Chapter 8
Bending Problems

8.1 Mathematical Modeling

Bending describes the deformation of thin objects under small forces. Typically,
the object is neither stretched nor sheared, but large deformations occur. A simple
example is the deformation of a sheet of paper that is clamped on part of its boundary
and subject to a force such as gravity. Since curvatures are important to describe
such a behavior, the related mathematical models involve higher-order derivatives.
We discuss the derivation of such models and their properties. For further details we
refer to the textbooks [5, 6] and the seminal paper [10].

8.1.1 Bending Models

We consider a Lipschitz domain @ C R? representing the region occupied by a thin
plate, a body force f = (f1, />, f3)T : w — R3 acting on it, and clamped boundary
conditions on the nonempty closed subset yp C dw that prescribe the displacement
by a function up and the rotation by a mapping @p on yp.

Definition 8.1 The nonlinear Kirchhoff model seeks a deformation u : @ — R3
that minimizes the functional

. 1
IK‘(u)=5/|D2u|2dx—/f-udx,
w w

subject to the isometry constraint (Vu)"Vu = I, and the boundary conditions
uly, = up and Vul|,, = Pp.

The isometry constraint reflects the fact that pure bending theories do not allow
for a shearing or stretching of the plate. This limits the class of boundary conditions
that lead to nonempty sets of admissible deformations. In particular, the function @p
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218 8 Bending Problems

prescribes the normal, of the deformed surface on yp. The model sets no limitations
on the size of the deformation, but does not prohibit self-penetrations, i.e., it does
not enforce the surface parametrized by u# be embedded. We will show below that
the isometry constraint allows us to replace the Frobenius norm of the Hessian by
the Euclidean norm of the Laplacian, i.e., |D%u| = |Aul, and that these expressions
coincide with the modulus of the mean curvature. For small displacements

¢ =u—[idy,0]",

ie., if |[V@| < 1, the isometry constraint can be omitted and it suffices to consider
the vertical component w = u3 of the deformation. Typical large deformation and
small displacement situations are depicted in Fig.8.1.

Definition 8.2 The linear Kichhoff model seeks a vertical displacementw : @ — R
that minimizes the functional

. 1
15 (w) = §/|D2w|2dx—/f3wdx
w w

subject to the boundary conditions w|,,, = 0 and Vw|,, = 0, i.e., w belongs to the
set H (w) = {v € H*(2) : v],, =0, |y, = O}

The linear Kirchhoff model is closely related to a model in which no second-order
derivatives occur. It may be regarded as an approximation of the linear Kirchhoff
model in which small shearing effects may occur. Mathematically, the second order
derivatives are replaced by an additional variable and the difference is penalized
with a penalty parameter, which may be regarded as a small artificial plate thickness.
Notice that the symmetric gradient of a gradient is the Hessian, i.e., e(Vw) = D?w.

Definition 8.3 The linear Reissner—Mindlin model seeks for given t > 0 a vertical
displacement w : @ — R and a rotation 6 : @ — R> that minimize the functional

-2
' 1
™My, 0) = T/w —Vw|2dx+§/|8(9)|2dx—/f3wdx,
w w w

Fig. 8.1 Large isometric deformation of a thin clamped plate (leff) and small displacement
described by a linear model (right)
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where £(9) = [(VO) T + (V0)]/2, subject to the boundary conditions w|,,, = 0 and
Olyp =0.

A solution u of the nonlinear Kirchhoff model defines an open surface in R? that
is parametrized by the deformation u. Since this surface is isometric to @, we have
that the Gaussian curvature K vanishes, i.e., that the local length and angle relations
are preserved under the deformation. The mean curvature is given by H> = |D?u|?
and this identity establishes a relation to a bending model that is used to describe the
deformation of fluid membranes such as cell surfaces. Here, the considered surfaces
are closed. The justification of the model is less clear than in the case of solids. In
particular, fluid membranes can undergo large shearing effects that are not seen by
its description as a surface.

Definition 8.4 The Willmore model seeks a closed surface . C R> that minimizes

the functional 1
IMW@ZE/MM—/KM

M M

subject to constraints that the surface area of .# or that the volume enclosed by .#
be prescribed.

The integral over the Gaussian curvature is a topological invariant and can be
neglected if a minimizer is sought in a fixed topology class. If the surface area and
the enclosed volume are prescribed, then the model is referred to as the Helfrich
model.

8.1.2 Relations to Hyperelasticity

In three-dimensional hyperelasticity, pure bending is characterized by a cubic scaling
of the energy with respect to the plate thickness ¢, i.e., that

Mw:/wwwm—/ﬁmm~ﬁ

for the optimal deformations u; € H'(§2;; R®) ast — Ofor 2, = w x (—1/2,1/2) C
R3, such that us|rp, = id on FD = yp x (—t/2,t/2). This motivates considering
the rescaled energy functionals I, = 1731, and investigating the limiting behavior
for + — 0 in the framework of I"-convergence. We let V' denote the gradient with
respect to the first two variables x’ = (x1, x2). The corresponding three-dimensional
objects are denoted V = (V’, 33) and x = (X', x3).

Theorem 8.1 (Dimension reduction [10]) Let

W (F) = dist*(F, SO(3))
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for all F € R¥3 and SO3) = (F € R : FTF = L3, detF = 1}. Set
f,(x xX3) =t 2ﬁ(x x3) and assume ﬁ — fin L2(£21; R3) and that f is inde-
pendent of X3 € (—1, 1). Let (u);~0 be a sequence of minimizers for the sequence of
functionals (I;)t=0, i.e., uy € H! (824 R3) with u;| ry, = idy,. Then the rescaled func-
tions U(x', %3) = u(x’, £x3) converge in H' (£21; R?) to a function u € H'(£21; R?).
This function is independent of X3, defines a parametrized surface with the first funda-
mental form g = (V') (V'u) = L in 2, and satisfies u € H>(£21; R3). Moreover,
it has the boundary values ul,, = [id, O]T and V/u|yD = I, O]T and minimizes

: 1
N = E/|h|2dx’—/f.uc1x’,
w w

withthe normal b = d1u x du and the second fundamental formh = — (V’b)—r (V'u),
in functions v € H'(£21; R?), that are independent of %3, satisfy VW (V) =D
in §21, and have the same boundary conditions as u. Conversely, every such mini-
mizer u of Il is the limit of a sequence of rescaled minimizers of I, and the minimal
energies converge to I (u).

Remarks 8.1 (i) We will show below that || = |D?u| for the Frobenius norms of
the second fundamental form and the Hessian of u.

(i1) The result also holds for isotropic, frame-indifferent energy densities W &
C2(R™") with W (I3) = 0, and W(F) > dist*(F, SO(3)), cf. [10].

For a heuristic justification of the result, we follow [7] and consider the rescaled
energy functional

T(u) =13 / W (Vu) dx

with W given by

W(F) = dist*(F, SO(3)) = mm |F 0.

We assume that the optimal deformation u; = u is of the form
u(x', x3) = v(x') + x3b(x’)

with z-independent vector fields v,b : v — R3 and b is normal to the surface
parametrized by v, i.e., dgv(x’) - b(x") = 0 for £ = 1, 2. This means that v is the
deformation of the middle surface w and the segments normal to w are mapped to
straight lines that are normal to the deformed surface, cf. the right plot of Fig.8.2.
We have

Vu = [V'v, b] + [x3V'D, 0].

For matrices F € R3*3 in a neighborhood of SO(3), we use the approximation
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Fig. 8.2 Normal segments are mapped to straight line segments under the Reissner—Mindlin
hypotheses (/eft); the Kirchhoff-Love hypotheses require that the deformed segments be normal to
the deformed middle surface (right)

W (F) = dis?(F, SO(3)) ~ ~|F'F — I;*.

FNg

For a proof of this relation consider F = P+¢G, where P = mso(3) (F) is the nearest-
neighbor projection of F' onto SO(3) and G is normal to SO(3) at P. We may assume
that P = I3, which implies that G is symmetric. Then dist*(F, SO(3)) = £*|G|? and
IFTF—13)? = e2|G+G T 24+ 0(&3) = 4¢2|G|>+0(3). Since I (u) = t31,(u) < C
and ¢ is small, we expect that W (Vu) is small, i.e., that Vu is close to SO(3) so that

-3
~ =
T,(u) ~ T/|(W)TW—13|2dx.
o
. I NT 77, ARV
Noting (V'v) ' Vb = (V'b) ' V'v, we have

ISR v/ AR v N T T o
(W)TW:[(W) Vv 0 }HS [Z(Vb) Vv (V'b) b}rx% |:(Vb) Vbo}

0 |b? bTV'b 0 0 0l
With the abbreviations
=t VW'V =D), h=—-W'Vb, k=b"b

we obtain

f —2h (V'b)Th
Ty~ /‘[gth ]+X3[bT(W)< ) i|+x§

/‘ 18 — 2x3h +x3k (V'b) T ‘2
b1 (V') b2 — 1

o)

To guarantee that this expression is bounded #-independently, we need to impose the
condition |b|2 = 1, and with the resulting identity bIV'b = 0, we deduce that

~ t73 R 2,12
Ii(u) ~ T/ |tg, — 2x3h 4 x3k|” dx.
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By carrying out the integration with respect to x3, we obtain

.
1,<u>~—/|g,| 3P+ K+ B ke

Again, to obtain a 7-independent limit, we need that g, = 0. Neglecting the term
involving the factor #2, this leads to the reduced, z-independent functional

P 1
I(u) = ﬁ/|h|2dx’,
w

subject to the pointwise constraint (V' WiV = L. We finally remark that for
forces described by functions f; that are independent of x3 and such that r—2f, — f
in L?(w; R?) as r — 0, we find with the assumed expansion u(x) = v(x') + x3b(x')
that

t/2

—3/f, udx—t‘3/ﬁ vdx+t_3//x?b -y dx’ dx3

—t/2 ®
=t72/f,~vdx—>/f~vdx’
2 co

ast — 0.

