
Chapter 2
Spaces of Test Functions

The spaces of test functions we are going to use are vector spaces of smooth (i.e.,
sufficiently often continuously differentiable) functions on open nonempty subsets
Ω ⊆ R

n equipped with a “natural” topology. Accordingly we start with a general
method to equip a vector spaceV with a topology such that the vector space operations
of addition and scalar multiplication become continuous, i.e., such that

A : V × V → V , A(x, y) = x + y, x, y ∈ V ,

M : K × V → V , M(λ, x) = λx, λ ∈ K, x ∈ V

become continuous functions for this topology. This can be done in several different
but equivalent ways. The way we describe has the advantage of being the most
natural one for the spaces of test functions we want to construct. A vector space V

which is equipped with a topology T such that the functionsA and M are continuous
is called a topological vector space, usually abbreviated as TVS. The test function
spaces used in distribution theory are concrete examples of topological vector spaces
where, however, the topology has the additional property that every point has a
neighborhood basis consisting of (absolutely) convex sets. These are called locally
convex topological vector spaces, abbreviated as LCVTVS.

2.1 Hausdorff Locally Convex Topological Vector Spaces

To begin we recall the concept of a topology. To define a topology on a set X means
to define a system T of subsets of X which has the following properties:

T1 X, ∅ ∈ T (∅ denotes the empty set);
T2 Wi ∈ T , i ∈ I ⇒ ⋃

i∈I Wi ∈ T (I any index set);
T3 W1, . . . ,WN ∈ T , N ∈ N ⇒ ⋂N

j=1 Wj ∈ T .

The elements of T are called open and their complements closed sets of the
topological space (X, T ).
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8 2 Spaces of Test Functions

Example 2.1

1. Define Tt = {∅,X}. Tt is called the trivial topology on X.
2. Define Td to be the system of all subsets of X including X and ∅. Td is called the

discrete topology on X.
3. The usual topology on the real line R has as open sets all unions of open intervals

]a, b[ = {x ∈ R : a < x < b}.
Note that according to T3 only finite intersections are allowed. If one would take here
the intersection of infinitely many sets, the resulting concept of a topology would not
be very useful. For instance, every point a ∈ R is the intersection of infinitely many
open intervals In = ]a − 1

n
, a + 1

n
[, a = ∩n∈N. Hence, if in T3 infinite intersections

were allowed, all points would be open, thus every subset would be open (see discrete
topology), a property which in most cases is not very useful.

If we put any topology on a vector space, it is not assured that the basic vector
space operations of addition and scalar multiplication will be continuous. A fairly
concrete method to define a topology T on a vector space V so that the resulting
topological space (V , T ) is actually a topological vector space, is described in the
following paragraphs. The starting point is the concept of a seminorm on a vector
space as a real valued, subadditive, positive homogeneous and symmetric function.

Definition 2.1 Let V be a vector space over K. Any function q : V → R with the
properties

(i) ∀ x, y ∈ V : q(x + y) ≤ q(x) + q(y) (subadditive),
(ii) ∀λ ∈ K, ∀x ∈ V q(λx) = |λ|q(x), (symmetric and positive homogeneous),

is called a seminorm on V . If a seminorm q has the additional property

(iii) q(x) = 0 ⇒ x = 0,

then it is called a norm.
There are some immediate consequences which are used very often:

Lemma 2.1 For every seminorm q on a vector space V one has

1. q(0) = 0;
2. ∀x, y ∈ V : |q(x) − q(y)| ≤ q(x − y);
3. ∀x ∈ V : 0 ≤ q(x).

