT

g

� ∂s
∂uT

g

∂c
∂uT

g

∂s
∂uT

g

� �
σA0 þ

� ∂c
∂û g

� ∂s
∂û g

∂c
∂û g

∂s
∂û g

2
66666666666664

3
77777777777775
σA0

ð2:215Þ

2.4.5 Numerical Example Two-Legged Truss

For the two-legged truss from Fig. 2.12 the coordinates and constraints are

x10 ¼ 0 y10 ¼ 0 x20 ¼ 4 y20 ¼ 3

u1 ¼ 0 v1 ¼ 0 u2 ¼ 0
ð2:216Þ
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Thus, v2 is the only degree of freedom and only the derivatives with respect to v2
must be taken into account. The equilibrium at node 2 in y-direction only is of

interest. That means:

fext ¼ �F
2

û ¼ v2

Δx ¼ 4 , Δy ¼ 3þ v2

Δy0 ¼ 3þ v2 , l0 ¼ 5 , cos α0 ¼ 4

5
, sin α0 ¼ 3

5
;

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
42 þ 3þ v2ð Þ2

q
cos α ¼ 4

l
, sin α ¼ 3þ v2

l

σ ¼ E

5
4cþ 3þ v2ð Þs� 4c0 � 3s0ð Þ ¼ E

5
4cþ 3þ v2ð Þs� 5ð Þ

∂l
∂v2
¼ 1

l
3þ v2ð Þ

∂
∂v2

cos α ¼ �4
l3

3þ v2ð Þ ,
∂
∂v2

sin α ¼ 1

l
� 1

l3
3þ v2ð Þ2

T	 ¼
t11 � � � t13 0

� � � � � � t23
∂c
∂v2
� 4þ ∂s

∂v2
3þ v2ð Þ þ s

2
4

3
5

B ¼ 1

5
t24

f int ¼ t24σA0

Ku ¼ 1

5
t24

� �2

EA0 � 5 ¼ 1

5
t224EA0

∂2

∂v22
cos α ¼ 3

l5
3þ v2ð Þ2 � 1

l3

� �
� 4

∂2

∂v22
sin α ¼ �3

l3
þ 3

l5
3þ v2ð Þ2

� �
3þ v2ð Þ

Kσ¼ 4
∂2

c

∂v22
þ 3þv2ð Þ∂

2
s

∂v22
þ ∂s
∂v2
þ ∂s
∂v2

 !
σA0¼ 4

∂2
c

∂v22
þ 3þv2ð Þ∂

2
s

∂v22
þ2

∂s
∂v2

 !
σA0

KT ¼ Ku þKσ

Then the following algorithm leads to the solution:

given: fext
set i¼1, Δû 0¼ 0, û 1¼ û converged from last load increment resp: û 1¼ 0
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1) calculate fint(ûi)

2) solve Δû i ¼ Δû i�1 þKT
�1 fext � f intð Þ

3) calculate û iþ1 ¼ û 1 þ Δû i

when converged:
new fext, i¼ 1

continue with 1)

The iteration progress is shown in Table 2.2 and illustrated in Fig. 2.19. The

convergence exponent approaches two in the vicinity of the solution which is the

typical value in the Newton-Raphson scheme (quadratic convergence). When

reaching the processor accuracy it can become worth. Usually the iteration is

terminated before.

Table 2.2 Newton-Raphson iteration for the two-legged truss in the co-rotational formulation

External

load Δv2 v2 KT r.h.s. Convergence

�0.5 0 0 1.0000008 �0.5
�0.5 �0.4999996 �0.4999996 0.66042952 �0.08334799
�0.5 �0.6262023 �0.6262023 0.56949548 �0.00572057 1.4953006

�0.5 �0.63624727 �0.63624727 0.56218932 �3.6687E-05 1.88483506

�0.5 �0.63631253 �0.63631253 0.56214182 �1.5497E-09 1.99471873

�0.5 �0.63631254 �0.63631254 0.56214182 �1.0547E-15 1.40986474

�0.6 0 �0.63631254 0.56214182 �0.1
�0.6 �0.17789105 �0.81420359 0.43143732 �0.01159205
�0.6 �0.20475949 �0.84107203 0.41152375 �0.00026745 1.74914856

�0.6 �0.20540939 �0.84172192 0.41104167 �1.5665E-07 1.97462355

�0.6 �0.20540977 �0.8417223 0.41104139 �5.2958E-14 2.00197669

�0.6 �0.20540977 �0.8417223 0.41104139 2.2204E-16 0.36740652

�0.7 0 �0.8417223 0.41104139 �0.1
�0.7 �0.2432845 �1.08500681 0.22992876 �0.02201854
�0.7 �0.33904694 �1.18076924 0.15882583 �0.00340757 1.23300293