8.1.3 Relations to Linear Elasticity

Linear elasticity employs a geometric linearization defined through the symmetric
gradient

£@) = ~ (V)T + V) ~ + (Vi) Vi~ I)
2 2

for small displacements ¢ = u — id3 : £2 — R3 with £2 C R3. The energy density
W is approximated by the quadratic expression

1 1
W(Vu) ~ EDZW(13)[V¢ Vo] = —D2W(13)[8(¢>) ()],

provided W is isotropic and frame-indifferent, using that W(/3) = 0, and
DW (I3) = 0. For homogeneous materials it follows that with the Lamé constants
X, i we have for every symmetric matrix E € R3*3 with C = D*>W (I3) that
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CE =2uE + A(tr E)I3.

The related minimization problem looks for ¢ : £2 — R? to be minimal for the
Navier—Lamé functional

1 —~
N (¢) = E/(Cs@):e(qﬁ)dx—/f-qbdx,
2 2

subject to ¢ |y, = 0. For thin plates £2, = w x (—t/2, t/2) with Dirichlet boundary
I'd> = yp x (—t/2,1/2) for yp C dw, often the following assumptions are made to
obtain a dimensionally reduced model. The different assumptions are illustrated in
Fig.8.2.

Assumption 8.1 (Reissner—Mindlin hypotheses) (1) Points on the middle surface
are only displaced in the vertical direction, i.e., ¢1(x’,0) = ¢(x’,0) = 0 for all
X € w.

(2) The vertical displacement does not depend on x3, i.e., ¢3(x’, x3) = w(x').

(3) Segments that are normal to the middle surface are linearly deformed, i.e.,
d(,x3) = p(x', 0) — x30(x') for all (x', x3) € £2,.

The assumption implies that the minimizer for /N is given by

R e < 16
¢(x,x3)—[ o) ]

with the rotation 6 : @ — R? and the vertical displacement w : @ — R.

Assumption 8.2 (Kirchhoff-Love hypotheses) In addition to the Reissner—-Mindlin
hypotheses, assume that segments that are normal to the middle surface are mapped
linearly and isometrically to segments that are normal to the deformed middle surface,
e, p(X,x3) = (¥, 0) — x30(x') forall (', x3) € §2, with

/ !
B0, 0) = (14 Vw212 [Vow} ~ [Vow} '

Note that ¢ is the displacement, so that the third component of the normal vector 0
disappears. The additional assumption implies that the solution of the linearly elastic
problem is given by

—x3V'w(x)

w(x") ]

P, x3) = [

for the vertical displacement w : @ — R.

Proposition 8.1 (Linear bending) Assume that f; is independent of x3 and set f3 =
t=2f; 3. Suppose that CE = E for all symmetric matrices E € R>3. Let ¢ €
Hllj(.Qt; R3) be the minimizer of the three-dimensional elasticity functional IN“ with
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2 =82 and? = f;. Up to a change of constants we have:

(i) Under the Reissner—Mindlin hypotheses the pair (w, 0) € Hllj (w) x H]ID (w: R?)
that specifies ¢ solves the linear Reissner—Mindlin model.

(ii) Under the Kirchhoff-Love hypotheses the function w € H]%(a)) that specifies ¢
solves the linear Kirchhoff model.

Proof In the case of the Reissner—Mindlin hypotheses we have

g'(¢) = [—x3V 0 0] + % |:—X3(V/9)T V/W] _ [ —x3&'(0)  (V'w— 9)/2] '

Vw0 —0T 0 Vw—0T/2 0
Therefore, due to the assumption CE = E,

1
Ce'(9) : €'(¢) = e’ O + S IV'w — 01,

An integration over £2; = w x (—t/2, t/2) shows that

/(Cs(go) 8((p)d)€——/|8(9)| dx' + - /le 9| dx’.

2

Since f; is independent of x3, we have

t/2 t/2
/fz pdx = //( x3)0 - fi.12 dxz dx’ +//medxzdx —t/fzsde’
o —t/2 o —t/2

Hence,
—3,NL 1 2., 12 2 4 )
Ny = 57 [ le@P d' + - [ Vw6 dy' — [ fwdx'.
w w w

For the Kirchhoff hypothesis, this simplifies to / Ki" que to the identities V'w = 6
and &’ (V'w) = V'V'w. |

Remark 8.2 1If CE = 2uE + A(tr E)I3 is considered then the assumption that for
o = Ce(¢) we have 033 = 0 has to be included.
8.1.4 Properties of Isometries

Given a surface ./ parametrized by u : @ — R3 the first and second fundamental
forms g, h : @ — R?>*? are given by
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g = @ u)i<ij<r = (Yu) Vu,
h=—0;b-du)1<ij<2 = —(Vb)TVu = b D%,

where b = 9ju X dru/|du x dyu| is a unit normal to .# . The parametrization is
assumed to be an immersion, so that the tangent vectors dju and d,u are linearly
independent everywhere in w. The first and second fundamental form are interpreted
as bilinear forms on the tangent space 7. in terms of the coefficients of the family
of bases (Blu(x), Bzu(x))xew. It follows that g is a symmetric and positive definite
matrix for every x € w that defines a metric on the tangent space of .#. The Gauss
and mean curvature are the determinant and the trace of the Weingarten map

—1

s = —hg
and given by
deth h:det'g
K=dets=—, H=trs=—-=
detg detg

respectively. The Weingarten map measures variations of the normal b and is inter-
preted as a linear mapping on the tangent space. The second fundamental form is
the bilinear form associated with s. We refer the reader to Sect. 8.4 for a detailed
discussion.

Definition 8.5 The parametrization u : @ — R3 is called isometry if g(x) = I, for
every x € w.

Proposition 8.2 Suppose that u : @ — R> is a C*-isometry. Then 0;0ju - dgu = 0,
K =0, and
D%l = |Aul = |h| = |H],

where | - | denotes the Frobenius norm on the respective spaces.

Proof We first note that for 1 < i7,j < 2, we have 0 = 0;(0ju - dju) = 20;0;u - dju.
To show that we also have Bl-zu -9ju = 0 fori # j, we note 0 = 0;(9; - Jju) =
O2u - dju + du - d;dju, i.e., 3%u - u = —du - 9;9;u = 0. Hence, we have

0;0ju - o =0

fori,j, k = 1,2, i.e., the Christoffel symbols of the second kind vanish. As a con-
sequence of Gauss’ theorem, cf. Lemma 8.3, we have K = 0. Moreover, we deduce
that —Au = Bb and since (—Au) - b = tr(—h) = H, we have 8 = H. The
vectors (dju, dru, b) form an orthonormal basis of R3 for every x € o, so that
[0;0;u| = 10;0ju - b| and hence

2
ID*ul> = > |didju - bI* = |,
ij=1



226 8 Bending Problems

Moreover, we have
Ih)* = |s)* = (trs)> — 2dets = H*> — 2K = H?,

which proves the assertion. (]

Remark 8.3 Since isometries in H?(w; R3) can be approximated by isometries in
C? (w; R3) in the norm of H2 (w; R3), the results of the proposition also hold for
isometries u € Hz(a); ]R3), cf. [12].

8.2 Approximaton of Linear Bending Models

We discuss in this section numerical methods for the approximation of the linear
Kirchhoff and the linear Reissner—Mindlin model. Finite element methods for dimen-
sionally reduced models have to be carefully developed to avoid so-called locking
effects. This describes the phenomenon that deformations obtained by numerical
computation are too small in comparison to the true deformation. In particular, mem-
brane locking is the inability of a finite element method to capture bending effects
without stretching while shear locking refers to the problem that a finite element
method is too stiff to describe certain in-plane deformations due to the occurrence of
a small parameter. Another effect that occurs in the description of thin elastic struc-
tures is the Babuska paradox that states that if a domain is approximated by polygons,
then the numerical solutions may fail to converge to the correct solution. We follow
closely the presentation of [5] and refer the reader to [4] for further aspects.

8.2.1 Discrete Kirchhoff Triangles

To avoid an H 2-conforming finite element method for the linear Kirchhoff model,
we employ a nonconforming discretization that is based on the construction of a
discrete gradient operator

Vi W, — O

with H 1-conforming finite element spaces W), C H Yw) and ©, ¢ H'(w; R?).
These are for a regular triangulation .7, of w defined as

Wy, = {wi € C(@) : wilr € PRYT) forall T € .,
Vwy, continuous at all z € .4},
On = {6 € C@) : Oplr € Po(T) forall T € F).

Here, P (T) for every T € 7, denotes the set of polynomials of total degree less
or equal to k > O restricted to 7. The superscript in Pged means that one degree of
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Vh
Wi —_— O,

Fig. 8.3 Schematic description of the elementwise reduced cubic finite element space W), (left)
and the space of elementwise quadratic vector fields &, (right)

freedom is eliminated, i.e., with the center of mass xr = (1/3) ZZE%QT zof T,

1
PYUT) = {pe PT) i pr) = 5 3 [p@) +Vp() - 6r = 2)]).
zeMNT

The degrees of freedom in W), are the function values and the derivatives at the
vertices of the elements, cf. Fig. 8.3. For w € H>(w), we define the nodal interpolant
3w € Wy by the conditions 7 w(z) = w(z) and V.7 w(z) = Vw(z) for all
z€ M.

Definition 8.6 The discrete gradient operator Vj, : W, — Oy, is for w, € W), the
uniquely defined function 6, = Vwy, € @), with

On(z) = Vwy(z) forall z € A7,

1
O (zs) - ng = E(wh(z;) +Vwi(zd) -ns  forall S € .,

On(zs) - ts = Vwp(zs) - ts for all S € .},

where, for all sides S € yh, the orthonormal vectors ng, g € R2 are chosen such
that ng is normal to S, ZS, zS € M}, are the endpoints of S, and zg = (ZS + ZS)/Z is

the midpoint of S. For w € H3(£2), we set Vyw = Vhf w.

