Chapter 2
Spaces of Test Functions

The spaces of test functions we are going to use are vector spaces of smooth (i.e.,
sufficiently often continuously differentiable) functions on open nonempty subsets
£2 C R” equipped with a “natural” topology. Accordingly we start with a general
method to equip a vector space V with a topology such that the vector space operations
of addition and scalar multiplication become continuous, i.e., such that

A:VxV -V, Ax,y)=x+4+y, x,yeV,
M:KxV—>V, M@QAx)=Ax, rekK, xeV

become continuous functions for this topology. This can be done in several different
but equivalent ways. The way we describe has the advantage of being the most
natural one for the spaces of test functions we want to construct. A vector space V
which is equipped with a topology 7 such that the functions A and M are continuous
is called a topological vector space, usually abbreviated as TVS. The test function
spaces used in distribution theory are concrete examples of topological vector spaces
where, however, the topology has the additional property that every point has a
neighborhood basis consisting of (absolutely) convex sets. These are called locally
convex topological vector spaces, abbreviated as LCVTVS.

2.1 Hausdorff Locally Convex Topological Vector Spaces

To begin we recall the concept of a topology. To define a topology on a set X means
to define a system T of subsets of X which has the following properties:

T, X,0 € T (¥ denotes the empty set);
T, WieT,iel=J W €T (I any index set);
Ts Wi,....WyeT.NeN=>\_ W eT.

The elements of 7 are called open and their complements closed sets of the
topological space (X,T).
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8 2 Spaces of Test Functions

Example 2.1

1. Define 7, = {#, X}. T is called the trivial topology on X.

2. Define 7, to be the system of all subsets of X including X and ¢J. 7, is called the
discrete topology on X.

3. The usual topology on the real line R has as open sets all unions of open intervals
la,b] ={x e R:a < x < b}.

Note that according to T3 only finite intersections are allowed. If one would take here
the intersection of infinitely many sets, the resulting concept of a topology would not
be very useful. For instance, every point a € R is the intersection of infinitely many
open intervals I, = Ja — % a—+ %[, a = Nyen. Hence, if in T3 infinite intersections
were allowed, all points would be open, thus every subset would be open (see discrete
topology), a property which in most cases is not very useful.

If we put any topology on a vector space, it is not assured that the basic vector
space operations of addition and scalar multiplication will be continuous. A fairly
concrete method to define a topology 7 on a vector space V so that the resulting
topological space (V,T) is actually a topological vector space, is described in the
following paragraphs. The starting point is the concept of a seminorm on a vector
space as a real valued, subadditive, positive homogeneous and symmetric function.

Definition 2.1 Let V be a vector space over K. Any function ¢ : V — R with the
properties

1) VYx,y e V:igx+y) <qx)+ q(y) (subadditive),
(i) YA e K, Vx € V g(Ax) = |X|g(x), (symmetric and positive homogeneous),

is called a seminorm on V. If a seminorm ¢ has the additional property
(i) g(x)=0=x =0,

then it is called a norm.
There are some immediate consequences which are used very often:

Lemma 2.1 For every seminorm q on a vector space V one has

1. ¢(0) = 0;
2. Vx,y € Vi g(x) — g < q(x — y);
3. Vx e V:0 < g(x).

Proof The second condition in the definition of a seminorm gives for A = 0 that
q(0x) = 0. But for any x € V one has Ox = 0 = the neutral element O in V
and the first part follows. Apply subadditivity of g to x = y + (x — y) to get
g(x) =q(y + (x = y)) < q(y) +q(x — y). Similarly one gets for y = x + (y — x)
that g(y) < g(x) + g(y — x). The symmetry condition ii) of a seminorm says in
particular g(— x) = ¢g(x), hence g(x — y) = q(y — x), and thus the above two
estimates together say £(g(x) — ¢(y)) < g(x — y) and this proves the second part.
For y = 0 the second part says |g(x) — g(0)] < g(x), hence by observing g(0) = 0
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we get |g(x)| < g(x) and therefore a seminorm takes only nonnegative values and
we conclude. 0O

Example 2.2

1. Tt is easy to show that the functions ¢; : R” — R defined by ¢;(x) = |x;| for
x = (x1,...,x,) € R" are seminorms on the real vector space R” but not norms
if n > 1. And it is well known that the system P = {q, ... ,g,} can be used to
define the usual Euclidean topology on R”".