Proof The second condition in the definition of a seminorm gives for λ = 0 that
q(0x) = 0. But for any x ∈ V one has 0x = 0 ≡ the neutral element 0 in V

and the first part follows. Apply subadditivity of q to x = y + (x − y) to get
q(x) = q(y + (x − y)) ≤ q(y) + q(x − y). Similarly one gets for y = x + (y − x)
that q(y) ≤ q(x) + q(y − x). The symmetry condition ii) of a seminorm says in
particular q(− x) = q(x), hence q(x − y) = q(y − x), and thus the above two
estimates together say ±(q(x) − q(y)) ≤ q(x − y) and this proves the second part.
For y = 0 the second part says |q(x) − q(0)| ≤ q(x), hence by observing q(0) = 0
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we get |q(x)| ≤ q(x) and therefore a seminorm takes only nonnegative values and
we conclude. �

Example 2.2

1. It is easy to show that the functions qi : R
n → R defined by qi(x) = |xi | for

x = (x1, . . . , xn) ∈ R
n are seminorms on the real vector space R

n but not norms
if n > 1. And it is well known that the system P = {q1, . . . , qn} can be used to
define the usual Euclidean topology on R

n.
2. More generally, consider any vector space V over the field K and its algebraic

dual space V ∗ = L(V ; K) defined as the set of all linear functions T : V → K,
i.e. those functions which satisfy

T (αx + βy) = αT (x) + βT (y) ∀ x, y ∈ V , ∀α,β ∈ K.

Each such T ∈ V ∗ defines a seminorm qT on V by

qT (x) = |T (x)| ∀ x ∈ V.

3. For an open nonempty set Ω ⊂ R
n, the set Ck(Ω) of all functions f : Ω →

K which have continuous derivatives up to order k is actually a vector space
over K and on it the following functions pK ,m and qK ,m are indeed seminorms.
Here K ⊂ Ω is any compact subset and k ∈ N is any nonnegative integer. For
0 ≤ m ≤ k and φ ∈ Ck(Ω) define

pK ,m(φ) = sup
x∈K , |α|≤m

|Dαφ(x)|, (2.1)

qK ,m(φ) =
⎛

⎝
∑

|α|≤m

∫

K

|Dαφ(x)|2dx

⎞

⎠

1/2

. (2.2)

The notation is as follows. For a multi-index α = (α1, . . . ,αn) ∈ N
n we denote

by Dα = ∂ |α|
∂x

α1
1 ···xαnn the derivative monomial of order |α| = α1 + · · · + αn, i.e.,

Dαφ(x) = ∂ |α|φ
∂x

α1
1 ···xαnn (x), x = (x1, . . . , xn). Thus, for example for f ∈ C3(R3), one

has in this notation: If α = (1, 0, 0), then |α| = 1 andDαf = ∂f

∂x1
; if α = (1, 1, 0),

then |α| = 2 and Dαf = ∂2f

∂x1∂x2
; if α = (0, 0, 2), then |α| = 2 and Dαf = ∂2f

∂2x3
;

if α = (1, 1, 1) then |α| = 3 and Dαf = ∂3f

∂x1∂x2∂x3
.

A few comments on these examples are in order. The seminorms given in the second
example play an important role in general functional analysis, those of the third will
be used later in the definition of the topology on the test function spaces used in
distribution theory.
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Recall that in a Euclidean space R
n the open ball Br (x) with radius r > 0 and

centre x is defined by

Br (x) = {
y ∈ R

n : |y − x| < r
}

where |y − x| = √∑n
i=1 (yi − xi)2 is the Euclidean distance between the points

y = (y1, . . . , yn) and x = (x1, . . . , xn). Similarly one proceeds in a vector space
V on which a seminorm p is given: The open p-ball in V with centre x and radius
r > 0 is defined by

Bp,r (x) = {y ∈ V : p(y − x) < r} .
In this definition the Euclidean distance is replaced by the semidistance dp(y, x)
= p(y− x) between the points y, x ∈ V . Note: If p is not a norm, then one can have
dp(y, x) = 0 for y �= x. In this case the open p-ball Bp,r (0) contains the nontrivial
subspaceN (p) = {y ∈ V : p(y) = 0}. Nevertheless these p-balls share all essential
properties with balls in Euclidean space.

