Chapter 2
Detection of Changes in INAR Models

Sarka Hudecova, Marie Huskova, and Simos Meintanis

Abstract In the present paper we develop on-line procedures for detecting changes
in the parameters of integer valued autoregressive models of order one. Tests statis-
tics based on probability generating functions are constructed and studied. The
asymptotic behavior of the tests under the null hypothesis as well as under certain
alternatives is derived.

2.1 Introduction

Studying the stability in time series is one of the important tasks of data analysis.
In many cases such tasks are formulated in terms of hypothesis testing (stability of
the system versus system instability) or as an estimation problem whereby certain
unknown quantities defining the system are estimated in order to detect a possible
change in the values of these quantities. This area is known as change point analysis
or structural break problem. Corresponding procedures come in two basic variants:
off-line (with all data being available at the beginning of the analysis) or on-line
procedures whereby observations arrive sequentially (one at a time) and statistical
analysis is performed with each incoming observation.
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So far the change-point problem has been studied mostly in time series with
continuous observations and consequently there is a huge literature on the problem,
either in classical ARMA-type time series or more recently in the popular GARCH
model; see for instance a recent survey paper [3].

There is a current interest however in studying the same problem with time series
of counts. This interest has been developed along with the introduction of several
corresponding models for such time series, which in turn is due to the fact that count
time series can prove useful in the analysis of data occurring in many applications,
such as finance (occurrence of events in a time period), climatology [16], medicine,
etc.

There are only a few papers dealing with detection of changes in integer valued
time series, a review of recent results can be found in [7] and [13]. In the off-line set-
ting, [10] derived results on likelihood ratio type statistics for detection of a change
in binary autoregressive time series, while [8] published results on CUSUM type
test statistics. Papers [9, 14] and [6] proposed and studied procedures in Poisson
autoregressive models.

The on-line procedures for detection of changes were studied in [19, 20] and by
[17] and [18] in connection of control charts, while in [14] the authors developed and
studied sequential CUSUM type procedures in various integer valued time series.

Here we focus on detection of changes in integer-valued autoregressive (INAR)
time series. The INAR model of order one (INAR(1) for short) (see [1, 2, 15]) is
specified by Eq. (2.1) below, and it incorporates a Bernoulli probability parameter as
well as another parameter indexing the family of the so-called innovations. In what
follows we develop detector statistics for detecting changes in these parameters in
the context of INAR(1) models. As already mentioned we will work with monitoring
schemes and hence propose sequential-type detector statistics. In the remainder of
the paper we introduce the INAR process and the test statistics in Sect. 2.2, while in
Sect. 2.3 we derive the limit properties of the procedures under the null as well as
under a certain class of alternatives. The proofs are postponed in Sect. 2.4.

2.2 Model and Procedures

The INAR(1) process {Y;} is defined by the equation
Yi=poYi_i+e, (2.1

where p o Y;_1 denotes a sum of Y;_1 independent Bernoulli variables all of which
are independent of Y;_j, the parameter p € (0, 1) denotes the probability of the
aforementioned Bernoulli variables and {e;} is a sequence (often referred to as
‘innovations’) of independent and identically distributed (i.i.d.) nonnegative inte-
ger valued random variables with finite second moment and probability generating
function (PGF) denoted by g.(u)that is assumed to belong to a given family, i.e.,
ge(1) €Go ={ge(u;0); uel0,1], 6 € ®} with ® being an open subset of R.
Under the above conditions the sequence {Y;} is stationary and ergodic. Given the
family G of possible PGF for {e;} the model depends on two parameters (p, 6) €
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(0, 1) x ©. In this connection we note that while the Poisson family has been by far
the most studied case, alternative families for {e;} such as the zero-inflated Poisson
of [12], and the Poisson mixture of [16], have also been considered.

The proposed sequential test procedures for detecting changes in INAR(1) pro-
cesses will be based on properties of probability generating function (PGF) of the
observed variables. In this connection recall that the PGF of a random variable Y is
defined as

gy(w)=Eu’, uel0,1],

and that under very mild conditions this PGF uniquely determines the underlying
distribution function of Y. The empirical version of the PGF is defined by

- 1y
u)=— u't, uel0,1],
8y, (u) n; [0,1]

and was employed by [11] in the context of goodness-of-fit testing with certain
integer valued time series. This empirical PGF can be further used as the main tool
for the construction of detector statistics in count time series of a more general
nature. This is in fact a subject of a research project which is already in progress.
Here, however, and in order to stay within a relatively simple context, we focus on
procedures for detecting changes in the parameters of INAR(1) processes.