2. More generally, consider any vector space V over the field K and its algebraic
dual space V* = L(V;K) defined as the set of all linear functions 7 : V — K,
i.e. those functions which satisfy

Tax+By)=aTx)+BT(y) Vx,yeV, Va,pBek.
Each such T € V* defines a seminorm gr on V by
gr(x)=ITx)|  VxeV.

3. For an open nonempty set £2 C R”, the set C¥(£2) of all functions f : 2 —
K which have continuous derivatives up to order k is actually a vector space
over K and on it the following functions pg ,, and gk , are indeed seminorms.
Here K C §2 is any compact subset and k € N is any nonnegative integer. For
0 <m < kand ¢ € C*(£2) define

Prm(P) = sup | DY¢(x), (2.1
xeK,|a|<m
172
akn@ = [ / ID*p(x)Pdx | . (2.2)
laj<m 7 K
The notation is as follows. For a multi-index @ = (¢, ... ,®,) € N” we denote

by D* = % the derivative monomial of order |a| = o) + - -+ + @, 1.€.,
e
le]
DYp(x) = —ax‘?‘ d;an (x),x = (x1,...,x,). Thus, for example for f € C3(R?), one
1 n

has in this notation: If @« = (1,0, 0), then || = 1 and D* f = o ifo = (1,1,0),

dxy

then |o| = 2 and D* f = 4 if & = (0,0,2), then |a| = 2 and D* f = L ;

3)61 3)(2 ’ 32X3 ’

ifa = (1,1,1) then || = 3and D* f = L

dx10x20x3 "
A few comments on these examples are in order. The seminorms given in the second
example play an important role in general functional analysis, those of the third will
be used later in the definition of the topology on the test function spaces used in
distribution theory.
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Recall that in a Euclidean space R” the open ball B,(x) with radius » > 0 and
centre x is defined by

B.x)={yeR": |y—x|<r}

where |y — x| = /Y _i_; (yi — x;)? is the Euclidean distance between the points
y=-..,¥) and x = (xy,...,x,). Similarly one proceeds in a vector space

V on which a seminorm p is given: The open p-ball in V with centre x and radius
r > 0 is defined by

Bp,r(x)z{ye‘/: p(y —x) <r}.

In this definition the Euclidean distance is replaced by the semidistance d,(y, x)
= p(y — x) between the points y,x € V. Note: If p is not a norm, then one can have
d,(y,x) = 0 for y # x. In this case the open p-ball B, ,(0) contains the nontrivial
subspace N(p) = {y € V : p(y) = 0}. Nevertheless these p-balls share all essential
properties with balls in Euclidean space.

1. B,,(x) =x+ Bp,, ie., every point y € B, (x) has the unique representation
y=x-+zwithz e B,, = B, (0);

2. B,,iscircular,ie.,y € B,,,a € K, |¢| < 1 implies ax € B,;

3. B,,isconvex,ie.,x,y € B,, and0 < A < 1 implies Ax + (1 — L)y € Bp,;

4. B, absorbs the points of V, i.e., for every x € V there is a A > 0 such that
AX € By,

5. The nonempty intersection B, ., (x1) N B, ,,(x2) of two open p-balls contains
an open p-ball: B, ,.(x) C B, (x1) N B, ,(x2).

For the proof of these statements see the Exercises.

In a finite dimensional vector space all norms are equivalent, i.e., they define the
same topology. However, this statement does not hold in an infinite dimensional
vector space (see Exercises). As the above examples indicate, in an infinite dimen-
sional vector space there are many different seminorms. This raises naturally two
questions: How do we compare seminorms? When do two systems of seminorms
define the same topology? A natural way to compare two seminorms is to compare
their values in all points. Accordingly one has:

Definition 2.2 For two seminorms p and g on a vector space V one says

a) p is smaller than g, in symbols p < g if, and only if, p(x) < g(x) Vx € V;
b) p and g are comparable if, and only if, either p < g org < p.