1. Bp,r (x) = x + Bp,r , i.e., every point y ∈ Bp,r (x) has the unique representation
y = x + z with z ∈ Bp,r ≡ Bp,r (0);

2. Bp,r is circular, i.e., y ∈ Bp,r , α ∈ K, |α| ≤ 1 implies αx ∈ Bp,r ;
3. Bp,r is convex, i.e., x, y ∈ Bp,r and 0 ≤ λ ≤ 1 implies λx + (1 − λ)y ∈ Bp,r ;
4. Bp,r absorbs the points of V , i.e., for every x ∈ V there is a λ > 0 such that

λx ∈ Bp,r ;
5. The nonempty intersection Bp1,r1 (x1) ∩ Bp2,r2 (x2) of two open p-balls contains

an open p-ball: Bp,r (x) ⊂ Bp1,r1 (x1) ∩ Bp2,r2 (x2).

For the proof of these statements see the Exercises.
In a finite dimensional vector space all norms are equivalent, i.e., they define the

same topology. However, this statement does not hold in an infinite dimensional
vector space (see Exercises). As the above examples indicate, in an infinite dimen-
sional vector space there are many different seminorms. This raises naturally two
questions: How do we compare seminorms? When do two systems of seminorms
define the same topology? A natural way to compare two seminorms is to compare
their values in all points. Accordingly one has:

Definition 2.2 For two seminorms p and q on a vector space V one says

a) p is smaller than q, in symbols p ≤ q if, and only if, p(x) ≤ q(x) ∀x ∈ V ;
b) p and q are comparable if, and only if, either p ≤ q or q ≤ p.

The seminorms qi in our first example above are not comparable. Among the
seminorms qK ,m and pK ,m from the third example there are many which are compa-
rable. Suppose two compact subsetsK1 andK2 satisfyK1 ⊂ K2 and the nonnegative
integers m1 is smaller than or equal to the nonnegative integer m2, then obviously

pK1,m1 ≤ pK2,m2 and qK1,m1 ≤ qK2,m2 .

In the Exercises we show the following simple facts about seminorms: If p is
a seminorm on a vector space V and r a positive real number, then rp defined by
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(rp)(x) = rp(x) for all x ∈ V is again a seminorm on V . The maximum p =
max {p1, . . . ,pn} of finitely many seminorms p1, . . . ,pn on V , which is defined by
p(x) = max {p1(x), . . . ,pn(x)} for all x ∈ V , is a seminorm on V such that pi ≤ p

for i = 1, . . . , n. This prepares us for a discussion of systems of seminorms on a
vector space.

Definition 2.3 A system P of seminorms on a vector space V is called filtering if,
and only if, for any two seminorms p1, p2 ∈ P there is a seminorm q ∈ P and there
are positive numbers r1, r2 ∈ R

+ such that r1p1 ≤ q and r2p2 ≤ q hold.
Certainly, not all systems of seminorms are filtering (see our first finite-

dimensional example). However it is straightforward to construct a filtering system
which contains a given system: Given a system P0 on a vector space V one defines
the system P = P(P0) generated by P0 as follows:

q ∈ P ⇔ ∃p1, . . . ,pn ∈ P0 ∃ r1, . . . , rn ∈ R
+ : q = max {r1p1, . . . , rnpn} .

One can show that P(P0) is the minimal filtering system of seminorms on V that
contains P0. In our third example above we considered the following two systems
of seminorms on V = Ck(Ω):

Pk(Ω) = {
pK ,m : K ⊂ Ω , K compact, 0 ≤ m ≤ k

}
,

Qk(Ω) = {
qK ,m : K ⊂ Ω , K compact, 0 ≤ m ≤ k

}
.

In the Exercises it is shown that both are filtering.
Our first use of the open p-balls is to define a topology.

Theorem 2.1 Suppose that P is a filtering system of seminorms on a vector space
V . Define a system TP of subsets of V as follows: A subset U ⊂ V belongs to TP , if
and only if, either U = ∅ or

∀x ∈ U ∃p ∈ P , ∃ r > 0 : Bp,r (x) ⊂ U.