�0.7 �0.36050169 �1.202224 0.14295845 �0.00017027 1.60588135

�0.7 �0.36169271 �1.20341502 0.14207845 �5.2405E-07 1.93016356

�0.71 0 �1.20341502 0.14207845 �0.01000052
�0.71 �0.07038734 �1.27380235 0.09025931 �0.00182599
�0.71 �0.09061782 �1.29403284 0.07544379 �0.00014993 1.46997863

�0.71 �0.09260511 �1.29602012 0.07399056 �1.4441E-06 1.85728841

�0.71 �0.09262462 �1.29603964 0.07397629 �1.3925E-10 1.99166208

�0.71 �0.09262462 �1.29603964 0.07397629 �4.4409E-16 1.3686783

�0.71 �0.09262462 �1.29603964 0.07397629 �8.8818E-16 �0.05476934
�0.72 0 �1.29603964 0.07397629 �0.01
�0.72 �0.13517844 �1.43121809 �0.02379526 �0.0066341
�0.72 0.14362066 �1.15241898 0.17983348 �0.02820801 �3.52708527
�0.72 �0.01323561 �1.30927525 0.06430777 �0.00908488 �0.7827879
�0.72 �0.15450753 �1.45054718 �0.03757155 �0.00722727 0.20189861

�0.72 0.03785274 �1.25818691 0.10172079 �0.01332489 �2.67441291
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2.4.6 Comparison with Green Strain

The results being different from Sect. 2.3.5 can amongst others be explained by the

fact that different strain measures are used which already differ in one dimension,

i.e. deliver different values for the same changes in length.

In the last converged state in Table 2.2 the external and for equilibrium reasons

the internal force is

f int ¼ �0:71 ð2:217Þ

and the global displacement

vg2 ¼ �1:2960 ð2:218Þ

For the same system and the same v2
g but with Green’s strain the displacement

components after (2.103) in the element coordinate system would follow as

u2
v2

� �e
¼ sin α0

cos α0

� �
vg2 ¼

0:6
0:8

� �
�1:2960ð Þ ¼ �0:7776

�1:0368
� �

ð2:219Þ

According to (2.104) the derivatives with respect to the x-coordinate are

u
0 ¼ 1

5
�0:7776ð Þ ¼ �0:1555 , v

0 ¼ 1

5
�1:0368ð Þ ¼ �0:2074 ð2:220Þ

After (2.66) the Green-Lagrange strain is

εGL ¼ u
0 þ 1

2
u
02 þ 1

2
v
02 ¼ �0:1219 ð2:221Þ

and the stress reversely calculated from the internal force after (2.107), the value

taken from the corotational solution:

-0,8

-0,7

-0,6

-0,5

-0,4

-0,3

-0,2

-0,1

0
-2-1,5-1-0,50

displacement

fo
rc

e iteration
external load
internal force

Fig. 2.19 Course of the

iteration in the Newton-

Raphson scheme for the

co-rotational formulation
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σ ¼ f int

A � s 1þ u0ð Þ þ cv0ð Þ ¼
�0:71

0:1 � 0:6 � 1� 0:1555ð Þ þ 0:8 � �0:2074ð Þð Þ
¼ �20:83 ð2:222Þ

In order to fulfil this stress–strain relation Young’s modulus would have to be

Emod ¼ σ

ε
¼ �20:83�0:1219 ¼ 170:87 ð2:223Þ

If one extrapolates the last converged solution of the system with Green-Lagrange

strain, fext¼ 0.58, for the modified modulus one obtains

fextmod ¼ 0:58 � 170:87
138:89

¼ 0:714 ð2:224Þ

which means the same load-carrying capacity as in case of the co-rotational

formulation. The force-displacement curve for the system with Green’s strain and

modified Young’s modulus is shown in Fig. 2.22 in Sect. 2.6.3.

However, Young’s modulus is a material parameter and one may be in doubt

whether it may be changed for a different theory for large rotations. On the other

hand it is obtained from a force-displacement measurement from which a certain

strain and a certain stress measure is calculated (so-called engineering measures).

In the corotational formulation they are used directly. After (2.190) one obtains in

the considered state

εeng ¼ �0:1304 ð2:225Þ

Green-Lagrange strains are defined in a different way. The one-dimensional rela-

tion (2.73) delivers:

εGL ¼ �0:1304þ 1

2
�0:1304ð Þ2 ¼ �0:1219 ð2:226Þ

like in (2.221). The strain-displacement relation is non-linear such that a linear

force-displacement characteristic can only be modelled by a non-linear stress–

strain relation. Indeed Hooke’s law is not valid for such large strain.