The seminorms ¢g; in our first example above are not comparable. Among the
seminorms g , and pg ,, from the third example there are many which are compa-
rable. Suppose two compact subsets K; and K satisfy K| C K, and the nonnegative
integers m is smaller than or equal to the nonnegative integer m,, then obviously

PKim = PKrmy and qK,m; =< qK>m;-

In the Exercises we show the following simple facts about seminorms: If p is
a seminorm on a vector space V and r a positive real number, then rp defined by
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(rp)(x) = rp(x) for all x € V is again a seminorm on V. The maximum p =

max {py, ... , p,} of finitely many seminorms py,... , p, on V, which is defined by
px) =max {p;(x),..., pu(x)} forall x € V,is a seminorm on V such that p; < p
fori = 1,...,n. This prepares us for a discussion of systems of seminorms on a

vector space.

Definition 2.3 A system P of seminorms on a vector space V is called filtering if,
and only if, for any two seminorms p;, p, € P there is a seminorm g € P and there
are positive numbers 71, r» € R™ such that r; p; < g and r, p» < ¢ hold.

Certainly, not all systems of seminorms are filtering (see our first finite-
dimensional example). However it is straightforward to construct a filtering system
which contains a given system: Given a system Py on a vector space V one defines
the system P = P(P,) generated by Py as follows:

geP<aAp,....,ppePoaAr,... .1 eRY: g=max{rip1,... . 7pn}.

One can show that P(P) is the minimal filtering system of seminorms on V that
contains Py. In our third example above we considered the following two systems
of seminorms on V = C*(£2):

Pu(2) = |{pkm: K C 2, K compact, 0 <m <k},
Qu(2) = {qkm: K C$2, K compact, 0 <m <k} .

In the Exercises it is shown that both are filtering.
Our first use of the open p-balls is to define a topology.

Theorem 2.1 Suppose that P is a filtering system of seminorms on a vector space
V. Define a system Tp of subsets of V as follows: A subset U C V belongs to Tp, if
and only if, either U = @) or

VxeU3dpeP,Ir>0: B, (x) CU.

Then Tp is a topology on V in which every point x € V has a neighborhood basis
V. consisting of open p-balls, V,, = {Bp,,(x) :peP,r> O}.

Proof Suppose we are given U; € Tp, i € I. We are going to show that U =
UierU; € Tp. Take any x € U, then x € U; for some i € I. Thus U; € Tp implies:
There are p € P and r > O such that B, ,(x) C U;. It follows that B, ,(x) C U,
hence U € Tp. Next assume that Uy, ... ,U, € Tp are given. Denote U = N}_, U;
and consider x €¢ U C U;,i = 1,...,n. Therefore, fori = 1,... ,n, there are
pi € Pandr; > O such that B, ,,(x) C U;. Since the system P is filtering, there
is a p € P and there are p; > 0 such that p;p; < p fori = 1,...,n. Define
r =min{pry,..., paty}. It follows that B, ,(x) C By, (x) fori =1,... ,n and
therefore B, (x) C N?_,U; = U. Hence the system 7Tp satisfies the three axioms
of a topology. By definition 75 is the topology defined by the system V, of open
p-balls as a neighborhood basis of a point x € V. O

This result shows that there is a unique way to construct a topology on a vector
space as soon as one is given a filtering system of seminorms. Suppose now that two
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filtering systems P and Q of seminorms are given on a vector space V. Then we get
two topologies 7p and 7o on V and naturally one would like to know how these
topologies compare, in particular when they are equal. This question is answered in
the following proposition.

Proposition 2.1 Giventwo filtering systems P and Q on a vector space V, construct
the topologies Tp and Tg on V according to Theorem (2.1). Then the following two
statements are equivalent:

(i) Tp =To.
(i) VpePIqge QIAr>0:p<AigandVge QIApePIr>0:q < Ap.

Two systems P and Q of seminorms on a vector space V are called equivalent, if,
and only if, any of these equivalent conditions holds.

The main technical element of the proof of this proposition is the following ele-
mentary but widely used lemma about the relation of open p-balls and their defining
seminorms. Its proof is left as an exercise.

