
Chapter 2
Thermal Convection with LTNE

2.1 Stability and Symmetry

The object of this chapter is to present the equations of thermal convection with local
thermal non-equilibrium (LTNE) effects and analyse stability properties of their
solutions. The linear operator which arises in the LTNE equations often belongs to
a special class of operators, known as symmetric operators, and this class of linear
operator has special mathematical properties in the context of stability. Before we
briefly discuss an important general nonlinear stability result we include an exam-
ple of a symmetric linear operator which occurs in the classical theory of thermal
convection in a fluid, a phenomenon usually referred to as Bénard convection.

2.1.1 Classical Bénard Convection

Let us consider a linear viscous fluid governed by equations (1.42). The fluid occu-
pies the domain contained between the horizontal planes z = 0 and z = d with
(x,y) ∈ R

2. The upper plane is held at a fixed constant temperature TU , while the
lower plane is held at a fixed constant temperature TL, with TL > TU .

In the above situation equations (1.42) possess the motionless conduction solu-
tion

v̄i ≡ 0, T̄ = β z+TL , (2.1)

where β = (TL − TU )/d > 0 and p̄(z) is determined up to a constant from equa-
tion (1.42)1. To study the stability of solution (2.1) we introduce perturbations
ui,θ ,π by vi = v̄i + ui, T = T̄ + θ , p = p̄ + π and we non-dimensionalize the
resulting perturbation equations with the scalings of pressure P = ρ0νU/d, time
T = d2/ν , length d, and velocity U = ν/d. Introduce the Prandtl number Pr = ν/κ
and the parameter R =

√
αgβd4/κν where Ra = R2 is the Rayleigh number. The
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non-dimensional perturbation equations may then be shown to be

∂ui

∂ t
+u j

∂ui

∂x j
=− ∂π

∂xi
+Δui +Rθki,

∂ui

∂xi
= 0,

Pr
(∂θ
∂ t

+ui
∂θ
∂xi

)
= Rw+Δθ ,

(2.2)

for (x,y) ∈ R
2 and z ∈ (0,d), and where w = u3. The boundary conditions to be

satisfied are those of no slip on the velocity field together with constant temperatures
on the upper and lower horizontal bounding planes of the fluid. Hence, we require
the perturbation variables ui and θ to be such that

ui = 0, θ = 0, on z = 0,1, (2.3)

together with ui,π,θ satisfying a plane tiling periodicity in the (x,y) plane. This is
consistent with the formation of hexagonal thermal convection cells in a horizontal
strip of fluid.

Our intention here is not to give a full stability analysis of the steady solution
(2.1) via equations (2.2). Instead, we wish to emphasize the special structure of
system (2.2). Equations (2.2) may be written in the form

Aut = Lu+N(u)

where u = (u1,u2,u3,θ), A is the operator

A =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 Pr

⎞
⎟⎟⎠

while L is the linear operator

L =

⎛
⎜⎜⎝
Δ 0 0 0
0 Δ 0 0
0 0 Δ R
0 0 R Δ

⎞
⎟⎟⎠

Let (·, ·) denote the inner product on the Hilbert space (L2(V ))4 where V is a peri-
odic cell for the solution (ui,θ ,π). Suppose u = (u1,u2,u3,θ) and v = (v1,v2,v3,φ)
are functions which satisfy (2.2) and (2.3). Then it is straightforward to demonstrate
that

(u,Lv) = (v,Lu) . (2.4)
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Since (2.4) holds the operator L is symmetric. Furthermore, we may here show
(u,N(u)) = 0, where N(u) refers to the convective nonlinearities in (2.2). To be
precise

(u,N(u)) =
∫

V
uiu jui, jdV +Pr

∫
V

uiθθ,idV

=
1
2

∫
V

u j(uiui), jdV +
Pr
2

∫
V

uiθ 2
,i dV

=− 1
2

∫
V

u j, juiuidV +
1
2

∮
∂V

n ju j uiuidS

− Pr
2

∫
V

ui,iθ 2dV +
Pr
2

∮
∂V

niuiθ 2dS

=0

where we have integrated by parts and used the boundary conditions (2.3). In this
case since L is symmetric one has the very important result that the linear instability
boundary governed by equations (2.2) is exactly the same as the global nonlinear
stability boundary governed by the same equations. This result follows from theo-
rem 2 of [150].