For the stress there are differences, too. For the co-rotational formulation one

obtains after the formulae following (2.216):

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
42 þ 3� 1:2960ð Þ2

q
¼ 4:3478 ð2:227Þ

cos α ¼ 4

4:3478
¼ 0:9200 , sin α ¼ 3� 1:2960

4:3478
¼ 0:3919 ð2:228Þ

σ ¼ 138:889=5 � 4 � 0:9200þ 3� 1:2960ð Þ � 0:3919� 5ð Þ ¼ �18:12 ð2:229Þ
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This is the engineering stress being calculated from the deformatoric displacements

whereas the stress (2.222) (�20.83) is the second Piola-Kirchhoff stress which is

explained in Sect. 2.6.3.

2.4.7 Determination of the Element Coordinate Systems

In two dimensions the orientation of an element can be determined by the distance

vector of two nodes in their actual configuration, i.e. taking the displacement into

account, as could be seen in the example above. In three dimensions three orien-

tation vectors are necessary, e.g.

• the distance vector Δ1 of two nodes

• the distance vector Δ2
* from the first to a third node

• the cross product Δ3 ¼ Δ1 
 Δ	2
• the cross product Δ2 ¼ Δ3 
 Δ1

completing the orthogonal base. After normalising the vectors to unit length

getting Δi one obtains the transformation matrix

T ¼ Δ1 Δ2 Δ3


 � ð2:230Þ

Following the isoparametric concept where real coordinates {x,y,z} can be calcu-

lated for any point in unit coordinates {ξ,η,ζ} by using the shape functions

Δ1 ¼ ∂x
∂ξ

;
∂y
∂ξ

;
∂z
∂ξ

� �
and Δ	2 ¼

∂x
∂η

;
∂y
∂η

;
∂z
∂η

� �
ð2:231Þ

can also be chosen. These are the tangents to the unit coordinate lines. They can be

determined at different points in the element, e.g. at integration points.

Another technique is based on the polar decomposition of the deformation

gradient F (see Sect. 2.3.6):

FTF ¼ UTRTRU ¼ U2 ð2:232Þ

Then

U�1 ¼ FTF
� 	�1

2 ð2:233Þ

which can be calculated e.g. after the theorem of Cayley-Hamilton or the spectral

decomposition like in (2.247). Now the Rotation matrix can be determined as
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R ¼ RUU�1 ¼ FU�1 ¼ F FTF
� 	�1

2 ð2:234Þ

R is used as the transformation matrix T. The advantage of this method is that the

rotation matrix can be determined at each integration point, thus taking into account

bending of the element or curved elements. Therefore, this method has a higher

accuracy and is appropriate for higher order elements. The same holds for the

orientations of (2.231).

2.5 Large Strain

2.5.1 One-Dimensional Considerations

Engineering strains are calculated from changes in length relative to the initial

length l0. However, this is not suitable for every order of magnitude of the strain

appearing in technical applications as the following example shows.

In Fig. 2.20 three cases are shown for which the strain—at first engineering

strain—must be determined. In case a) this is

εeng ¼ Δl
l0
¼ ΔL

L
ð2:235Þ

in case b)

εeng ¼ ΔL
2L

ð2:236Þ

because the initial length is twice as large.

In case c) the spar is deformed to the double length in the first step and then by

another ΔL. After the definition of engineering strain the increment is

Δεeng ¼ ΔL
L

ð2:237Þ

i.e. comparable to case a), because the initial length is L. More appropriate,

however, would be the same result as in case b), because the lengths before the

l0= L

l0= L

l0= 2L

Δl0= L

ΔL

ΔL

ΔL

?=Δε

a

b

c
Fig. 2.20 Concerning the

introduction of logarithmic

strain
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deformation by ΔL are equal. The actual, i.e. the deformed length l would have to

be taken to achieve this result:

Δε ¼ Δl
l
¼ ΔL

2L
ð2:238Þ

This leads to the principle:

ε ¼
X

Δε ¼
XΔl

l
ð2:239Þ

In terms of infinitesimal small increments one obtains:

ε ¼
ðl
l0

dε ¼
ðl
l0

1

l
dl ¼ lnl½ � ll0 ¼ lnl� lnl0 ¼ ln

l

l0

� �
ð2:240Þ

These strains are called logarithmic strains. They can be transformed in the

following way to get a better comparison with engineering strains:

εlog ¼ ln
l

l0

� �
¼ ln

l0 þ Δl
l0

� �
¼ ln 1þ Δl

l0

� �
ð2:241Þ

εlog ¼ ln 1þ εIng
� 	 ð2:242Þ

Especially in three dimensions the logarithmic strains are also called Hencky
strains (cf. 2.5.2). In Table 2.3 and Fig. 2.21 the different strain measures are

compared with each other. The values of the Green-Lagrange strain seem not to

be very useful; it is made for large rotations. The logarithmic strain shows a “non-

symmetry” between tension and compression. Remarkable is that for engineering

strain �1 the logarithmic strain tends to �1. Engineering strain �1 means that a

part is compressed to the length of 0. This is the largest imaginable deformation.