Lemma 2.2 Suppose that p and q are two seminorms on a vector space V. Then,
foranyr > 0 and R > 0, the following holds:

p< %q & foranyx e V: Byp(x) C B, (x). (2.3)
Proof (Proof of 2.1) Assume condition (i). Then every open p-ball B, ,(x) is open
for the topology 7o, hence there is an open g-ball B, z(x) C B, ,(x). By the lemma
we conclude that p < %¢q. Condition (i) also implies that every open g-ball is open
for the topology Tp, hence we deduce p < Aq for some 0 < A. Therefore condition
(ii) holds.

Conversely, suppose that condition (ii) holds. Then, using again the lemma one
deduces: For every open p-ball B, ,(x) there is an open g-ball B, z(x) C B, (x)
and for every open g-ball B, r(x) there is an open p-ball B, ,(x) C By r(x). This
then implies that the two topologies Tp and T coincide. o

Recall that a topological space is called Hausdorff if any two distinct points can
be separated by disjoint neighborhoods. There is a convenient way to decide when
the topology Tp defined by a filtering system of seminorms is Hausdorff.

Proposition 2.2 Suppose P is a filtering system of seminorms on a vector space
V. Then the topology Tp is Hausdorff if, and only if, for every x € V, x # 0, there
is a seminorm p € P such that p(x) > 0.

Proof Suppose that the topological space (V, Tp) is Hausdorff and x € V is given,
x # 0. Then there are two open balls B, (0) and B, r(x) which do not intersect.
By definition of these balls it follows that p(x) > r > 0 and the condition of
the proposition holds. Conversely assume that the condition holds and two points
x,y € V,x —y # 0 are given. There is a p € P such that 0 < 2r = p(x — y).
Then the open balls B, ,(x) and B, ,(y) do not intersect. (If z € V were a point
belonging to both balls, then we would have p(z — x) < r and p(z — y) < r and
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therefore 2r = p(x —y) = px —z4+z—y) < px—2)+plz—y) <r+r =2r,
a contradiction). Hence the topology 7Tp is Hausdorff. a

Finally, we discuss the continuity of the basic vector space operations of addition
and scalar multiplication with respect to the topology 7» defined by a filtering system
‘P of seminorms on a vector space V. Recall that a function f : E — F froma
topological space E into a topological space F is continuous at a point x € E if, and
only if, the following condition is satisfied: For every neighborhood U of the point
y = f(x) in F there is a neighborhood V of x in E such that f(V) C U, and itis
enough to consider instead of general neighborhoods U and V only elements of a
neighborhood basis of f(x), respectively x.

Proposition 2.3 Let P be afiltering system of seminorms on a vector space V. Then
addition (A) and scalar multiplication (M) of the vector space V are continuous
with respect to the topology Tp, hence (V,Tp) is a topological vector space. This
topological vector space is usually denoted by

(V,P) or V[Pl

Proof We show that the addition A : V x V — V is continuous at any point (x, y) €

V x V. Naturally, the product space V x V is equipped with the product topology of

Tp. Given any open p-ball B, 5, (x +y) for some r > 0, then A(B, ,(x) x B, ,(y)) C

B, 2-(x+y)sinceforall (x', y") € B, ,(x)x B, ,(y) wehave p(A(x’, y)—A(x, y)) =

P +Y) = +y)=pE'—x+y—Y) < p(xX’ =x)+p(y —y) <r+r=2r.

Continuity of scalar multiplication M is proved in a similar way. a
We summarize our results in the following theorem.

Theorem 2.2 LetP be afiltering system of seminorms on a vector space V. Equip V
with the induced topology Tp. Then (V,Tp) = V[ Tplis alocally convex topological
vector space. It is Hausdorff or a HLCVTVS if, and only if, for everyx € V, x # 0,
there is a p € P such that p(x) > O.

Proof By Theorem 2.1 every point x € V has a neighbourhood basis V, consisting
of open p-balls. These balls are absolutely convex (i.e. y,z € B, ,(x), o, 8 € K,
a+ B =1,|a|+|B| < 1implies ay + Bz € B, ,(x)) by the properties of p-balls
listed earlier. Hence by Proposition 2.3 V[7p] is a LCTVS. Finally by Proposition
2.2 we conclude. m|

2.1.1 Examples of HLCTVS

The examples of HLCTVS which we are going to discuss serve a dual purpose.
Naturally they are considered in order to illustrate the concepts and results introduced
above. Then later they will be used as building blocks of the test function spaces used
in distribution theory.