Remark 8.4 For every S € .}, we have

1
Viwn(zs) = 5[(th(zé) + Vwi(z3)) - ns|ns + [Vwa(zs) - ts]ts

The following lemma shows that V;, may be regarded as an interpolation operator
on the space of gradients of functions in H>(w). We let yp C dw be closed and of
positive surface measure and define yny = dw \ yp.

Lemma 8.1 (Properties of V), [5]) (i) There exists c; > 0 such that for all w, € Wy,
and T € F, we have for £ = 0, 1 that

S ¢ 0+1
T IV wallzary < IV Viwnllzzy < etV wall 2.
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where V! =V and VO = I.
(i) There exists co > 0 such that for all w € H3(w) and T € Fj, we have

IVaw = VWl 2y + BV Vew — D*wll 27y < 2h3 ID*wll ).
(iii) There exists c3 > O such that for all wy, € Wy, and T € T}, we have
IVawn — Ywall 2y < cshrllD*wall 2 ().
(iv) The mapping wy, — ||[VVywy,|| defines a norm on
Wip = {wh € Wy :wp(z) =0, Vwy(z) =O0forallz € M, N )/D},

and we have wy|,, = 0 and Vwy|,, = 0 for all wy, € Wy, p.

Proof (i) Both expressions define semi-norms and we show that V*1y;, = 0if and
only if VEV,w, = 0 for all wy, € W),. Assume that Vuwnlr = cr for some cr € RZ.
Then Vwy(z) = ¢y forall z € A4, NT and Vwy,(zs) = cp forall S € ., NT.
Thus, the cubic polynomials wy|s are affine for all S € ., N 3T, and also the
function wy |37 is affine. Due to the elementwise constraint in the definition of Wy,
it follows that wy,|7 is affine and thus Vw), = cr. If conversely Vwy,|r = cr, then
also Vywy|r = cr. Hence, the expressions ||Vl+lwh||L2(T) and ”VthWhHLZ(T) are
equivalent semi-norms on Wj,|r and a scaling argument proves the first assertion.
(i) Since V,w|r is affine if Vw|7 is affine, the Bramble—Hilbert lemma yields the
interpolation estimate

10 — Ol 2y + hr IV O — )l 2y < chF D01l 2

for§ = Vw € H*(w) and 6 = Vjw.

(iii) The estimate is a consequence of (ii) and the inverse estimate |[D3wy,|| 2(1) =
chy 1D will 2 r).

@iv) If wy(z) = 0 and V,wy,(z) = 0 for all z € 4, N yp then, since wy|s is a cubic
polynomial for every S € .7}, it follows that wy|,, = 0 and V,wy|,, = 0. Assume
that [[VV,wy,|| = 0. Then, since V,wy|,p, = 0 we deduce by Poincaré inequality that
Vipwy = 01in w. With (i) and wy|,,, = 0 we find wj, = 0 in w. U

The interpolation estimates allow us to prove the following error estimate.

Theorem 8.2 (Error estimate) Assume that w € le)(a)) N H3(w) is the solution of
the linear Kirchhoff model, i.e.,

(D*w, D*v) = (f,v)
forallv e H]%(a)) and let wy, € Wy, p solve

(VVpwp, VVRvE) = (f, vp)
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for all vy, € Wy p. Then we have

ID*w — VVywull < chlWllg o)-
Proof The Lax—Milgram lemma and Lemma 8.1(iv) imply the existence of unique
solutions w € le)(a)) and w, € W), p. The assumption w € H3(w), the boundary

condition (Dzw)n|,,N = 0, an integration by parts, and the identities div D> = AV =
V A show, that for all v € H]%(a)), we have

(f,v) = (D*w, D*v) = —(VAw, Vv)
and this identity holds for all v € Hll) (w). Therefore, for v, € W, p it follows that

(VViw, VVivn) = (D*w, VViv) + (V[Viw — Vwl, VVj0p)
= —(VAw, Vivp) + (V[Vw — Vw], VVivi)
= —(VAw, Vvy) — (VAw, [Viv, — Vigl)

+ (V[Vaw — Vw], VVvp).

Recalling that V,w = Vhf~h3w and incorporating the discrete and continuous for-
mulations, this yields that

IVVilw — willl* = (VViw, VVi[w — wi]) — (VViwh, VVi[w — wy])
= (f, Zpw — wp) + (VAw, Vi[w — wy] — V[.Z2w — wy])
+ (VIViw — VW], VW — wi]) — (f, 3w — wy)
= (VAW, Vilw — wi] — VL.Z w — wp])
+ (V[Vpw — Vw], VVi[w — wy]).

For the first term on the right-hand side we have by Lemma 8.1(i) and (iii) that
(VAW, Vilw — wi] — VL7 w — wi) < chl|VAW[||[VVi[w — wh]]l.
The second term is estimated with the help of Lemma 8.1(ii), i.e.,
(VIViw = Vwl, VV4Iw = wil) < chllD ][V Vilw — wyl]

The combination of the last three estimates, the triangle inequality, and the bound
|1D?*w — VVw|| < ch||D3w]|| of Lemma 8.1(ii) prove the assertion. ([l
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8.2.2 Realization

For the implementation of the discrete Kirchhoff triangle, we identify functions wy, €
Wy, and 6, € Oy, with vectors W € R3L and ® € R2EHM) where L = ne = #.4,
and M = ng = #.9},, defined by

On(z1) (6, ]
Fwpz) T [ wz ] Op(z2) 0.
Vwp(z1) Swy, .
wi(22) Wza ) :
On(zL) o
_ | Vwp(z2) | _ | w _ %
W= , =17 97 outs) - (On(zg,) +0n(z5))/2 | = b5,
: On(zs,) — (6n (Zéz) + 0p (zgz))/ 2 Os,
Wh(ZL) Wz . .
LVwy(zp) Lowz, | 1: ) :
L On(zsy) — (On(zs,,) +0n(z5,)) /2| LOsy

with A4, = {z1,22,...,z.} and ., = {S1, S, ..., Sum}. For the coefficient of 6,
related to a side S € .7, we subtract half of the values of 6, at the corresponding
endpoints zé and Zé since we use the hierarchical basis

(@zw Pzas oo Pz PS5 PSps - "(pSM)

of the space .#%(%},) = {vy € C(@) : vu|r € Po(T) forall T € ) given by the
nodal basis (¢;,, ¢z, ..., ¢z ) of 1(F,) and the functions @5 = 4(pzé(pz§ for all

S € &) A straightforward calculation shows that, for a function wy, € Pged(T), we
have that wy,|s is cubic for every side S C a7 with

3 1
(Vwa(zs)) - ts = m(w;,(z@ —wi(z§)) — Z(th(z;) + Vwi(z3) - ts

with |S| = |z§ — z§| and z§ — zblw = |S|ts. Since (ng, ts) are orthonormal vectors it
follows for 6;, = V,wy, that

(Vwi(zg) + Vwi(z3)) - ns]ns

N =

On(zs) = (Vwn(zs) - 15)1s + [

1
= (th(ZS) . tS)ts + E(th(zé) + th(Zb%))

1
=[5 (Vwalzg) + Ywi(z)) - 1s]1s

[\

3 3
= m(wh(zg‘) - Wh(Zé))lS - Z[(th(zé) + th(zg)) . tS]tS

1
- E(th(zé) + Vwa(zd).
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Since 6, (zg) = Vwy, (zg), Jj =1, 2, the corresponding coefficient is given by

05 = O (zs) — (On(z8) + On(zd)) /2

3 3
= m(w;,(zf) - Wh(Zé))tS — Z[(th(zé) + th(zg,)) . tS]tS-

With these identifications, the discrete gradient operator can be represented by a
matrix D;, € R2EHMP3L For a single element T = conv{zy, z2, z3} with sides
S1 = conv{zp, z3}, S» = conv{zs, 71}, and S3 = conv{z], 22}, we have

0, 0L 0 0 0 O Wy,
0, 00 0 L 0 O Swy,
051 _100 0 0 0 b Wz,
Os, | ~0 ~0 ?Sl Ts, _ZSI ZSI dwz,
Os, Is, Ts, 9 0 -5, Ts, Wz
Os, tsy Tsy —ts; Ts; O 0 Wy,
where TSe = —(3/Mts, t;; and?se = —(3/(2|S¢1))ts, . For a simpler implementation

we approximated the right-hand side using numerical integration, i.e.,
/f3thx ~ /fh[fw;l]dx
w w

which is computed with the lumped mass matrix. Figure 8.5 displays an implemen-
tation of the approximation of the linear Kirchhoff model with the discrete Kirchhoff
triangle. The M x 2 field n4s provides an enumeration of the edges and defines
their endpoints. The field s4e has dimension ng x 3, ng = #.7,, and contains the
global numbers of the sides of the elements in .7}, where the convention that the
Jjth edge of T is opposite to the jth node of T is used, cf. Fig. 8.4. These arrays are
provided by the subroutine sides. The stiffness matrix of the P2 finite element
space with respect to the hierarchical basis defined above is provided by the routine
fe_matrix_p2.m.