Our purpose here is to present a simple example showing that the case of a sym-
metric linear operator is a very special one. However, the class of symmetric linear
operators is one which occurs frequently in thermal convection in a porous medium
taking into account LTNE effects.

We now briefly consider the question of linear instability versus nonlinear stabil-
ity in a general setting before embarking on describing various thermal convection
problems in porous media in the presence of LTNE effects.

2.1.2 Symmetric Operators

In general, the equations governing problems in hydrodynamic stability (including
those in porous media) are typically of the form

Aut = LSu+LAu+N(u), (2.5)

where u is a Hilbert space valued function, ut is its time derivative, A is a bounded
linear operator (typically a matrix with constant entries), L= LS+LA is an unbounded,
sectorial linear operator, and N(u) represents the nonlinear terms. The operator LS

is the symmetric part of L while LA denotes the anti-symmetric part. (Very roughly,
a sectorial operator is one where the eigenvalues all lie in a sector in the complex
plane. Detailed accounts of sectorial operators may be found in the books by [170]
and by [484], chapter 2, and a very readable account may be found in [252]. In
this book the linear operators all consist of terms like the identity or the Laplacian
operator and under the boundary conditions we employ they are sectorial.)
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The classical theory of linear instability writes

u = eσtφ

and discards the N(u) term in (2.5). One is then faced with solving the eigenvalue
problem

σAφ = LSφ +LAφ , (2.6)

where σ is the eigenvalue and φ the eigenfunction.
It is important to note that equation (2.5) involves both the skew-symmetric oper-

ator LA and the symmetric operator LS. In general, σ is complex, and one looks for
the eigenvalue with largest real part to become positive for instability.

A classical nonlinear energy stability analysis, on the other hand, commences by
forming the inner product of u with (2.5). If (·, ·) denotes the inner product on the
Hilbert space in question then one finds

d
dt

1
2
(u,Au) = (u,LSu)+(u,N(u)) (2.7)

since (u,LAu) = 0. Nonlinear energy stability follows from (2.7) and it is very
important to note that in this way the nonlinear stability boundary does not involve
the skew part of L, LA. Thus, one may expect, in general, that the linear instability
and nonlinear stability boundaries are very different. Details of how nonlinear sta-
bility follows from (2.7) may be found in section 4.3 of [414], or from the paper of
[150].

In fact, the reason why the nonlinear energy stability analyses discussed in the
present chapter give optimal results is due to the fact that the associated operator L
is symmetric.

There are two fundamental problems arising from (2.7) when one is faced with
deriving unconditional nonlinear stability results. These are

(a) the effect of LA on the nonlinear stability boundary;
(b) what does one do when

(
u,N(u)

)
�≥ 0?

When the operator L is far from symmetric traditional energy stability arguments
can break down completely, or yield very poor results for certain classes of problem.
For example, in parallel shear flows progress is very difficult, as explained in chap-
ter 8 of [410]. In this regard though, an interested reader may wish to consider the
articles of [113, 201] and [202]. Certain classes of viscoelastic flows prove severely
problematic to tackle via energy methods, as is shown in the interesting paper of
[114].

Due to the failure of the classical energy method to yield sharp, or at least use-
ful, nonlinear stability thresholds in problems such as shear flows, much research
effort has recently been directed toward this area and a variety of novel approaches
involving clever choices of Lyapunov functional have been suggested, cf. [68–
70, 74, 131, 132, 182, 250, 271, 298, 299, 336, 342, 372, 374].
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2.2 Darcy Theory

We begin with a description of the problem of a horizontal layer of porous material
saturated with an incompressible fluid and heated below, allowing the fluid and solid
temperatures to be different, LTNE. Our first step is to employ Darcy theory, see sec-
tions 1.3 and 1.8.3 but additionally utilize the LTNE equations for the temperature
fields T f and T s as given in equations (1.83). Thus, we begin with the problem con-
sidered by [27]. The paper of [27] deals with the onset of thermal convection when
the porous medium is modelled using Darcy’s law. It is worth noting that [363] is a
useful article which lucidly shows how one may compare convection in theories of
Darcy and of Brinkman with an average temperature. His asymptotic estimates are
very useful, and he also shows how the Forchheimer theory enters the picture.