1. Recall the filtering systems of seminorms P, (£2) and Q,(£2) introduced earlier
on the vector space C¥(£2) of k times continuously differentiable functions on
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an open nonempty subset £2 € R”. With the help of Theorem 2.2 it is easy to
show that both (C¥(£2), Py (£2)) and (C*(£2), Q4 (£2)) are Hausdorff locally convex
topological vector spaces.

. Fix a compact subset K of some open nonempty set 2 C R” and consider the

space Cy°(£2) of all functions ¢ : £2 — K which are infinitely often differentiable
on £2 and which have their support in K, i.e., supp f € K. On C°(£2) consider
the systems of semi-norms

Px(2)={pxkm:m=0,1,2,...} Qkx(2)={gxkm: m=0,1,2,...}

introduced in Eq. (2.1), respectively in Eq. (2.2). Both systems are obviously
filtering, and both pg , and gk, are norms on CZ($2). In the Exercises it is
shown that both systems are equivalent and thus we get that

Dk (£2) = (CF(£2), Pk (£2)) = (CF(£2), Qk (£2)) (2.4)

is a Hausdorff locally convex topological vector space.

. Now let £2 € R” be an open nonempty subset which may be unbounded. Consider

the vector space C¥(£2) of functions ¢ : £2 — K which have continuous deriva-
tives up to order k. Introduce two families of symmetric and subadditive functions
Ck(£2) — [0, +o0] by defining, for/ =0,1,2,... ,kandm =0,1,2,...,

Pmi(@) = SUPco < (1 +x2)"2[D*@(x)],
Gni@) = (X juz [o (1+X2)"2|D¥G(x)|?dx)"/2.
Forx = (x1,...,x,) € R" weuse the notation x> = x7+- - -+x2 and |x| = v/x2.

Define the following subspace of C¥(£2):
Ch(2)={¢ € CX(2) : pumi(¢) <00, I =0,1,... ,k}.

Then the system of norms { Pmi:0<1< k} is filtering on this subspace and thus
(CE(82), {pms : 0 <1 <k})isa HLCTVS. Ck (£2) is the space of continuously
differentiable functions which decay at infinity (if £2 is unbounded), with all
derivatives of order < k, at least as |x|~™. Similarly one can build a HLCTVS
space by using the system of norms ¢q,,;, 0 <1 < k.

. In this example we use some basic facts from Lebesgue integration theory [1].

Let 2 C R" be a nonempty measurable set. On the vector space L}, .(£2) of all

loc
measurable functions f : £2 — K which are locally integrable, i.e., for which

I|f||1<=/K|f(X)|dx

is finite for every compact subset K C £2, consider the system of seminorms
P ={l'lx : K C £2, K compact}. Since the finite union of compact sets is
compact, it follows easily that this system is filtering. If f € L}, .(£2) is given and
if f # 0, then there is a compact set K such that || f||x > 0, since f # 0 means
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that f is different from zero on a set of positive Lebesgue measure. Therefore,
by Theorem 2.2, the space

(Lo (. Al-lIk : K C 2, K compact})

is a HLCTVS.

2.1.2 Continuity and Convergence in a HLCVTVS

Since the topology of a LCTVS V[P] is defined in terms of a filtering system P
of seminorms it is, in most cases, much more convenient to have a characterization
of the basic concepts of convergence, of a Cauchy sequence, and of continuity in
terms of the seminorms directly instead of having to rely on the general topological
definitions. Such characterizations will be given in this subsection.

Recall: A sequence (x');cy of points x = (xi, . ,x,’;) € R” is said to converge
if, and only if, there is a point x € R" such that for every open Euclidean ball
B.(x) = {y e R" : |y — x| < r} only a finite number of elements of the sequence
are not contained in this ball, i.e., there is an index iy, depending on » > 0, such
that x’ € B,(x) forall i > i, or expressed directly in terms of the Euclidean norm,
|x! — x| < r foralli > i.