Then TP is a topology on V in which every point x ∈ V has a neighborhood basis
Vx consisting of open p-balls, Vx =

{
Bp,r (x) : p ∈ P , r > 0

}
.

Proof Suppose we are given Ui ∈ TP , i ∈ I . We are going to show that U =
∪i∈IUi ∈ TP . Take any x ∈ U , then x ∈ Ui for some i ∈ I . Thus Ui ∈ TP implies:
There are p ∈ P and r > 0 such that Bp,r (x) ⊂ Ui . It follows that Bp,r (x) ⊂ U ,
hence U ∈ TP . Next assume that U1, . . . ,Un ∈ TP are given. Denote U = ∩n

i=1Ui

and consider x ∈ U ⊂ Ui , i = 1, . . . , n. Therefore, for i = 1, . . . , n, there are
pi ∈ P and ri > 0 such that Bpi ,ri (x) ⊂ Ui . Since the system P is filtering, there
is a p ∈ P and there are ρi > 0 such that ρipi ≤ p for i = 1, . . . , n. Define
r = min {ρ1r1, . . . , ρnrn}. It follows that Bp,r (x) ⊂ Bpi ,ri (x) for i = 1, . . . , n and
therefore Bp,r (x) ⊂ ∩n

i=1Ui = U . Hence the system TP satisfies the three axioms
of a topology. By definition TP is the topology defined by the system Vx of open
p-balls as a neighborhood basis of a point x ∈ V . �

This result shows that there is a unique way to construct a topology on a vector
space as soon as one is given a filtering system of seminorms. Suppose now that two
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filtering systems P and Q of seminorms are given on a vector space V . Then we get
two topologies TP and TQ on V and naturally one would like to know how these
topologies compare, in particular when they are equal. This question is answered in
the following proposition.

Proposition 2.1 Given two filtering systems P and Q on a vector spaceV , construct
the topologies TP and TQ on V according to Theorem (2.1). Then the following two
statements are equivalent:

(i) TP = TQ.
(ii) ∀p ∈ P∃ q ∈ Q ∃ λ > 0 : p ≤ λq and ∀q ∈ Q ∃p ∈ P ∃ λ > 0 : q ≤ λp.

Two systems P and Q of seminorms on a vector space V are called equivalent, if,
and only if, any of these equivalent conditions holds.

The main technical element of the proof of this proposition is the following ele-
mentary but widely used lemma about the relation of open p-balls and their defining
seminorms. Its proof is left as an exercise.

Lemma 2.2 Suppose that p and q are two seminorms on a vector space V . Then,
for any r > 0 and R > 0, the following holds:

p ≤ r

R
q ⇔ for any x ∈ V : Bq,R(x) ⊆ Bp,r (x). (2.3)

Proof (Proof of 2.1) Assume condition (i). Then every open p-ball Bp,r (x) is open
for the topology TQ, hence there is an open q-ball Bq,R(x) ⊂ Bp,r (x). By the lemma
we conclude that p ≤ r

R
q. Condition (i) also implies that every open q-ball is open

for the topology TP , hence we deduce p ≤ λq for some 0 < λ. Therefore condition
(ii) holds.

Conversely, suppose that condition (ii) holds. Then, using again the lemma one
deduces: For every open p-ball Bp,r (x) there is an open q-ball Bq,R(x) ⊂ Bp,r (x)
and for every open q-ball Bq,R(x) there is an open p-ball Bp,r (x) ⊂ Bq,R(x). This
then implies that the two topologies TP and TQ coincide. �

Recall that a topological space is called Hausdorff if any two distinct points can
be separated by disjoint neighborhoods. There is a convenient way to decide when
the topology TP defined by a filtering system of seminorms is Hausdorff.

Proposition 2.2 Suppose P is a filtering system of seminorms on a vector space
V . Then the topology TP is Hausdorff if, and only if, for every x ∈ V , x �= 0, there
is a seminorm p ∈ P such that p(x) > 0.