Thus, a strain measure of �1 is appropriate.
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2.5.2 Transition to Two- and Three-Dimensional Systems

Since it is probable that large strain occurs in combination with large rotations the

two phenomena must be represented within the same theory.

There a several ways. One is—based on the relation between logarithmic and

engineering strain in 1d (2.242)—to replace the engineering strain by a measure

accounting for large rotations, here the Green-Lagrange strain:

-3

-2

-1

0

1

2

-1,5 -1 -0,5 0 0,5 1 1,5

engineering

Green-Lagrange
logarithmic

                strain

Fig. 2.21 Graphic

comparison of different

strain measures

Table 2.3 Comparison of different strain measures

Engineering strain Green-Lagrange strain Logarithmic strain

�1 �0.5000 �1
�0.99 �0.5000 �4.6052
�0.5 �0.3750 �0.6931
�0.3 �0.2550 �0.3567
�0.1 �0.0950 �0.1054
�0.05 �0.0488 �0.0513
�0.03 �0.0296 �0.0305
�0.01 �0.0100 �0.0101
�0.001 �0.0010 �0.0010
0 0.0000 0.0000

0.001 0.0010 0.0010

0.01 0.0101 0.0100

0.03 0.0305 0.0296

0.05 0.0513 0.0488

0.1 0.1050 0.0953

0.3 0.3450 0.2624

0.5 0.6250 0.4055

1 1.5000 0.6931
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εlog ¼ ln
l

l0

� �
¼ ln

l

l0

� �2
" #1

2

¼ 1

2
ln

l2

l20

 !
¼ 1

2
ln

l2 � l20
l20
þ l20
l20

 !
¼ 1

2
ln

l2 � l20
l20
þ 1

 !

εlog ¼ 1

2
ln 2εGL þ 1
� 	

ð2:243Þ
In 3d the measure defined in that way is called Hencky strain:

εHencky ¼ 1

2
ln 2εGL þ I
� 	 ð2:244Þ

where I denotes the unit matrix.

One can immediately see that this measure is suitable for large rotations because

for arbitrary rigid body rotations the Green-Lagrange strain becomes 0 so that one

obtains

εHencky ¼ 1

2
ln Ið Þ ¼ 0 ð2:245Þ

The remaining question is how to determine the logarithm of a matrix. Mathemati-

cally this is defined in the following way:

A symmetric matrix A can be represented by the matrix Q of its normalised

eigenvectors and the diagonal matrix

Λ ¼ diag λi½ � ð2:246Þ

of its eigenvalues:

A ¼ Q Λ QT ð2:247Þ

Since this covers the total spectrum of the eigenvalues this is called spectral
decomposition.

A function of the matrix A is calculated by applying the function to the

eigenvalues, again forming a diagonal matrix from the results and multiplying it

by the eigenvectors from both sides:

f Að Þ ¼ Q diag f λið Þ½ � QT ð2:248Þ

This method is rather complicated (keep in mind that for the iteration in a

FE code derivatives with respect to the displacements are necessary) but it is for

example the base of the formulation of the (legacy) elements VISCO106 to 108 in

ANSYS.

For the second method one has to remember the incremental form (2.239) of the

logarithmic strain. The strain increment is determined by calculating engineering

strain but with respect to a deformed reference configuration. The rigid body

rotation can be accounted for in the same way as for small strain. If this is done

by the co-rotational formulation the strain increment is called Green-Naghdi rate.
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The definition of the logarithmic strain and true stress with their relation to the

actual configuration requires to use the actual volume (or Adx for the link element)

when integrating over dV. In the numerical integration this means that the Jacobian

J and its determinant accounting for the relation between real and unit coordinates

must be formed from the coordinates x0 + u of the (deformed) reference configu-

ration. The limits of the unit coordinates and thus the numerical integration

procedure itself are not directly affected but element distortions must be measured

in deformed, not initial coordinates to judge the accuracy.

2.5.3 Hencky Strain in Terms of Continuum Mechanical
Symbols

Following Eq. (2.241) the one-dimensional logarithmic strain can be written

infinitesimally as

εlog ¼ ln
dx

dx0

� �
¼ ln F11ð Þ ¼ 1

2
ln F2

11

� 	 ð2:249Þ

With the considerations from Sect. 2.3.6 one obtains for the three-dimensional case

εHencky ¼ 1

2
ln FTF
� 	 ¼ 1

2
ln U2
� 	 ð2:250Þ

2.5.4 Logarithmic Strain and Corotational Formulation

Since the co-rotational formulation accounts for large rotations only the increment-

ally changing reference configuration must be added according to (2.239). Strains

are composed from derivatives in the rotated system, now strain increments.

Changes in length must be calculated from the deformatoric displacements udef.