We are interested in investigating whether or not the parameters (p, 0) are the
same during the observational period. Toward this we introduce a slightly more
general model

Yi=pioYi_1+e, (2.2)

where p; o Y;_1 denotes a sum of ¥;_; independent Bernoulli variables all of which
are independent of Y;_; and all have a success probability p, € (0, 1), and {e;} is
a sequence of independent nonnegative integer valued random variables with finite
second moments such that PGF of ¢; is g.(u; 6;), 6; € ©.

We consider a sequential setup where the observations arrive one after the other
and, additionally, assume that a historical data set (or training data) Y1, ..., Y, fol-
lowing the INAR(1) model specified in Eq. (2.1) are given. Then we wish to test the
null hypothesis:

Hy:  (pr,6;) =(po,6p), 1=t <o,

against the alternative

Hy: there exist g such that (ps, 6;) = (po,600), 1<t<m+1
but (pr, ) = (p°.0°) m+19<t<oo, (po,bo)# (p°.0°).

where the parameters po, po € (0, 1) and 6y, 6° € @ are unknown, and where m + 1
is an unknown change point. Clearly we are interested in testing the null hypothesis
that the parameters (pg, 6p) do not change, which means that model (2.1) holds true
with (p, ) = (po, 8p) while under the alternative the first m + #y observations follow
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model (2.1) with parameter (po, 8o) and afterwards it changes to another INAR(1)
model with parameter values ( po, 09).

For detection of changes in the above model we apply the method developed in
[5] which was first applied in the context of linear regression and later on extended
to various other setups. In principle, we estimate the unknown parameters from
the historical data, then, having m 4 ¢ observations, we calculate the test statistic
Q(m, t) that is sensitive w.r.t. a change in either of the parameters and according
to value of this statistic, we decide whether a change in either of the parameters
is indicated or not. In case of no indication of a change we continue with the next
observation. We note in this context of change-detection for the parameters of a
certain model, CUSUM type procedures are often used. Another possibility is to
use some functionals of estimators of unknown parameters based on historical data
Yi,...,Ypandon Y41, ..., Ypis, t =1,2, ...

Here we deal with procedures based on probability generating function utilizing
the following property of the PGF of {Y;} under model (2.2)

E@Y—1) = (14 piu— )" gow;:6), 1>=1, uelo,1],
E(") = E(1+ piu— 1) gw:60), 121, ue0,1].
Then under model (2.2), the quantities

t

S = (1 pea = D) s 6), 122,

s=1

are partial sums of martingale differences for fixed u € [0, 1] which prompts the
idea of utilizing these quantities for constructing test procedures.

We suggest to test the null hypothesis Hy by means of the test statistics based on
the first m + ¢ observations

1 2
—_ t —_
S (1) :f <Qm,m+t(”» Dms Om) — EQO,m(uv Pm» 9m)> w)du, t>1, (2.3)
0

where w(u) is a nonnegative weight function and

—~ 1 / Y, n
Q. j (W, P, O) = —= Y (" — (14 P = 1)) g (13 6)),
ﬁs:@—i—l
£,j=0,...

with (P, @\m) being estimators of (p, ) based on the historical data Y1, ..., Y.
The null hypothesis is rejected as soon as for some ¢

Sw(®) /g, t/m) = c,

for an appropriately chosen ¢, where

Y
qy(s)=(1+s)(ﬁ) , s€(0,00), y €[0,1/2),
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is a boundary function. (Possible choices of boundary functions g, (s) are discussed,
e.g., in [4].) In this case, we usually stop and confirm a change, otherwise we con-
tinue monitoring. The related stopping rule is defined as

Ty, T) =inf{1 <t <mT: Su(0)/q; (t/m) > c},
Tu(y. T) =00 if S,,(t)/q,(t/m) <cforall 1 <t <Tm,
for some fixed integer T > 0. It is required that under Hy
lim P(rm(y, T) < oo) =«
m— o0
for prechosen « € (0, 1) and under alternatives
lim P(Tm(]/, T) < oo) =1.
m— o0

The former requirement guarantees asymptotic level «, while the later one ensures
consistency. Hence in order to get an approximation for ¢ = ¢4, the limit behavior
(m — o0) of

 fax S (t)/q, (t/m) (2.4)

under Hy has to be studied, while for consistency one has to investigate its limit
behavior under alternatives. Both tasks are taken up in the next section.

The question of the optimal choices of the weight function w and the boundary
function ¢g,, in order the detection lag is as small as possible remains open. Some
practical recommendations are in the next section.