Fig. 8.4 Local enumeration z

of the sides of a triangle S,

every side is associated to Si
the opposite node

21 S3 22
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function kirchhoff_ linear (red)
[c4n,nde,Db,Nb] = triang_cube (2);
for j = l:red
[c4n,nde,Db,Nb] = red_refine(c4n,nde,Db,Nb);
end
[nds, s4e] = sides (nde);
nC = size(cdn,1l); nS = size(nds,1);
dNodes = unique (Db) ;
FNodes = setdiff (1:3%nC, [3xdNodes-2; 3xdNodes-1; 3xdNodes-0]) ;
u = zeros(3*nC,1); b = zeros(3*nC,1);
D = sparse (2% (nC+nS), 3*nC);
for j = 1:nC
D(2%3-[1,0],3%3-[1,0]) = eye(2);
end
for j = 1:nS
t_S = (c4n(nds(3,2),:)-c4n(nds(J,1),:))"';
length_S = norm(t_S); t_S = t_S/length_S
D(2*nC+2x3j-[1,0],3*n4d4s(j,1)-2) = -3/ (2+length_S)*t_S;
D (2+nC+2+*j— [1 0]1,3*n4s(3,2)-2) = 3/(2+xlength_S)*t_S;
D(2*nC+2x3j-[1,0],3*n4s(J,1)-[1,0]) = —(3/4)*(t_S*t_S"');
D(2*nC+2x3j-[1,0],3*n4d4s(3,2)-[1,0]) = —(3/4)*(t_S*t_S"');
end
[s_pl,—,m_lumped,vol_T] = fe_matrices(c4n,nde);
s_p2 = fe_matrix_p2(c4n,nde,n4ds,sde,s_pl,vol_T);
S = sparse (2% (nC+nS), 2% (nC+ns)) ;
S(1:2:2% (nC+nS),1:2:2% (nC+ns)) = s_p2;
S(2:2:2%(nC+nsS) ,2:2:2% (nC+ns)) = s_p2;
S_dkt = D'xS*D;
b(3%(1:nC)-2) = m_lumpedxf (c4n);
u (FNodes) = S_dkt (FNodes, FNodes) \b (FNodes) ;
show_pl (c4n,nde,Db,Nb,u(l:3:3%nC))
function [n4ds,sd4e] = sides (nde)
sides = reshape(nde(:,[2,3,3,1,1,21)',2,11)"';
[nds,—, sideNrs] = unique (sort (sides,2), 'rows', "first');
s4e = reshape(sideNrs (l:3%size(nde,1)),3,[1)";
function val = f(x)
val = ones(size(x,1),1);

Fig. 8.5 MATLAB routine for the approximation of the linear Kirchhoff model with Kirchhoff
triangles

8.2.3 Reissner—Mindlin Plate

The linear Reissner—Mindlin model seeks a pair (w, 6) € Hll) (w) x Hllj (w; R?) such
that
(£©0). e(¥)) + 1720 — Vw, ¥ — Vi) = (f. 1)

forall (¥, n) € H]1) (w; R?) x Hll) (w). The corresponding strong form of the problem
reads as
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—dive@®) +1720 —Vw) =0inw, Ol =0, 8,0]y =0,
12 div(@ —Vw) =finw, wly =0, @ —Vw)-nl, =0

with yN = 0w \ yp. The problem can be simplified by employing a Helmholtz
decomposition of & — Vw. For a function p € H!(w) we write

Curl p = (Vp)* = [—dp, dip] .

Proposition 8.3 (Equivalent formulation) Assume that w is simply connected. There
exist uniquely defined functions r € Hllj(a)) and p € H' (w) with prdx = 0 and
Curl p-n|, = 0, such that =20 — Vw) = —Vr —Curl p. The functionr € Hllj(a))
satisfies

(Vr, Vi) = (f.m)

foralln e HllD (w). The pair (0, p) is uniquely defined by the equations

(e0),e(¥)) — (Curl p,y) = (Vr,¥),
0, Curl g) — t2(Cur1 p,Curl ¢) =0

forall (Y, q) € Hll)(a); R2) x H!(w) with Curl q-nlyy = 0. The functionw € Hll)(w)
satisfies
(Vw, Vv) = (0, Vv) + 12 (Vr, Vv)

forallv e Hllj(a)).

Proof Letr e Hllj (w) be the unique solution of
(Vr, Vi) = (f,m) = =126 — Vw, Vi)

forall n € Hll)(a)). Since F = t2(0 — Vw) + Vr satisfies div F = 0 in w and since
F - n|,y = 0, there exists a uniquely defined function p € H !(w) with f HLPdx =0,
Curl p-n=0onyN,and F = —Curl p, cf.,, e.g., [11]. For all n € Hll)(a)), we then
have

(Curl p, V) = / n Curl p-nds =0.

ow

The equations now follow from the weak formulation of the linear Reissner—-Mindlin
model and the identity that defines Curl p. (]

The equations derived in the proposition show that the solution of the linear
Reissner-Mindlin model can be computed by successively solving three problems.
The first and the third formulations that define r and w are Poisson problems, while
the second one defines the pair (6, p) through a saddle-point problem with a penalty
term that is qualitatively equivalent to the Stokes problem. In particular, the inf-sup
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condition is satisfied and the solution operator is bounded #-independently. This
implies the robust solvability of the Reissner—Mindlin model, provided that the
finite element spaces used for the approximation of (6, p) satisfy a discrete inf-
sup condition. A possible choice is the so-called mini-element, which is the lowest
order conforming polynomial element for the Stokes problem. To guarantee that a
discrete Helmholtz decomposition is available, the variables r and w then need to be
approximated in the nonconforming Crouzeix—Raviart finite element space, cf. [1]
for related details and optimal, #-independent error estimates.

8.3 Approximation of the Nonlinear Kirchhoff Model

The linear Kirchhoff model may be regarded as a simplification of the nonlinear
Kirchhoff model in the case of small displacements. We generalize in this section the
finite element method based on discrete Kirchhoff triangles for the linear model to
the nonlinear one that describes large bending deformations. The proposed method
uses techniques developed in [3].

8.3.1 Discretization

We employ the spaces Wj, and ©), introduced for the approximation of the linear
Kirchhoff model. The fact that the gradient of a function in W), is continuous at
vertices of elements allows us to impose the isometry constraint at those points. We
thus consider the minimization problem defined by

. 1
K uy) = z/|vvhuh|2dx—/f.uhdx
w w

subject to uy, € ), = {vh € W,?, [Vvh(z)]TVvh(z) = I, forall z € A7,
vi(2) = up(2), Vvi(z) = @p(z) forallz € A, Nyp}.

For the vector field u;, € W7, the approximate gradient Vj,uy, is obtained by applying
V), to each component of u;. We suppose that the boundary data up and @p are
compatible in the sense that for a function iip € H?(w; R3) with (Vip) ' Vip = I
in w, we have up = up|,,, and @p = Vip|,,,. We also assume that up and @p can
be approximated with arbitrary accuracy by nodal interpolation on yp, i.e.,

|lup — Fwinly |20, ) + [ @D — Z1 Vbl ||L2(yo) -0

(yp)

as h — 0. For analyzing convergence of the numerical scheme, we assume that there
exists a solution of the nonlinear Kirchhoff model that is smooth or which can be



8.3 Approximation of the Nonlinear Kirchhoff Model 235

approximated by smooth isometries. This assumption is not a restriction because of
corresponding density results in [12].

Theorem 8.3 (Approximation) Assume that there exists a minimizer u € < with
o =veH ;R : (V) Vv =D, v],, = up, Vvly, = &p}

for the nonlinear Kirchhoff model which can be approximated in H*(w; R3) by
functions v € o/ N H?(w; R3). For every h > 0 there exists a minimizer uy, € W; of
I,Il(i. If (up)n=o is a sequence of minimizers, then |Vuy| < C, forall h > 0, and every
accumulation point u € H' (w; R3) of the sequence is a strong accumulation point,
belongs to H? (w; R3), satisfies (Vu)TVu = I, almost everywhere in w, u|,, = up,
and Vu|,, = ®Pp, and is a minimizer for A

Proof By Lemma 8.1 (iii) we have that || VVju;|| is a norm and this implies that / ,fi
has a minimizer. Because of the assumptions on the boundary data, it follows by
Poincaré inequality and Lemma 8.1 (i) that || Vu,, || < Cand ||VV,uy| < Cforallh >
0.Letu € H'(w;R?*) andz € H' (w: R3X2) be such that for a subsequence (which is
not relabeled), we have uj, — u in H! (w; R?) and Vju, — z in H' (w; R3*?%). With
Lemma 8.1 we verify that || Vyu, — Vuy|| < ch||VVyuy| and this yields Vu = z,
in particular u € H?(w;R3). The attainment of the boundary data follows from
continuity properties of the trace operators and the fact that

lup — Fpupll + | Vpup — I Vauyll — 0

as h — 0. A nodal interpolation estimate and an inverse estimate yield that for every
T € ,, we have

| (Vi) " Vun < 3 | D[(Vur) " Va] |,

I ” LY(T) (T)

< chi (1D unll 2y IV unll 2y + 1D w72 )

< chr (ID%upll 27 | Vitnl 2y + 1 D*un | 7o ).

A summation over all T € .7, together with the fact that Vuy, converges strongly to
Vu implies that (Vu) " Vu = I almost everywhere in w. To verify that # minimizes

1K1, we first note that by weak lower semicontinuity of the L2 norm, we have
ID?ull = [[Vz]| < Tim inf ||V V|
h—0
and
/uh~fdx—>/u‘fdx.
w w

This proves that
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M) < lim inf IR uy).

To show that the minimal energy is attained let # € .2/ be a minimizing isometry for
I8 Due to the assumed approximability of u by smooth isometries, we may assume
that # € H>(w; R?). We define ), = ﬂ;ﬁ € 7, and note with Lemma 8.1(ii) that

I Vyiin — Vll + hl|V Vit — Dl < ch® ([l 3 (o)

which implies the attainment of the minimal energy. |

8.3.2 Iterative Minimization

Our iterative scheme for the practical solution of the discretized minimization prob-
lem realizes a discrete H2-gradient flow of the energy functional with a linearization
of the nodal isometry constraint about the current iterate. For this, it is important
to realize that for the employed finite element space W), the nodal values of the
discrete deformation (u;(z) : z € A7) and its gradient (Vuy(z) : z € ;) are
mutually independent variables in the minimization problem.