The basic formula for the calculation of strain in the co-rotational formulation

has been

ε ¼ Blinudef ¼ Blin T uð Þ x0 þ uð Þ � T0x0½ � ð2:163Þ

Herein Blin was determined from the derivatives of the shape functions N with

respect to the initial coordinates in the element coordinate system

x e
0 ¼ T0x0 ð2:251Þ

Instead of that the element coordinates in a deformed reference state
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x e
ref ¼ T uref

� 	
x0 þ uref
� 	 ð2:252Þ

are now used to calculate a strain increment:

Δε ¼ Blin x e
ref

� �
Δudef

¼ Blin x e
ref

� �
T uiþ1ð Þ x0 þ uiþ1ð Þ � T uið Þ x0 þ uið Þ½ � ð2:253Þ

Herein i is the last converged solution and i+ 1 the new one in the actual iteration.

uref can be chosen between ui and ui+1, see below.

When forming derivatives with respect to the real coordinates the element

geometry is usually accounted for by the inverse of the Jacobian matrix J. In case

of the corotational formulation with small strain J is determined from the initial

coordinates:

J0 ¼ ∂xe0i
∂ξj

� �
ð2:254Þ

For large strain the coordinates of a reference configuration actualised by

deformatoric displacements must be used, see (2.252):

J ¼ ∂xeref , i
∂ξj

� �
ð2:255Þ

Analogously the related Jacobian determinant detJ is used for the integration

over the element volume. This will be done numerically with nGP Gaussian points,

e.g. the internal forces in 3d:

ð
Vð Þ

BTσdV �
XnGP
i¼1

wiB
T ∂N ξi; ηi; ζið Þ

∂x

� �
σ ξi; ηi; ζið ÞdetJ x e

ref ; ξi; ηi; ζi
� �

ð2:256Þ

where wi—means the weighting factor and ξi,ηi,ζi—the coordinates of the Gaussian

point i
For higher accuracy and stability an implicit method is preferred, i.e. the refer-

ence configuration depends on the deformation at the end of the load increment

which is the goal of the iteration (that makes it implicit). One choice is the midpoint

rule, i.e. the reference configuration is located in the middle between the beginning

(last converged solution ui) and the actual end of the load increment (iterative

solution ui+1):

In one and two dimensions it must be made sure that the correct (deformed)

volume is calculated. In general this depends on the material model used. In case of

Von-Mises plasticity (s. Chap. 8) and dominant plastic strain the volume is con-

stant, in 1d:
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V ¼ Al ¼ A0l0 ð2:257Þ

The strain increment for the link element then reads:

Δε ¼ Blin lRef
� 	

Δudef

¼ 1

lRef
�1 1½ � T uiþ1ð Þ x0 þ uiþ1ð Þ � T uið Þ x0 þ uið Þ½ � ð2:258Þ

εiþ1 ¼ εi þ Δε ð2:259Þ

When using the midpoint rule the reference length is taken as

lRef ¼ liþ1 þ li
2

ð2:260Þ

For comparison with the small-strain formulation it is written:

Blin lRef
� 	 ¼ l0

lRef
Blin ¼ 2l0

liþ1 þ li
Blin ¼ 2l0

l uiþ1ð Þ þ li
Blin ð2:261Þ

εiþ1 ¼ εi þ 2l0
l uiþ1ð Þ þ li

Blin T uiþ1ð Þ x0 þ uiþ1ð Þ � T uið Þ x0 þ uið Þ½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Δεsmall

ð2:262Þ

All terms with index i are constant during the actual load increment and not subject

to differentiation. Therefore, the derivative of Δεsmall with respect to the displace-

ment vector u is the B-matrix for small strain (2.164). For large strain B then reads

following the product rule:

Blarge ¼ 2l0
liþ1 þ li

Bsmall � 2l0

liþ1 þ lið Þ2
∂liþ1
∂u

Δεsmall

¼ l0
lref

Bsmall � l0

2l2ref

∂liþ1
∂u

Δεsmall
ð2:263Þ

Analogously the second derivative of ε, including the derivative of Blarge, needed

for Kσ can be formed.

In general derivatives of the Jacobian matrix are needed, all other terms are

known from the small strain formulation.
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2.6 Related Stress

2.6.1 General 1d-Relation to Strain

In the two spar examples with different formulations (Sects. 2.3.5 and 2.4.5)

different force-displacement relations, especially different limit loads, were

obtained although the behaviour was qualitatively similar. The reason was the use

of the same stress–strain and stress–force relation. For the maximum load this was

explained in Sect. 2.4.6.