In figure 2.1 we show a possible scenario for LTNE in a porous medium com-
posed of spherical beads. Note that spherical beads are often used in a laboratory to
perform experiments of thermal convection in a fluid saturated porous material, cf.
[86]. For a real LTNE porous material we would expect to have many more beads
than in figure 2.1 and the beads would be very small in keeping with a microflu-
idic setting. The continuum approximation assumes Tf and Ts are both defined at all
points x for time t and we likewise have a seepage velocity vi = εVi at all points x.
The seepage velocity is defined in section 1.8.1. For the configuration of figure 2.1
if we have a similar picture in the direction orthogonal to that of the figure then we
have a three-dimensional box containing 320 beads, i.e. 8× 5 in each orthogonal
projection direction. If the beads have diameters D then the porosity may be calcu-
lated as ε = 320D3(1−4π/24)/320D3 = 1−π/6 ≈ 0.4767. The beads in figure 2.1
are not positioned in a close packing format. For a close packing format the porosity
would be smaller, the lowest value of the porosity being ε = 0.2595.

Consider now a layer of porous material saturated with fluid and contained
between the planes z = 0 and z = d. The temperatures of the solid, Ts, and fluid,
Tf , are maintained at constants on the planes z = 0 and z = d with

Ts = Tf = TL, z = 0; Ts = Tf = TU , z = d; (2.8)

where TL > TU . (If the layer is heated above, i.e. TU ≥ TL, then one may demonstrate
global nonlinear stability always holds.) The equations are formed by essentially a
combination of equations (1.88) and (1.83), cf. Banu and Rees [27], and are

vi =−K
μ

p,i +
ρ f gαK

μ
Tf ki , (2.9)

vi,i = 0, (2.10)

ε(ρc) f T f
,t +(ρc) f viT

f
,i = εk fΔTf +h(Ts −Tf ), (2.11)

(1− ε)(ρc)sT
s
,t = (1− ε)ksΔTs −h(Ts −Tf ). (2.12)
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Note that in deriving equation (2.9) one makes the assumption that the density in
the body force term in equation (1.88)1 is linear in the fluid temperature T f , i.e.

ρ = ρ f
[
1−α(T f −T0)

]
(2.13)

for a reference temperature T0. Equations (2.9)–(2.12) hold in the domain R
2×{z ∈

(0,d)} × {t > 0}, k = (0,0,1), and Δ is the three-dimensional Laplacian. The
variables vi, p,Tf and Ts are the velocity, pressure and fluid and solid tempera-
tures, respectively. The constants K,μ ,g, α, ε ,ρα ,cα ,kα (α = f ,s), appearing in
equations (2.9)–(2.13), are permeability, dynamic viscosity, gravity, thermal expan-
sion coefficient, porosity, density, specific heat, thermal diffusion coefficient (where
α = f ,s, denotes fluid or solid), (ρc)α = ραcα , α = f ,s, and h is an interaction
coefficient.

The steady solution whose stability is under investigation is

v̄ ≡ 0,

T̄f = T̄s =−β z+TL, z ∈ (0,d),
(2.14)

where β is the temperature gradient given by

β =
TL −TU

d
(2.15)

and the steady pressure p̄(z) is a quadratic function determined from (2.9) (up to an
arbitrary constant which defines the pressure scale).

2.2.1 Linear Instability

To investigate stability we introduce perturbations ui,π,θ ,φ to v̄i, p̄, T̄f and T̄s by

vi = ui + v̄i, p = π+ p̄, Tf = θ + T̄f , Ts = φ + T̄s. (2.16)

The perturbation equations are derived from (2.9) to (2.12) and are
non-dimensionalized with velocity, pressure, temperature, time and length scales
of U = εk f /(ρc) f d, P = μdU/K, T � = Ud

√
μβc f /εk f gαK, T = (ρc) f d2/k f ,

L = d. The Rayleigh number Ra is defined by

Ra = R2 = d2ρ2
f

√
βc f gαK

εk f μ
.
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Fig. 2.1 An example of a local thermal non-equilibrium porous medium composed of spherical
beads. The solid is fixed so the velocity is zero in the skeleton. In the fluid the velocity is the
pore average velocity V, cf. section 1.8.1. This is a horizontal projection from the side of a three-
dimensional body comprised of 320 beads.