Algorithm 8.1 (Discrete H>-isometry-flow) Let T > 0 and ug € W,f be such that
T
[Vi) ()] Vuhz) =D

forall z € N, and ug(z) = up(z) and th?l(z) = @&p(z) forall z € N, N yp. For
k=1,2,... define
Fnluy ™1
= {wn € Wi p : [Vwi(@]' Vi ' (@) + [V ' @1 Vwi(@) = 0fa.z € ;)

and compute u];, = uﬁ_l + td,ufl with d,u];l € ﬁh[ulg_l] satisfying
(VVideul, VVwy) + (V" dad), VVwy) = (F, wh)

forall wy € ﬁh[uﬁ_]]. Stop the iteration if ||VVhdtu§‘l|| < &stop-

The iterates (u’Z) k=o0.1,... will in general not satisfy the nodal isometry constraint
exactly, but the violation is independent of the number of iterations and controlled
by the step size t.

Theorem 8.4 (Iteration) The iterates (le,)k:o,l,... of Algorithm 8.1 are well defined
and satisfy

. T . _
B @) + S IV Vad | < IFah.
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Moreover, we have

Proof The existence of a unique dtu’h‘ € Fh[u';fl] in every step of the iteration
follows from the fact that the bilinear form (v, wy) — (VVjvi, VViwy) defines
a coercive and continuous bilinear form on ﬁh[uz_l], cf. Lemma 8.1(iv). Upon
choosing wy, = d,u]}i, we find that

1
Vs P+ |95 + SV P = (. i)
and this proves the energy decreasing property. Using ”]Z = uﬁ_l + rdtuz, we have

(Vik) Tk = (vid =Y TV 4 o (V) TV

+ 7 (VuZ_I)TVd,ulg + 12 (Vd,ulfl) TVd,ul,j.

Since dtu';l eF h[uﬁ_l], the sum of the second and third term on the right-hand side
vanishes at every z € .4, and an inductive argument, together with the assumptions
on ug, leads to

L
Vb @] Vi) = b| = 22 > [Vdu ).
k=1

A discrete norm equivalence and a local inverse inequality imply the assertion. [

8.3.3 Realization

The implementation of Algorithm 8.1 is based on the realization of the discrete
Kirchhoff triangle for the linear problem. We also employ quadrature to discretize
the forcing term which we assume to act only in the vertical direction. This implies
that only the nodal values (uh(z) 1z € J%l) and (Vuh(z) 1z € JW,) are needed for
the implementation, in particular, no evaluation of uy, in the interior of elements in
T, isrequired. If S, is the stiffness matrix related to piecewise quadratic vector fields
with six components, D realizes the operator V), : W}? — @2, and Bj_; encodes the
constraints and boundary conditions defined in the space ﬁh[ulg_l], then one step of
the discrete gradient flow leads to the linear system of equations

(1+at)D'$:D B | 1[d,U*] _ [~aDTS$2D U1 +<F
Bi_1 0 A | 0 '
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function kirchhoff_nonlinear (red)
[c4n,nde,Db,Nb] = triang_strip(10);
alpha = 1; tau = 27 (-red)/10;

for j = l:red

[cd4n,nde,Db,Nb] = red_refine(cd4n,nde,Db,Nb) ;
end
nC = size(cédn,1l);
dNodes = unique (Db); DNodes = [3%dNodes-2;3xdNodes-1;3xdNodes-01];

FNodes = setdiff (1:9%nC, [0xnC+DNodes; 3*xnC+DNodes; 6xnC+DNodes]) ;
S_dkt = fe_matrix_dkt (c4n,nde);
[—,7,m_lumped] = fe_matrices(c4n,nde);
7Z = sparse (3x*nC, 3xnC);
SSS = [S_dkt,Z,72;%2,S_dkt,Z2;2,7Z,S_dkt];
SSS_free = SSS (FNodes, FNodes) ;
u = u_moebius (c4dn);
dt_u = zeros(9xnC,1);
bbb = zeros (9*nC,1);
bbb (6*nC+(1:3:3%nC)) = m_lumped*£3(cdn);
corr = 1; eps_stop = le-2;
while corr > eps_stop;
B = sparse (3*nC, 9«nC) ;
for j = 1:nC
for k = 1:3

idx_3Jj 3% (j-1); idx_jk = (k=-1)*3*nC+3%(j-1);
B(idx_J+1,idx_jk+2) = u(idx_jk+2);
B(idx_J+2,idx_jk+3) = u(idx_jk+3);
B(idx_7J+3,idx_jk+2) = u(idx_jk+3);
B(idx_7J+3,idx_jk+3) = u(idx_jk+2);
end

end

B (DNodes, :) = [1;

72727 = sparse(size(B,1l),size(B,1));

AAA = [ (l+tauxalpha) *SSS_free,B(:,FNodes) ';B(:,FNodes), ZZ2%Z];

rhs = —-alpha*SSS*xu+bbb;

ddd = [rhs (FNodes) ;zeros(size(B,1),1)];

xxx = AAA\ddd;

dt_u (FNodes) = xxx(l:size(SSS_free,1));

corr = sqgrt(dt_u'xSSSxdt_u)

u = uttauxdt_u; show_pl_para(cd4n,nde,u);
end

function val = f3(x)

val Oxones (size(x,1),1);

function u = u_moebius (x)

L = max(x(:,1)); nX = size(x,1); u = zeros(9+«nX,1);
u(0*nX+(1:3:3%*nX)) = sin(2xpixx(:,1)/L);

u(3*nX+(1:3:3*nX)) = x(:,2)+(1-2*x(:,2)) .*sin(pi*x(:,1)/(2*L));
u(6xnX+(1:3:3%xnX)) = sin(pi*x(:,1)/L);

U(0*xnX+(2:3:3xnX)) = ones (nX,1);

u(3*nX+(3:3:3%nX)) = ones(nX,1)-2*(x(:,1)>L/2).*xones (nX,1);

Fig. 8.6 Approximation of the nonlinear Kirchhoff model with discrete Kirchhoff triangles
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The matrix D' $,D is generated as in the case of the linear model and provided
by the routine dkt_matrix.m. The initial deformation is assumed to satisfy the
boundary conditions which may be inhomogeneous. We refer to the implementation
displayed in Fig. 8.6 for details.

8.4 Willmore Flow

We discuss in this section numerical methods for approximating the Willmore flow.
This is the L2-gradient flow of the Willmore energy which is defined on closed sur-
faces in R3. To compute the evolution equation, we review concepts from differential
geometry to differentiate quantities on surfaces and to measure variations of surfaces.
The reader is referred to the textbooks [13, 14] for further details. The numerical
schemes are based on results in [2, 8, 9].

8.4.1 Tangential Differentiation and Curvature

Let.# C R3 be a surface, i.e., an orientable two-dimensional C2-submanifold .7 in
R3, with continuous unit normal n : .# — R3. For scalar functions f : .# — R and
vector fields F : .4 — R3 on . that admit continuously differentiable extensions
FrUH)—> Rand F : % (#) — R3 to an open neighborhood of .#, we define
the tangential gradient and the tangential divergence by

Vuf =Vf—n-VPn, divyF = divF —n'DFn.
The operators satisfy the product rule

divy(fF)=Vyf -F+f divyF.

The tangential gradient V , F of a vector field F is the matrix whose i-th row coincides
with the transpose of the tangential gradient of the i-th component of F'. The Laplace—
Beltrami operator is defined as

A yf = divy Nyf.

For a local parametrization u : @ — R3 of ., the tangent vectors deu, £ = 1,2,
are linearly independent and define a unit normal b = £0iu x du/|d1u x du|,
cf. Fig. 8.7. We assume in the following that the sign is chosen so that b = nou. The
first fundamental form is the matrix g with entries

8ij = 8iu . Bju.
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1

Fig. 8.7 Local parametrization of a surface by a mapping u : @ — R?; the partial derivatives 9;u
and d,u of u define a basis of the tangent space for every point on the image of u; their normalized
cross product defines a unit normal b to the surface

It defines a metric on the tangent space of .Z, e.g., the length of a tangent vector
101U + apdu is given by the square root of « - (gar). The matrix g is symmetric

and positive definite everywhere in w; and we let g=! = (g¥) be its inverse and

g 1?2 = (gl(jfl/ %) the symmetric and positive definite square root of g~!.

Proposition 8.4 (Differential operators on .#') We have

2 2

(Vyf)ou= Z §70;(f o w)du, (divy F)ou= Z §79;(F ou) - dyu.
ij=1 ij=1

IfF = 21'2:1 F;0;u is tangential or F = N 4 f, then

2
(divy F)ou= (detg)™"/* > 8i(Fi o u(det g)'/?),

i=1

2
(Aaf) ou=(detg)™"/> > d;((detg)'g"d;(f o w).
ij=1

In particular, the operators are independent of the extensions.