Similarly one proceeds in a general HLCTVS V[P] where now however instead
of the Euclidean norm | - | all the seminorms p € P have to be taken into account.

Definition 2.4 Let V[P] be a HLCTVS and (x;);cn a sequence in V[P]. Then one
says:

1. The sequence (x;);cn converges (in V[P]) if, and only if, there is an x € V
(called a limit point of the sequence) such that for every p € P and for every
r > (O thereis anindex iy = ip(p,r)depending on p and r such that p(x —x;) < r
forall i > iy.

2. The sequence (x;);cn is a Cauchy sequence if, and only if, for every p € P
and every r > 0 there is an index iy = io(p, ) such that p(x; — x;) < r for all
i,j = io.

The following immediate results are well known in R”.

Theorem 2.3

(a) Every convergent sequence in a LCTVS V[P] is a Cauchy sequence.
(b) In a HLCTVS V [P] the limit point of a convergent sequence is unique.

Proof Suppose asequence (x;);en convergesin V[P]tox € V. Then, forany p € P
and any r > 0, there is an iy € N such that p(x —x;) < r/2 for alli > iy. Therefore,
foralli, j > ip, onehas p(x; —x;) = p((x —x;)+(x; —x)) < p(x—x;)+px;—x) <
% + % = r, hence (x;);cy is a Cauchy sequence and part (a) follows.
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Suppose V[P] is a HLCTVS and (x;);cn is a convergent sequence in V[P].
Assume that for x, y € V the condition in the definition of convergence holds, i.e.,
for every p € P and every r > 0 there is an i such that p(x — x;) < r forall i > i;
and there is an i, such that p(y — x;) < r foralli > i,. Then, for all i > max {iy, i»},
px —y)=px —xi +x; —y) < p(x —x;) + p(x; —y) <r+r =2r, and since
r > 0 is arbitrary, it follows that p(x — y) = 0. Since this holds for every p € P
and V[P] is Hausdorff, we conclude (see Proposition 2.2) that x = y and thus part
(b) follows. O

Part (a) of Theorem 2.3 raises naturally the question whether the converse holds
too, i.e. whether every Cauchy sequence converges. In general, this is not the case.
Spaces in which this statement holds are distinguished according to the following
definition.

Definition 2.5 A HLCTVS in which every Cauchy sequence converges is called
sequentially complete.

Example 2.3

1. Per construction, the field R of real numbers equipped with the absolute value | - |
as a norm is a sequentially complete HLCTVS.

2. The Euclidean spaces (R",| - |), n=1,2, ... are HLCTVS. Here | - | denotes the
Euclidean norm.

3. For any £2 C R", £2 open and nonempty, and k=0,1,2, . .. , the space

CH(2)[Pr(£2)]

is a sequentially complete HLCTVS. This is shown in the Exercises. Recall the
definition

Pr(£2) = {pK,m : K C £2, K compact, 0 <m < k} .

Note that C*(£2)[Px(£2)] is equipped with the topology of uniform convergence
of all derivatives of order < k on all compact subsets of 2.

Compared to a general topological vector space one has a fairly explicit description of
the topology in a locally convex topological vector space. Here, as we have learned,
each point has a neighborhood basis consisting of open balls, and thus formulating
the definition of continuity one can completely rely on these open balls. This then has
an immediate translation into conditions involving only the systems of seminorms
which define the topology. Suppose that X[P] and Y[Q] are two LCTVS. Then a
function f : X — Y is said to be continuous at xo € X if, and only if, for every
open g-ball B, z(f(xo)) in Y[Q] there is an open p-ball B, .(x) in X[P] which is
mapped by f into By z(f(x0)). This can also be expressed as follows:

Definition 2.6 Assume that X[P] and Y[Q] are two LCTVS. A function
f : X — Y is said to be continuous at x, € X if, and only if, for every seminorm
q € Q and every R > 0 there are p € P and r > 0 such that for all x € X the
condition p(x — x¢) < r implies g(f(x) — f(xp)) < R. f is called continuous on
X if, and only if, f is continuous at every point xo € X.
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