In addition H = hd2/εk f and γ = εk f /(1−ε)ks are the non-dimensional coefficients
introduced by [27]. It then follows that the non-dimensional perturbation equations
have form

ui =−π,i +Rθki , (2.17)

ui,i = 0, (2.18)

θ,t +uiθ,i = Rw+Δθ +H(φ −θ), (2.19)

Aφ,t = Δφ −Hγ(φ −θ), (2.20)

where these equations hold on R
2 × {z ∈ (0,1)} × {t > 0}, w = u3, and A =

ρscsk f /ksρ f c f is a non-dimensional thermal inertia coefficient. Observe that equa-
tions (2.17)–(2.20) are still nonlinear due to the presence of the uiθ,i term in (2.19).
Also, the form of the equations is different to that of [27] because we employ R
rather than Ra (where Ra = R2), although equations (2.17)–(2.20) are easily trans-
formed to the equations of [27] and they are equivalent to them.

The boundary conditions to be satisfied are

uini = 0, θ = 0, φ = 0, on z = 0,1, (2.21)

where ni denotes the unit outward normal, together with ui,π,θ ,φ satisfying a plane
tiling periodicity in x,y. Such forms are discussed in e.g. [85], p. 43, [414], p. 51,
where especially the hexagonal planform of [91] is described.
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One linearizes (2.19) and then we put ui = eσtui(x) with a similar representation
for π,θ and φ to derive from (2.17) to (2.20) the linearized instability equations

ui =−π,i +Rθki ,

ui,i = 0,

σθ = Rw+Δθ +H(φ −θ),
σAφ = Δφ −Hγ(φ −θ).

(2.22)

If we put u = (u1,u2,u3,θ ,φ)T and consider the linear operator, L, as defined
in the abstract equation (2.5), from equations (2.22) but with (2.22)4 multiplied by
γ−1, we see that

L =

⎛
⎜⎜⎜⎜⎝
−1 0 0 0 0
0 −1 0 0 0
0 0 −1 R 0
0 0 R Δ −H H
0 0 0 H 1

γ Δ −H

⎞
⎟⎟⎟⎟⎠ (2.23)

In this form the symmetry of L, taking account of boundary conditions (2.21) is
evident.

Exchange of stabilities follows immediately from the symmetry of L, although it
is easily proved directly from (2.22). To see this let V be a period cell for the solution
and then multiply (2.22)1 by u∗i , (2.22)3 by θ ∗, (2.22)4 by φ ∗/γ where the ∗ denotes
complex conjugate. The resulting equations are integrated over V and added, using
the boundary conditions (2.21) to see that

σ
2

(
‖θ‖2 +

A
γ
‖φ‖2

)
=−‖u‖2 −‖∇θ‖2 − 1

γ
‖∇φ‖2

−H‖θ −φ‖2 +R
[
(θ ,w∗)+(w,θ ∗)

]
,

(2.24)

where ‖·‖ and (·, ·) momentarily denote the norm and inner product on the complex
Hilbert space L2(V ). Put σ = σr + iσ1 and then take the imaginary part of (2.24) to
obtain

σ1

2

(
‖θ‖2 +

A
γ
‖φ‖2

)
= 0.

For a non-zero solution we must have σ1 = 0 and so exchange of stabilities holds,
as observed by [27].

One may now set σ = 0 in (2.22) and solve these equations for the Rayleigh
number Ra. [27] show that

Ra =
Λ 2

a2

(
Λ +H(1+ γ)

Λ + γH

)
(2.25)

where a is the wavenumber and Λ = π2 + a2. [27] minimize Ra in (2.25) over the
wavenumber to find the critical Rayleigh number for instability, Rac, for many val-
ues of γ and H. They find that increasing γ and H increases Rac and so stabilizes the
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solution. In addition they provide many useful asymptotic results for Rac for small
H and γ .