It is unlikely that Hooke’s law applies to the whole range of a deformation of

such size but more general is the fact that stresses must be calculated from forces

and cross sections in different ways according to the strain measure used, so-called

conjugate stresses. Base is the relation

f int ¼
ð
Vð Þ

BTσdV ð2:83Þ

fint means the internal nodal forces. Since B is the derivative of ε with respect to the
nodal displacements there is a different relation between force and stress for each

distinct strain measure. In 1d from (2.83) one obtains

f int ¼
ð
lð Þ

BTσAdx ð2:264Þ

for constant strain and stress over the element length

f int ¼ BTσAl ð2:265Þ

and for one degree of freedom u only (the other one be fixed)

f int ¼ F ¼ dε

du
σAl ð2:266Þ

This formula is solved for σ:

σ ¼ F

Al dεdu
ð2:267Þ

where for small strain the undeformed area A0 and the undeformed length l0 must

be used.

The one dimensional consideration is important in particular because it is often

the base for the determination of material parameters from experiments.
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2.6.2 Engineering Quantities

Companion to engineering strain is engineering stress, in one dimension:

σeng ¼ F

A0

ð2:268Þ

This definition is common. Nevertheless Eq. (2.267) is applied to test its validity.

The change in length here is u, the strain and its derivative consequently

ε ¼ u

l0
) dε

du
¼ 1

l0
; ð2:269Þ

thus

σ ¼ F

A0l0
1
l0

¼ F

A0

ð2:270Þ

The engineering stress is also valid in the basic form of the co-rotational formula-

tion, naturally in the rotated coordinate system, where the deformatoric displace-

ment is determined and hence the engineering strain. As a test the results of the

two-legged truss in Sect. 2.4.5 are taken. For the last converged state one obtained

fint¼�0.71, sinα¼ 0.3919 and σ¼�18.12. The force in the truss F can be calcu-

lated from the internal force in the global system as

F ¼ f int

sin α
) σ ¼ F

A0

¼ f int

sin α

1

A0

¼ �0:71
0:3919 � 0:1 ¼ �18:12 ð2:271Þ

2.6.3 Green-Lagrange Strain

Companion to the Green-Lagrange strains are the second Piola-Kirchhoff stresses.
In one dimension the strain after (2.63) in conjunction with (2.65) and its derivative

read:

εGL ¼ 1

2

l2 � l20
l20
¼ 1

2

l0 þ uð Þ2 � l20
l20

) dε

du
¼ 1

2

2 l0 þ uð Þ
l20

¼ l

l20
ð2:272Þ

Then the related stress after (2.267) is
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σPK ¼ F

A0l0
l
l20

¼ F

A0

l0
l
¼ σeng

l0
l

ð2:273Þ

or, in order to include the engineering strain, too:

σPK ¼ σIng
1

l0þu
l0

¼ σIng
1

1þ εIng
ð2:274Þ

Its physical interpretation is limited in the same degree as the meaning of this strain

which is suitable for large rotations—nothing else.

Test: For the two-legged truss the deformed length in the last converged state has

been calculated as l¼ 4.3478 at the end of Sect. 2.3.6. The initial length has been

l0¼ 5. By solving (2.107) for the stress σ¼�20.83 has been calculated for this

deformation and the context of Green-Lagrange strain whereas engineering stress

had been σeng¼�18.12. By applying (2.273) one now obtains:

σPK ¼ �18:12 5

4:3478
¼ �20:83 ð2:275Þ

If the 1d-relation between Green-Lagrange and engineering strain (2.73) is solved

for εGL via the mixed quadratic equation

�2εGL þ 2εeng þ εeng
2 ¼ 0 ð2:276Þ

one obtains:

εeng
1=2 ¼ �1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2εGL

p
ð2:277Þ

Since the engineering strain is limited to εeng > �1 the Green-Lagrange strain has

as lower bound

εGL > �1
2

ð2:278Þ

Thus the square root is always real. From the same condition follows that only the

positive sign is meaningful:

εeng ¼ �1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2εGL

p
ð2:279Þ

Replacing the engineering stress in (2.274) by Young’s modulus times engineering

strain according to Hooke’s law:

σPK ¼ E
εeng

1þ εeng
ð2:280Þ
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Inserting (2.279) for the engineering strain:

σPK ¼ E
�1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2εGL
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2εGL
p ð2:281Þ

This is a non-linear material law but leading to a linear force-displacement relation.

After Sect. 2.3.4.1 the derivative of the stress with respect to the strain is needed for

the tangential matrix:

dσPK

dεGL
¼

E
ffiffiffiffiffiffiffiffiffiffiffi
1þ2εGLpffiffiffiffiffiffiffiffiffiffiffi
1þ2εGLp � �1þ

ffiffiffiffiffiffiffiffiffiffiffi
1þ2εGLpffiffiffiffiffiffiffiffiffiffiffi

1þ2εGLp

1þ 2εGL
¼ E

1þ 2εGLð Þ32
ð2:282Þ

In this way Young’s modulus in the example of the two-legged truss can remain at

E¼ 138.889 leading to the solution in Fig. 2.22. Like in the co-rotational formula-

tion the limit load is calculated as 0.71 at a tip displacement of 1.296. Now even the

curves of the internal force as well as the converged solutions match those from the

co-rotational example.