Proof We occasionally omit the composition with u, e.g., we write V 4 f for (V 4 f)ou.
For k = 1, 2 we have

(Vuf) - = Vf - gu = 8 (f o u) = 3 (f o u)

and (Vf) - n = 0. Since

2 2 2
( Z g79;(f o u)aiu) RS Z 8 gikdj(f ou) = Z&/k(‘?j(f ou) = d(f ou)

ij=1 i,j=1 Jj=1

and since the sum on the right-hand side of the first asserted identity is orthogonal

to n, we deduce the formula for V ,f. With V; = ZJ‘2=1 g;_l/z)a/u fori =1, 2, the

vectors (Vy, Va, b) define an orthonormal basis in R3,ie.,
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2 2
—1/2) (~1/2 —1/2) (=172
Vi-Vie= Z g;, / )g,((@ / )3]'14'3@% = Z g,gj / )g](cg / )gjz = ik
Jit=1 J.=1
and V; - b =0 for i = 1, 2. With this we have
2
div F =tr DF = »_ V,' DFV; + b DFb,
i=1

and hence by definition of div

2 2
divyF= >, g,?j‘”z)gﬁ,:”z)(aju)TDFaku = > Jy(Fou) - du

ij, k=1 Jk=1

which is the second identity. Assume now that F is tangential so that F o u =
Ziz=1 F;0;u with uniquely defined functions F; : @ — R. It then follows that

2
divy F= )" ¢(3Fieu+ Fidjdeu) - dju
ij.k=1
2
= Z 87 (3jFxgik + Fr0;0ku - 0ju)
ijk=1
2 2
=2 (8Fe+ D 8" Fi(@dju - o).
k=1 ij=1

Since g~! is symmetric, g~! = (detg)~!det’g, and 28;(det g)!/? = (det g)~1/?
det’g : 9rg, we have for k = 1, 2 that

2 2

- 1 - B
D T @y b = 5 > & thgiy = (det )™ op(detg)' /2.
ij=1 i,j=1

The combination of the last two equations shows that

2

divy F = Z (9Fx + Fi(det 9)~"23(det g)'/?),
k=1

which is the asserted identity. The identity for the Laplace—Beltrami operator now
follows from the characterization of V 4. (I
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Example 8.1 For the parametrization u(0, ¢) = r(sin 6 sin ¢, sin 0 cos ¢, cos §) of
the sphere S, C R3 with radius r > 0, we have detg(0, ¢) = r*sin? 0 and Ag,f =
(r? sin0) 1[99 (sin 03pf) + (sin@)_la(%f].

Remark 8.5 The representation F = Zizzl(Vi, F)V;, = Zijzl gi(F - d;u)dju of a
tangential vector field F with the orthonormal vectors (Vi, V») constructed in the
proof of Proposition 8.4 yields the Weingarten equation oyb = — le =1 g’jhkiaju
with the coefficients Ay, of the second fundamental form defined below.

To define a measure of curvature, we let ¢ : (—¢, &) — .# be a C% curve in .4
with |¢’(1)| = 1 for all € (—¢, ¢) and consider the quantity k = ¢” - (n o ¢). Since
¢ - (noc) =0 wehave

k=—c-(noc)y =—=c"-(Vync).

We call V 4 n the shape operator which is closely related to the second fundamental
form defined through the symmetric matrix

hl‘j = —8,»19 . aju =b- 8,'8]'14.
The mapping induced by V ,n is also called the Weingarten map.

Proposition 8.5 (Shape operator) The matrix V yn is symmetric and defines a self-
adjoint linear operator on the tangent space of # into itself and is in the basis
(81u, dru) given by the generally nonsymmetric matrix s = —hg~\.

Proof Fori =1,2,3 we have (Vn;) - n = 0 and hence (V n)n = 0. The identity
|n|?> = 1 implies that n' (Vyn) = 0. Therefore, V n defines an endomorphism
on the tangent space of .#; and for i = 1,2 there exist s;;, j = 1,2, such that

(Vym)diu = zji] 83705, ie.,

2
> sigju - deu = (Vgndu) - du = ;(n o u) - deu = b - Yu = —hig
j=1

and hence with dju - du = gjx we deduce sg = —h. The identity also implies the
symmetry of V /n. (]

The principal curvatures of .# are the eigenvalues of the self-adjoint symmetric
operator V 4 n restricted to the tangent space of .# and are denoted by «1 and k2. The
eigenvectors corresponding to x1 and k» are called directions of principal curvature.
The possibly nonsymmetric matrix s has the eigenvalues «1 and «, and the mean and
Gauss curvature are defined as

H=trs =« +k3, K =dets=«ik2,
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Fig. 8.8 Ellipsoidal surface with k1 < 0, k2 < 0 (left), hyperbolic surface with k1 < 0, k2 > 0
(middle), and parabolic surface with k; = 0, k3 > 0 (right) relative to the unit normal n = e3

respectively. We have that |V///n|2 =sl:5= tr(sz) = K12 +/(22 = (tr s)2 —2dets =
H? — 2K. We also note the identities H = —h : g~! = tr(—hg™1).

Remark 8.6 The sign of H depends on the choice of the unit normal, whereas K
is independent of the sign of +n. The definition implies «1, k3 > 0 if .Z is locally
convex with respect to the chosen unit normal. The mean curvature H is often defined
as (1/2)trs = (k1 + x2)/2.

Typical local shapes of two-dimensional surfaces are given in the following
example and are shown in Fig. 8.8.

Example 8.2 Consider a local parametrization of a surface that is given by the graph
of the function f : w — R, i.e., u(x) = (x,f(x)). Also assume that 0 € » with
Vf(0) = 0.Noting dju = ¢;fori =1,2,andb =e3,¢g =1, and h = b-0;0ju = sz,
we find that s = —hg™! = —D?*f atx = 0.

Proposition 8.6 (Mean curvature) We have
divyn=H, —A_yid , = Hn,

where id_y : # — R3 denotes the identity on M, i.e.,id_y(p) = p forallp € #
and Ay is applied to every component of id .

Proof With the characterization of div, of Proposition 8.4, we have

m 2
divyn= Y glojnou - du=—")" glhj=—whg™") =trs.
ij=1 ij=1
We have Vsid 4 =1 —nn" and thus —A 4id’ , = div,,(n'n) = n'H. O

We have the following generalized integration-by-parts formula.

Proposition 8.7 (Integration-by-parts) For a vector field F : .# — R3 and a
compactly supported function ¢ : M — R, we have

/V//ﬂp-Fds:—/(p diV///FdS—F/H(F'n)QDdS'
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Proof We assume that ¢ belongs to a coordinate chart parametrized by u and consider
the vector field G = ¢ F on .. We set G = G+ Gpor With Gyor = ynfory = G-n.
Then Gy = Ziz:l G;d;u and Proposition 8.4 and an integration-by-parts in R? yield

2
/ divyy Guands = ) | / 0(Gi(det )'/?) dx
M =l

:/ div ((detg)'/?[G1, G11) dx = 0.

w
The product rule and (V y) - n = 0 show that
/ divy Gpor ds = /y divy nds = /des = /(G-n)Hds.

The combination of the identities and an application of the product rule prove the
asserted formula. ]

Remark 8.7 1f ¢ does not vanish on the boundary of .#, then the boundary term
fa _y ©F - udt with the conormal i = T x n, where 7 is the tangent on dw, has to
be included on the right-hand side.

8.4.2 Normal Variations

For a surface .# C R3 with unit normal  and a function ¢ . M — R, we consider
for —e < t < ¢ the normal variations of .# defined by

My ={qeR :q=p+tepnp), p e M),

cf. Fig.8.9. Then .#y = .# and for sufficiently small ¢ > 0, the sets .#; are surfaces
inR3. Ifu: w— R3isalocal parametrization of .#, then

Uy =u—+t(pou)(nou)

Fig. 8.9 Normal variation of n
a surface defined by a scalar

function ¢ My = M +1dn—
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is a local parametrization of .#;. For a function f; : .#; — R we denote f = f and
define

of (p) = lim =" (fi(p) = fo())

for p € .. The proposition below studies the changes of geometric quantities on
the surfaces .#; and employs Gauss’ equation and an equivalent characterization of
the Laplace—Beltrami operator stated in the following lemma.

Lemma 8.2 (Christoffel symbols) With the Christoffel symbols of the first kind
Ijm = 0;0ju - Ou and of the second kind Flf = zgz:l gk’” Ij.m» we have Gauss’
equation and a representation of the Laplace—Beltrami operator, i.e.,

2 2 2
didu=> [iowu+hyh, Ay = Zgif(aiaj¢ -3 F;akqs).
k=1 ij k=1

Proof We have 0;0;ju - n = h;; and hence there exist oef‘j with

2 2

k k
3,‘8]‘1/1 . agu = Zaijﬁku . 3[u = Zaijgk@,
k=1 k=1

ie., aZ.’ = Z%:l g™ (3; dju) - dgu. This implies the representation of d;0;u. According
to Proposition 8.4 we have

2
Agd= D &0;(g" dmpdeu) - du
ij.e,m=1
2
= > &[0 dmpdeu + ¢ (0;00$)dert + O (9000)] - i
ij.e,m=1
2
= Z 8/[9;8"" dmpgei + " (30mP)gei + & I Tje.i].
ij.e,m=1

Usin% 0=0 37 (& 8m) = (38" grm + &7 gm), we find that 3;g"" =
— an:l gha,-grkgkm and noting 9;gx = ljrx + Lk, r, 1€,
2
angm = - Z gﬂr(Fjr,k + I}k,r)gkm,
r.k=1

shows that A _, ¢ equals
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2 2
> = D & Wk + D)8 dmdbgei + 8 B0md)gei + 8 dmd Te ]

i lm=1 rk=1

2 2

=>4~ Z( ik + T8 ame + 800 + > " om e 1]

i,j=1 k,m=1 £,m=1
2

Z [9;9;¢ — Z & Iy kdm]-
Jj=1 k,m=1

This implies the asserted formula for A_,¢. (I

A consequence of this is Gauss’ theorema egregium which is stated below for
isometric parametrizations, cf. Proposition 8.2.

Lemma 8.3 (Gauss curvature for isometries) Assume that I'j; = 0;0;u - du = 0
foralll <i,j,k <2 ThenK = 0.

Proof Using az(afu) = 01(0102u) and the identities 9;0;u = h;;b, Lemma 8.2 shows
that
0 = 02(h11D) — 91 (h12b) = (0211 — 01h12)b + h1102n — h1201n.