At this point it is worth pointing out that values of the parameter γ are certainly
available for real materials. However, values for the thermal interaction coefficient,
H, are more elusive. In this regard the papers of [364, 365] are extremely impor-
tant. He presents very interesting analyses where he produces a possible way to
calculate H for a variety of porous media. The porous media he uses consist of
one-dimensional stripes of fluid between the solid skeleton, randomly striped one-
dimensional porous media, two-dimensional porous media where the fluid occupies
a checkerboard pattern, box type configurations, and random networks. The calcula-
tions of [364, 365] indicate there is a strong correlation between the porosity and the
thermal conductivities of the fluid and solid components, but there is also a major
effect due to a geometrical factor. This is a very interesting calculation and will be
very useful when dealing with a known geometrical pattern of porous media and
given solid and fluid components.

2.2.2 Nonlinear Stability

[416] demonstrated that the results of [27] are optimal in that their linearized insta-
bility results yield exactly the same Rayleigh number threshold as one obtains with
a global (for all initial data) nonlinear stability analysis. This means that the results
of [27] are particularly useful because they show that the linearized theory has
captured the physics of the onset of convection. One may deduce the equivalence
between the linear instability boundary and the nonlinear stability one by writing
the problem (2.17)–(2.21) as an abstract system of partial differential equations in
a Hilbert space and then verifying that appropriate conditions hold, namely that L
given by (2.23) is symmetric and (u,N(u)≥ 0, where N denotes the nonlinear terms
as indicated in (2.5), see also (2.7). In fact, for equations (2.17)–(2.21), it is straight-
forward to show (u,N(u) = 0.

It is instructive to include here a direct proof of the equivalence of the linear and
nonlinear stability boundaries, as is done in [416]. Let V be a three-dimensional
period cell for the solution to (2.17)–(2.21) and let (·, ·) and ‖ · ‖ denote the inner
product and norm on L2(V ). The idea is to construct “energy identities” by multi-
plying (2.17) by ui, (2.19) by θ , and (2.20) by φ/γ to obtain after integration by
parts and use of (2.18),

0 =−‖u‖2 +R(θ ,w), (2.26)

and
d
dt

1
2
‖θ‖2 = R(w,θ)−‖∇θ‖2 −H(θ ,θ −φ), (2.27)

and
d
dt

A
2γ

‖φ‖2 =−1
γ
‖∇φ‖2 −H(φ ,φ −θ). (2.28)
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Define an energy function E, an indefinite production term I, and the dissipation D
by

E(t) =
1
2
‖θ‖2 +

A
2γ

‖φ‖2,

I = 2(θ ,w),

D = ‖u‖2 +‖∇θ‖2 +
1
γ
‖∇φ‖2 +H‖θ −φ‖2.

(2.29)

Now add equations (2.26), (2.27) and (2.28) to arrive at the energy identity

dE
dt

= RI −D. (2.30)

From this equation one may deduce

dE
dt

≤−D
(

1− R
RE

)
, (2.31)

where the number RE is defined by the relation

R−1
E = max

H

I
D

(2.32)

with H being the space of admissible solutions, namely, H = {(u,θ ,φ)
∣∣ui ∈

L2(V ),θ ,φ ∈ H1(V ),ui,i = 0,ui,θ ,φ ,π are periodic over a plane tiling domain
in x and y}. By use of Poincaré’s inequality we may show D ≥ 2π2ζ1E, where
ζ1 = min{1,A−1}. Then for R < RE , put c = 1−R/RE > 0, and from (2.31) we may
deduce dE/dt ≤−kE, where k = 2π2ζ1c. This inequality integrates to see that

E(t)≤ exp(−kt)E(0). (2.33)

From inequality (2.33) it follows that E → 0 at least exponentially in time.
The exponential decay of E guarantees exponential decay of θ and φ (in L2(V )

norm). To obtain decay of u we observe that from (2.26) we may deduce

‖u‖2 =R(θ ,w)

≤R2

2
‖θ‖2 +

1
2
‖w‖2,

where in the last line the arithmetic-geometric mean inequality has been employed.
In this manner we see that

‖u‖2 ≤ R2‖θ‖2. (2.34)

This shows that the condition R < RE also guarantees exponential decay of ‖u‖.
The value of RE thus represents a global (i.e. for all initial data) nonlinear stability

threshold. The number RE is calculated from the Euler-Lagrange equations which
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