2.6.4 Logarithmic Strain

The logarithmic strain is used as a measure for large deformations. Thus the volume

of the deformed body, in (2.267) the deformed cross section area A and the

deformed length l must be considered. The derivative of the strain is

dεlog

du
¼ d

du
ln

l

l0

� �
¼ d

du
ln

1

l0
l0 þ uð Þ

� �
¼ l0

l0 þ u

1

l0
¼ 1

l0 þ u
¼ 1

l
ð2:283Þ

By introducing in (2.267) one obtains
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σ ¼ F
1
lAl
¼ F

A
ð2:284Þ

Thus the appropriate stress measure for logarithmic strain where the change in

length is related to the deformed length is the so-called “true” stress, the force

divided by the deformed area, in 1d:

σtrue ¼ F

A
ð2:285Þ

These stresses are also called—especially in two or three dimensions—Cauchy
stress.

A uniaxial stress state usually produces a triaxial strain state. From this fact the

deformed cross section area can be calculated. Poisson’s ratio ν in Hooke’s law

yields for a uniaxial stress state:

εy ¼ εz ¼ �νεx ð2:286Þ

(2.241) gives for the loading direction

εx ¼ ln 1þ ∂ux
∂x

� �
ð2:287Þ

Analogously this relation delivers for the transverse directions:

εy ¼ ln 1þ ∂uy
∂y

� �
ð2:288Þ

Inserted into (2.286) this means:

ln 1þ ∂uy
∂y

� �
¼ �νln 1þ ∂ux

∂x

� �
¼ ln 1þ ∂ux

∂x

� ��νh i
ð2:289Þ

Applying the exponential function to both sides:

1þ ∂uy
∂y

� �
¼ 1þ ∂ux

∂x

� ��ν
ð2:290Þ

This intermediate result leads to the following effect:

If a cube of edge length l is stretched by l for ν¼ 0.3 one obtains as change in

length in transverse direction:
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1þ Δly
l
¼ 1þ l

l

� ��0:3Δly
l
¼ 1þ l

l

� ��0:3
� 1Δly ¼ 1þ l

l

� ��0:3
� 1

� �
l

¼ �0:1877l ð2:291Þ

whereas for engineering strain the result would be �0.3 l.
More important, however, is that the cross section area of the deformed system is

A ¼ A0 1þ ∂uy
∂y

� �
1þ ∂uz

∂z

� �
¼ A0 1þ ∂ux

∂x

� ��2ν
ð2:292Þ

that means

σCauchy ¼ F

A0

1

1þ ∂ux
∂x

� 	�2ν ¼ F

A0

1þ ∂ux
∂x

� �2ν
ð2:293Þ

Hooke’s law does not hold for strains in a range where a significant difference

between the strain measures can be noticed. More important is e.g. plasticity of

metals where it is assumed that the plastic strain

• dominates the elastic one and

• is incompressible, i.e. no volume change occurs.

This is equivalent to a Poisson’s ratio of 0.5, thus

σCauchy ¼ F

A0

1þ ∂ux
∂x

� �2�0,5
¼ F

A0

1þ ∂ux
∂x

� �
ð2:294Þ

σCauchy ¼ σeng 1þ εengx

� 	 ð2:295Þ

If a FE-program uses large strain the measured yield curves (usually engineering

measures) must be transformed into true stress vs. logarithmic strain via (2.242) and

(2.295).

Table 2.4 and Fig. 2.23 show stress–strain data for a certain type of steel. One

can see that the stresses differ more than the strain. Furthermore, the Cauchy stress

Table 2.4 Comparison of

strain and stress measures
Point εeng σeng εlog σCauchy

1 0.00168 348 0.00167859 348.58464

2 0.0386 348 0.03787365 361.4328

3 0.04 371 0.03922071 385.84

4 0.072 428 0.06952606 458.816

5 0.101 455 0.09621886 500.955

6 0.143 467 0.13365638 533.781

7 0.192 471 0.17563257 561.432

8 0.272 463 0.24059046 588.936
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shows hardening where the engineering stress indicates softening which physically

is not the case: The decrease in stress is caused by a reduction of the cross section

area.

2.6.5 Continuum Mechanics Aspect

Equation (2.295) can also be written as

σtrue ¼ σeng 1þ l� l0
l0

� �
¼ σeng

l

l0
ð2:296Þ

whereas (2.273) can be solved for

σeng ¼ l

l0
σPK ð2:297Þ

thus

σtrue ¼ l

l0
σPK

l

l0
ð2:298Þ

In Sect. 2.3.6 l/l0 was identified as the 1d representation of the stretch tensor U.