The Weingarten equations dyb = — 212 =1 g’jhkiéﬂju, cf. Remark 8.5, imply that for
the tangential part of the identity, we have

2 2 2
0=—hi > g'hyidju+hiz D~ ghiidju = — D ¥ (hiihy — hiohi)dju.

ij=1 ij=1 ij=1

The contributions to the sum vanish for i = 1 and hence
2
0= —(deth) > g¥dju.
j=1

Since dju and d,u are linearly independent, this impliesdeth = 0and K =0. [

Proposition 8.8 (Normal variations of geometric quantities) For 1 < i,j < 2 we
have

2
Sy = —20hy, Sg;' =20 D ¢Fhug, S(detg)'* = pH(detg)'?
k=1

and
Sn=—Vyp, SH=—A40¢— s
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Proof We identify ¢ with the function ¢ o u and write b = n o u. We also omit the
dependence on ¢ in the following. Noting 9;b - b = 0, we have

gl = ity - djuy = gij + 1 (u - b + u - ) + 1*ipdjp + 1>¢> b - ;b

which implies 8g;; = —2¢h;;. With g~'g = I, we find that g~! = —g~1(3g)g™!
and hence

2 2
85¢7 == > ¢*(6grg" =2¢ > " hieg.
k,t=1 k=1

1 1

The relations (det g)~'det’g = g~ ' and g=! : h = —H imply

1 1
S(detg)!/? = 5(detg)—l/z(det/g) 1 8g = E(detg)l/zg_] - 8g

= —¢(detg)?g7 . h = ¢(det g)'/*H.
Using b - 9;u = 0, we deduce b - d;ju + b - §d;u = 0 and with §d;u = ¢9;b + (3;)b
and b - 9;b = 0, it follows that b - dju = —9d;¢. Since 0 = 8|b|2 = 26b - b, we have

that there exist o1, oy with b = 10 u + a2 9ou. Noting
2

> it du = 8b - du = —p

i=1
we find that o; = — 37 ¢3¢ which implies

2 ..
5b=— > glopou,
ij=1

and this expression coincides with —V 4 ¢. It remains to compute §H. For this we
first compute 84;;. Noting

80;0ju = (0;0;9)b + 8;¢9;b + 0;9;b + ¢9;9;b,
and using b - 9;0;b = —0;b - 9;b, we have
b - (80;0ju) = 0;0;¢p — ¢9;b - d;b.
The Weingarten equation dib = 212 =1 g’jhkiaju leads to
2 2

0ib - 9jb = Z gemhizg”hjramu S Ogu = Z 8" hishy;.

C,m,r,s=1 r,s=1
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The formula for §» and Gauss’ equation show that

2 2 2
8b- (@idju) = —( D & 0uporu) - (D I} 0mu) = = D I} oep.
m=1 =1

k.t=1

‘We thus have

2 2
Shij = (8b) - didju + b - (80;0u) = — > I[}jdee + idjp — ¢ > & hiohyg
=1 k=1

and

2 2 2 2
> glshy = & (a0 — DI 3e¢) —¢ > &g hihy
(=1

ij=1 ij=1 ijke=1
2
=Ay9—ols|”

For the mean curvature we find that

2
SH =—8 Y g'hy
ij=1
=— > (6ghy + g¥(hy)

ij=1

2
=20 > g*hughj— A g+ ols)®
ij.k =1

= —291s* — As¢ + $Isl.
This proves the proposition. ([

We finally derive variations for functionals measuring the surface area and the
enclosed volume by a surface. The variation of a functional ¢ defined on C2-surfaces
is the limit

89 (M) p) = lim 1= (9 (M) — G (M)

for a surface . that is perturbed in the normal direction with a function ¢ as above.

Proposition 8.9 (Variations of area and volume functional) For .# = 052 define

d(//l):/lds, “V(///):/ldf:%/&nds.
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We have

1
8.0 (M)[P] :/H¢ds, SV (M)p] = 5/(1+H)q>ds.
M M

Proof The first identity is a direct consequence of Proposition 8.8. The second iden-
tity follows fromid_y, - n = t¢. O

8.4.3 Variation of the Willmore Functional

The normal variations of geometric quantities allow us to characterize stationary
surfaces for the Willmore functional and to define related evolution problems. For a
closed surface .# C IR3, the bending energy is given by the Willmore functional

1
W(AH) = 3 / H? ds.
M
The following theorem characterizes critical points of the functional.

Theorem 8.5 (Euler—Lagrange equations) For a normal variation of # defined by
a function ¢ : M — R, we have

1
SW(A)|9] = /(—A///HM) — [VanI*H¢ + 5H3<b ds,
M

where |V yn|> = H> — 2K.

Proof We assume that ¢ is supported in a coordinate chart. We then have

1 1
8§/H2ds= E5/Hz(detg)l/zdx
/A w

1
= /H(SH)(detg)l/z + §H25(detg)1/2dx
1
= / H(=A_y¢ — pls|*)(det 9)'/? + 5¢H3(detg>”2dx

= /H(—A//ﬂﬁ) — ¢H|s|> + %¢H3 ds.
M

Noting |s|> = |Vn|> = H?> — 2K and integrating-by-parts proves the theorem. [
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Definition 8.7 For a family of surfaces (.#}):c[0,7] and a family of points on the
surfaces given by a differentiable function ¢ : [0, T] — R3 with ¢(r) € ., for all
t € [0, T] we define the normal velocity of .#; at gy = c(tp) by

V (g0, t0) = ¢'(to) - n(qo).

We let
(@. V)., =/¢1ﬁds
M

denote the L? inner product on .#;.

Definition 8.8 (i) A family of surfaces (.#;);c[0, 17 evolves according to the Willmore
flow if
V), d) ., = =W (A $]

forallt € [0, T] and all ¢ € C®°(.4;).
(ii) A family of surfaces (.#;):c[0,1] evolves according to the Helfrich flow if there
exist A, i : [0, T] — R such that

VD), )., = =W (AD[P] + 1L (0)0A (M) 9] + n(@)8V (A1) 9]

forall t € [0,T] and all ¢ € C*(.#;) and the mappings ¢ — 7 (#;) and t +—>
V' (M) are constant.

Remark 8.8 The existence of solutions for the Willmore and Helfrich flow is only
understood in special situations, e.g., when the initial surface .# is a small pertur-
bation of a sphere.

8.4.4 Discretization of the Laplace—Beltrami Operator

For a surface .#/ C R3, let .4, be an approximate surface that is the union of
flat triangles in the triangulation .7}, with vertices .4, C R3, cf. Fig.8.10. The
elementwise constant unit normal n, on .#), defines the tangential gradient of a
function v, € .71(%,) via

Fig. 8.10 Triangulated
surface (left) and
construction of an auxiliary
tetrahedron with the
auxiliary node

Zr = xr + |T|"2nr (right)
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Va,vh = PyVv, = (1 —n, ® nh)V’f;h,

where v, is an arbitrary extension of v, to R3, e.g., by introducing for each triangle
T € Jj the auxiliary nodeZy = x7+|T|"/?ny|7, cf. Fig. 8.10, and setting v, Z) = 0.
The Laplace—Beltrami operator on a surface .# leads to a Poisson problem on .Z
of the form

—A yu=fon.#, u=uponypy, Vi Wy = g on yN i,

where p, is the conormal on I'n , C d.#4. A discrete approximation seeks uj, €
V() such that up|yy, , = up s

/ Vo, un - Ny, vhds = /fvh ds + / gnvp dt
My, M, YN,h

for all v, € #1(.},) with Vilyp, = 0.1f yp p = 0, then the condition f///, upds =0
is imposed. The MATLAB code displayed in Fig. 8.11 realizes the numerical scheme
for the Laplace—Beltrami operator.

8.4.5 A Numerical Scheme for the Willmore Flow

We recall that the Willmore flow for a given initial surface .# C R> seeks a family
of surfaces (.#});e[0,77 that solve the equation

1
V= AgH+HN g = SH,

where V is the normal velocity of (.#;):e[0. 7], 7 @ unit normal on .#;, and H the mean
curvature of .#;. For the position vector X : .#, — R> on.#,wehave V = (8,X)-n
and Hn = —A_4id_, . To discretize the evolution equation we consider a time step
tr € [0, T] and assume that we are given a triangulation ﬂhk that defines the closed

polyhedral surface ////f with unit normal nﬁ e £°(7,)%. We also suppose that

ﬁ];l e 7! (Zlk)3 and H ,’; e ! (ﬂhk) approximate the unit normal n and the mean

curvature of a smooth approximation of ///é‘ To define the new surface ./, ,’f 1 we
compute a mapping
X}frl : ///,f - R3
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function laplace_beltrami (red)

[c4n,nde,Db,Nb] = triang_torus(.5,1,red);

nE = size(nde,l); nC = size(c4dn,1);

nNb = size(Nb,1); nDb = size (Db,1);

dNodes = unique (Db); fNodes = setdiff (1:nC,dNodes) ;
max_ctr = 9xnE; ctr = 0;