2.3 Asymptotic Results

Consider the INAR(1) process in Eq. (2.2) and denote the true value of ¥ = (p, 9)
under the null hypothesis Hy by 9o = (po, 6p). To study the limit distribution under
the null hypothesis Hy we assume the following:

(A.1) {Y:};en is asequence of random variables satisfying (2.1) with {e;},;c A being
a sequence of i.i.d. discrete nonnegative random variables with finite second
moment and PGF g, (-; 0), 6 € ®, where © is an open subset of R.

(A.2) g.(u;0) has the first partial derivative w.r.t. 6 for all u € [0, 1] fulfilling Lip-
schitz condition:
9ge(u; 0)  9ge(u;0)
a0 a0 0=,
uel0,1], 10 —6p| < D2,

< D16y —0|v(u),

and

d ;0
‘% < Dsv(w). wel0. 11, 66| < Dy

for some D; >0, j =1, 2,3, and some measurable function v(-).
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(A3) 0< [y wudu < oo, [} wu)v?u)du < oo
(A4) Dy = (P, Op) is estimator of ¥ = (po, 6y)’ satisfying
V(D — 90) = 0p(1).

Assumption (A.3) is satisfied by rather wide class of weight function w. Simple
practical choices are w(u) =u®, u € [0, 1], a > 0.

In the following theorem we formulate the main assertion on limit behavior of
our test statistic defined in Eq. (2.4) under the null hypothesis H.

Theorem 2.1 Let assumptions (A.1)—(A.4) be satisfied in model (2.1). Then under
the null hypothesis Hy the limit distribution (m — 00) of maxi</<mT Sm (t)/q% (t/m)
with T > 0 fixed is the same as that of
L
sup ;22 (s,u3 po. Bo)w(u)du,

5€(,T/(T+1))Jo $7
where {Z(s,u; p,0);s € (0, T/(T +1)),u €[0, 11} is a Gaussian process with zero
mean and covariance structure described by

cov(Z(sl,ul; p,0), Z(s2,uz; p, 9))
= min(sy, $2) E (u)” — E(u)? (1)) (uy> — E(u3’[Y1))

where
E@”1v1) = (14 pu—1)"g.(u; 6).

The explicit form of the limit distribution is not known. In order to approximate
this distribution one can replace the unknown parameters and covariance structure
by the respective estimators based on historical data and simulate the resulting pro-
cess. Another possibility is to use parametric bootstrap by estimating (p, ) from
the historical data and then generate bootstrap observations along Eq. (2.1) with
(p, 6) replaced by their estimators. This possibility also leads to an asymptotically
correct approximation of the limit null distribution of the test statistic.

Next we shortly discuss the limit behavior of our test statistic under the following
class of alternatives:

H 1: there exists 0 < vg < T such that for 1o = [ mvy] variables {Y;}; <+,
follow (2.2) with (po, 60) and {Ynry+1}i=1 = {¥}i=1, where (¥};>1
follow (2.2) with (p°, 6°) # (po, 60).

Notice that H slightly differs from the alternative H;. In particular, H) assumes that
the process {Y;} changes from one INAR(1) process to another one, both possibly
strictly stationary. This simplifies the formulation of the succeeding theorem and the
corresponding proof.

Theorem 2.2 Let {Y;};<m+s, and {YIO}IZ 1 from ﬁl satisfy assumptions (A.1) with
parameters (po, 6p) and ( po, 09), respectively, and let also (A.2)—(A.4) be satisfied.
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Then under the alternative hypothesis H foranyvg <s <T

1 1
ZSm(LmsJ) (s — vo)/o (E[(1 + p°(u — 1))Y10ge(u,00)

— (14 polu — 1)) g (, 00)]) *w(w)du

in probability as m — oo.

Studying carefully the proofs one realizes that the proposed test procedures are
sensitive not only w.r.t. changes in the parameters p and/or 6 but also w.r.t. changes
that leave these parameters invariant but involve a change in the distribution (and
hence the PGF) of the innovations e;.

2.4 Proofs

Due to the space restriction and due to a certain similarity to the proof of Theo-
rem 4.1 in [11] we present only main steps of the proof of our Theorem 1.

By the Taylor expansion of Q. pmts (4, ﬁm,é\m) — %Qo,m(u, ﬁmé\m) at po, 6o
and by convergence properties of stationary sequences we realize that under Hy
the limit behavior of maxi<;<mr Sm(?)/ q)% (t/m) does not change if the estimators

D §m are replaced by their true values py, 6p.

Since Qum m+: (U, po, o) and Qo . (u, po,Bo) are partial sums of bounded mar-
tingale differences we can apply theorems on their limit behavior. The proof can be
finished combining the arguments in the last part of the proof of Theorem 4.1 in [11]
and the proof of Theorem 1 in [4].
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