Thus the 3d extension is
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σtrue ¼ UσPKU Tð Þ ð2:299Þ

but this hold for the measure in the initial coordinate system due to the nature of the

Piola-Kirchhoff stress and of U. For the actual configuration a rotation is necessary:

σ ¼ RU|{z}
F

σPK U Tð ÞRT|fflfflffl{zfflfflffl}
FT

ð2:300Þ

σ ¼ FσPKFT ð2:301Þ

This is called push-forward operation. The result, however, is called Kirchhoff
stress tensor.

2.7 Updated-Lagrange Formulation

2.7.1 Classic Approach

Lagrange formulation—in contrast to Euler’s approach dominating fluid dyna-

mics—means that the motion of a material point is observed. If the kinematics of

a system is totally described in terms of the initial configuration this method is

called Total-Lagrange formulation.

A simple but less accurate way to account for large rotations and—more or less

as a side effect—for large strain is the following:

• perform a geometrically linear analysis for a load increment evolving small

rotations only

• add the displacements to the initial coordinates to get new coordinates

• add a new load increment

• sum up the strain and stress increments.

In terms of “time”-integration this is an explicit method which can show a larger

error and even numerical instability when the increment is chosen too large.

Example

The stiffness matrix of a linear link element rotated by an angle of α reads (with the

abbreviations below)

c: cos α and

s: sin α:

K ¼ TTKelemT ¼ EA

l

c2 cs �c2 �cs
cs s2 �cs �s2
�c2 �cs c2 cs
�cs �s2 cs s2

2
664

3
775 ð2:302Þ

Be u ¼ 0 and ε ¼ 0 initial values of displacement and strain.
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In the first load increment the displacement in the global system can be calcu-

lated by solving

KΔu ¼ fext ð2:303Þ

The displacement is updated:

u uþ Δu ð2:304Þ

Now a new transformation matrix can be determined:

T1 ¼ T x0 þ uð Þ ð2:305Þ

The displacement increment in the element coordinate system reads:

Δue ¼ T1Δu ð2:306Þ

The strain can then be updated to

ε εþ BlinΔue ð2:307Þ

This strain leads to the stress

σ ¼ Eε ð2:308Þ

Thus the internal forces read:

f int ¼ TT
1 B

T
linσV ¼

c 0

s 0

0 c
0 s

2
664

3
7751l �1 1½ �σV ð2:309Þ

Under the assumption of constant volume in large strain one obtains:

f int ¼
c 0

s 0

0 c
0 s

2
664

3
7751l �1 1½ �σA0l0 ¼

�c
�s
c
s

2
664

3
775σA0

l0
l

ð2:310Þ

In this position a new load increment is applied leading to a new external force fext.

Now the displacement increment is determined by solving

KΔu ¼ fext � f int ð2:311Þ

and the procedure starts again with Eq. (2.304).
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What is needed for the two-legged truss is listed in the chapter above. Some

values are repeated here:

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
42 þ 3þ v2ð Þ2

q
ð2:312Þ

c ¼ cos α ¼ 4

l
, s ¼ sin α ¼ 3þ v2

l
ð2:313Þ

With these values K can be formed. Only

k44 ¼ EA

l
s2 ð2:314Þ

is needed for this example. The displacement on element level has one component

only:

Δue2 ¼ sΔv2 ð2:315Þ

εþ Δε ¼ εþ Δue2
l

ð2:316Þ
σ ¼ Eε ð2:317Þ

f int ¼ sσA0

l0
l

ð2:318Þ

The results, especially the maximum load, strongly depend on the step size as

shown in Fig. 2.24. The behaviour is compared with the ANSYS LINK180 element

with co-rotational formulation for large strain.
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It can be seen that too large a step size leads to large errors in the result when the

behaviour of the system becomes strongly non-linear. The non-linearity can be

measured in terms of internal and external forces because the internal forces in the

updated configuration i + 1 do not match exactly the external forces from the

configuration before (i). A certain difference is remaining enlarging the right

hand side of (2.241). Therefore, for the curve marked as “adaptive step size” the

increments of the external forces are chosen so that the error is restricted to a certain

fraction of the external load:

fexti � f intiþ1 ¼ c fexti ð2:319Þ

If this is not the case the last load increment is scaled to get the next result nearly in

the desired range:

Δfextiþ1 ¼ Δfexti

c fexti

fexti � f intiþ1
ð2:320Þ

When choosing c¼ 0.01 the result shown in Fig. 2.24 is obtained with significantly

less increments then with step size 0.01 but with higher accuracy.

2.7.2 Generalisation

Nowadays the term “updated Lagrange” is used for nearly every incremental

method, nearly everything which is not formulated based on the initial configu-

ration. Such methods can be of high accuracy. Co-rotational with large strain is of

this type because the strain is updated.
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