I = zeros(max_ctr,1l); J = zeros(max_ctr,1);
X_s = zeros (max_ctr,1);
b = zeros(nC,1); c = zeros(nC,1); u = zeros(nC,1);
for j = 1:nE
n_T = cross(c4n(nde(j,2),:)-c4n(nde(3,1),:),
cd4n(nde (j,3),:)-c4n(nde(3,2),:));
area_T = norm(n_T)/2;
n_T = n_T/norm(n_T);
mp_T = sum(c4n(nde(j,:),:))/3;
aux_tetra = [cd4n(nde(j,:),:);mp_T+sqrt (area_T)+*n_T];
grads3_T = [1,1,1,1;aux_tetra']\[0,0,0;eye(3)];
P.T = eye(3)-n_T'«n_T;
for k = 1:3
b(nde(j,k)) = b(nde(j,k))+(1/3)xarea_T+f (mp_T);
c(nde(j,k)) = c(nde(j,k))+(1/3)~*area_T;
for ell = 1:3
ctr = ctr+l;
I(ctr) = nde(j,k); J(ctr) = nde(j,ell);
X_s(ctr) = area_T* (P_Txgrads3_T(k,:)")"
* (P_T+grads3_T(ell,:)");
end
end
end
s = sparse(I,J,X_s,nC,nC);
for j = 1:nNb
length_E = norm(c4n(Nb(j,1),:)-c4n(Nb(j,2),:));
mp_E = (c4n(Nb(j,1),:)-c4n(Nb(j,2),:))/2;
b(Nb(j,1)) = b(Nb(j,1))+(1/2)+length_E*g(mp_E);
b(Nb(j,2)) = b(Nb(j,2))+(1/2)+xlength_E*g(mp_E);
end
if isempty (dNodes)
s = [s,c;c',0]; b = [b;0];
else
for j = 1:nDb
u (dNodes (j)) = u_D(c4n(dNodes (j),:));
end
b = b-sx*u;
end
u (fNodes) = s (fNodes, fNodes) \b (fNodes) ;

show_pl_surf (c4n,nde,u);

function val = £ (X); val = X
function val u_D(X); val =
function val = g(X); val = 0

(2);

2
0;

’

Fig. 8.11 MATLAB routine for the approximation of the Poisson problem on a surface
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Fig. 8.12 Deformation

Xp ok — R ofa béas .
surface ///;f that defines the %l,f - > My
new surface .#, ilf +l

that defines ///}:‘H = X,]fH (///}f‘), cf. Fig.8.12. A function or vector field on ///}f‘ is
identified with a function on ./, }{‘H via the parametrization X ,]:H. The vector field

X}11<+1 €. (ﬂh")3 is obtained by the following semi-implicit discretization of the
Willmore flow from [2].

Algorithm 8.2 (Discrete Willmore flow) For a discrete surface M, ,? , functions ﬁg €
5”1(90)3 and H;(l) = do div///oﬁ?l and a step size T > 0, compute the sequence

(///hk)k —0...K Via ///k'H = Xk'H(///k) where XIH'1 e 7! (ﬂk)3 and Hk"’1 €
Yl(%]]‘) solve

Ukt ~ k1 k
—O T =i i)+ (VY g (|Hk|2H L)
= (Hy IV k7 v)

(38 i)~ (VX ¥ ) = 0

for all v, € 5”1(,71‘) and Y, € 7! (91‘)3 and set nk+] d“l k“ . Stop the

iteration if [V llni < esop for Vi = (G —id 0 /7 andvk+1 vhk+1 ik

The averaging operator 427,1" Lt (///,’f) - 71 (Zlk) is defined through

L > AT ed= DT,
|

|,
TeJk, zeT TeJk, zeT

Afv(z) =

and the inner product (-, -)¢ p is forv,w € C (////f) defined by

v, Wikn = / S yw] dx.
A

Remark 8.9 The precise stability and convergence properties of Algorithm 8.2 are
not known. The algorithm has an equidistribution property in the sense that it equidis-
tributes the nodes of the discrete surface which avoids mesh irregularities. Details
are discussed in [2].
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According to Proposition 8.9 it suffices to impose that

/Vds:/VHds:O
M M

to guarantee that the surface area and the enclosed volume are preserved. This leads
to an identity for the associated Lagrange multipliers in the evolution equation, i.e.,

1
V =AH+H|Vyn|*— EH3 +AH + .

Testing the equation with a constant function and with H — H, where H is the integral
mean of H, leads to

1

1
=— | —H|Vyn|*+ -H> — AH ds,
" |///|/ [V nl 3
V4

[y (=HINgn?+ 03 H - H) + |V yHP ds

b= [/ (H — )2 ds

To incorporate the constraints in Algorithm 8.2, the term AH is discretized implic-
itly if A > 0 and explicitly otherwise. The MATLAB implementation displayed in
Fig.8.14 requires the bilinear forms

@5 okn (Voo Vo,  (Vel, Ve,
N o/ A R TR (L A R ST

for pairs of nodes z,y € Jijlk and associated scalar nodal basis functions ¢, ¢y €
S1(F5,)F and vectorial nodal basis functions gof = ¢ze¢ and @' = ¢yen, with
the canonical basis vectors eg, e,, € R3. The representing matrices are encoded
in the arrays m, s, S, M_n, m_w provided by the routine shown in Fig.8.13
while the last one is directly computed and stored in the array m_H. The routine
willmore_matrices.malso computes an approximation of the mean curvature
through HX = %k (div //4( ﬁ’;l).
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function [m,s,S,M_n,m_w,H] = willmore_matrices (c4n,nde,w)
nC = size(cd4n,1l); nE = size(nde,1);

max_ctr = 9%nE; ctr = 0;

I = zeros(max_ctr,1l); J = zeros (max_ctr,1);

X_s = zeros (max_ctr,1);

diag_m = zeros(nC,1);

diag_m w = zeros(nC,1);

diag_M n = zeros(nC,3);
tr_nabla_w = zeros(nC,1);
for j = 1:nE

n_T = cross(c4n(nde(j,2),:)-c4n(nde(3,1),:),
c4n(nde (j,3),:)-cd4n(nde(3,2),:));
area_T = norm(n_T)/2;
n_T = n_T/norm(n_T);
mp_T = sum(c4n(nde(j,:),:))/3;
tmp_tetra = [cd4n(nde(]j,:),:);mp_T+sgrt (area_T)*n_T];
grads3_T [1,1,1,1;tmp_tetra']\[0,0,0;eye(3)];

P_.T = eye(3)-n_T'sxn_T;

P_Dphi_T grads3_T(1:3,:)xP_T;
nabla_ T w = w(nde(j,:),:)'«P_Dphi_T;
tr_nabla_w(j) = trace(nabla_T_w);

W_sg = sum(sum(nabla_T _w."2));
for k = 1:3

diag_m(nde(j,k)) = diag_m(nde(]j,k))+area_T/3;
diag_m_w(nde(j,k)) = diag_m_w(nde(j, k))+area_T*W_sq/3;
diag_M n(nde(j,k),:) = diag_M n(nde(j,k),:)

+(area_T/3)*n_T;
for ell = 1:3
ctr = ctr+l;

I(ctr) = nde(j,k); J(ctr) = nde(j,ell);
X_s(ctr) = area_T
* (P_T*grads3_T(k,:)") "« (P_T+xgrads3_T (ell,:)");
end
end

end
m = spdiags(diag_m,0,nC,nC); m_w = spdiags(diag_m_w,0,nC,nC);
IT = [3xI-2;3xI-1;3%I]; JJ = [3%J-2;3xJ-1;3xJ];
s = sparse(I,J,X_s); S = sparse(II,JJ,repmat (X_s,3,1));
I = [1:3:3*nC,2:3:3%*nC,3:3:3xnC]"'; J = [1l:nC,1:nC,1:nC]";
M_n = sparse(I,J,diag_M n(:));
H = average_qgquant_surf (c4n,nde,tr_nabla_w);

Fig. 8.13 Matrices required in the implementation of the Willmore and the Helfrich flow
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function willmore_helfrich_flow(red)

[nde, c4d4n,—~,~] = triang_sphere (red);

cdn(:,3) = .4%cd4n(:,3);

tau = 27 (-red) /200;

nC = size(c4dn,1);

w = averaged_normal (c4n,nde);

[-,—,—,—,7,H] = willmore_matrices (c4n,nde,w);

X = reshape (c4n',3%nC,1);
corr = 1; eps_stop = le-1;
while corr > eps_stop
w = averaged_normal (c4n, nde);
[m,s,S,M n,m_w,~] = willmore_matrices (cdn,nde,w);
m_H = spdiags(diag(m).+H."2,0,nC,nC);
[lambda,mu] = helfrich_constraints(c4n,H,s,m,m_w,m_H);
A = [M_n',taux (s+m_H/2-max (lambda, 0) *m);-S,M_n];
b [tau*m_w+H+M_n'*xX+taux (muxmxones (nC, 1)
+min (lambda, 0) xm*H) ; zeros (3«nC, 1) ];

xx = A\b;

V = (xx(1:3xnC)-X) /tau;

v = sum(reshape(V',3,nC)"'.*w,2);
corr = sqgrt (v'xmxv)

H = xx(3*nC+(1:nC)); X = X+tauxV; cdn = reshape(X',3,nC)"';
show_pl_surf (c4n,nde, H);

end
function [lambda,mu] = helfrich_constraints (c4n,H,s,m, m_w,m_H)
nC = size(cd4n,1); I = ones(nC,1);
mean_H = I'+«mxH/ (I'*m«*1I);
g = (H-mean_H) '+xmx (H-mean_H) ;
lambda = 0;
if g >0
lambda = (-H'xm_wxH+H'xm_H/2+H
—(-H"'"xm_w*I+H"+«m_H/2xI)+mean_H+H'xs«*H) /q;
end
mu = (-H'*xm_wxI+I"+m_H/2+H-lambdaxI'*mxH)/ (I"'+«mxI);
function w = averaged_normal (c4n,nde)
nC = size(cdn,1l); nE = size(nde,1);
n = zeros(nk,3); w = zeros (nC,3);
for j = 1l:nE
n_T = cross(c4n(nde(j,2),:)-c4n(nde(3,1),:),
cd4n(nde(j,3),:)-c4n(nde(3,2),:));
n(j,:) = n_T/norm(n_T);
end
for k = 1:3
w(:,k) = average_quant_surf (cd4n,nde,n(:,k));
end
norm_w = sqrt (sum(w." 2,2));
w = w./ (norm_wx*ones (1,3));

Fig. 8.14 Numerical approximation of the Willmore and the Helfrich flow
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