Proof Suppose that the topological space (V , TP ) is Hausdorff and x ∈ V is given,
x �= 0. Then there are two open balls Bp,r (0) and Bq,R(x) which do not intersect.
By definition of these balls it follows that p(x) ≥ r > 0 and the condition of
the proposition holds. Conversely assume that the condition holds and two points
x, y ∈ V , x − y �= 0 are given. There is a p ∈ P such that 0 < 2r = p(x − y).
Then the open balls Bp,r (x) and Bp,r (y) do not intersect. (If z ∈ V were a point
belonging to both balls, then we would have p(z − x) < r and p(z − y) < r and
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therefore 2r = p(x − y) = p(x − z + z − y) ≤ p(x − z) + p(z − y) < r + r = 2r ,
a contradiction). Hence the topology TP is Hausdorff. �

Finally, we discuss the continuity of the basic vector space operations of addition
and scalar multiplication with respect to the topology TP defined by a filtering system
P of seminorms on a vector space V . Recall that a function f : E → F from a
topological space E into a topological space F is continuous at a point x ∈ E if, and
only if, the following condition is satisfied: For every neighborhood U of the point
y = f (x) in F there is a neighborhood V of x in E such that f (V ) ⊂ U , and it is
enough to consider instead of general neighborhoods U and V only elements of a
neighborhood basis of f (x), respectively x.

Proposition 2.3 Let P be a filtering system of seminorms on a vector spaceV . Then
addition (A) and scalar multiplication (M) of the vector space V are continuous
with respect to the topology TP , hence (V , TP ) is a topological vector space. This
topological vector space is usually denoted by

(V , P) or V [P].

Proof We show that the additionA : V ×V → V is continuous at any point (x, y) ∈
V ×V . Naturally, the product space V ×V is equipped with the product topology of
TP . Given any open p-ballBp,2r (x+y) for some r > 0, thenA(Bp,r (x)×Bp,r (y)) ⊂
Bp,2r (x+y) since for all (x ′, y ′) ∈ Bp,r (x)×Bp,r (y) we havep(A(x ′, y ′)−A(x, y)) =
p((x ′ + y ′)− (x+ y)) = p(x ′ − x+ y− y ′) ≤ p(x ′ − x)+p(y ′ − y) < r + r = 2r .
Continuity of scalar multiplication M is proved in a similar way. �

We summarize our results in the following theorem.

Theorem 2.2 Let P be a filtering system of seminorms on a vector spaceV . EquipV
with the induced topology TP . Then (V , TP ) = V [TP ] is a locally convex topological
vector space. It is Hausdorff or a HLCVTVS if, and only if, for every x ∈ V , x �= 0,
there is a p ∈ P such that p(x) > 0.

Proof By Theorem 2.1 every point x ∈ V has a neighbourhood basis Vx consisting
of open p-balls. These balls are absolutely convex (i.e. y, z ∈ Bp,r (x), α,β ∈ K,
α + β = 1, |α| + |β| ≤ 1 implies αy + βz ∈ Bp,r (x)) by the properties of p-balls
listed earlier. Hence by Proposition 2.3 V [TP ] is a LCTVS. Finally by Proposition
2.2 we conclude. �

2.1.1 Examples of HLCTVS

The examples of HLCTVS which we are going to discuss serve a dual purpose.
Naturally they are considered in order to illustrate the concepts and results introduced
above. Then later they will be used as building blocks of the test function spaces used
in distribution theory.

1. Recall the filtering systems of seminorms Pk(Ω) and Qk(Ω) introduced earlier
on the vector space Ck(Ω) of k times continuously differentiable functions on
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an open nonempty subset Ω ⊆ R
n. With the help of Theorem 2.2 it is easy to

show that both (Ck(Ω), Pk(Ω)) and (Ck(Ω), Qk(Ω)) are Hausdorff locally convex
topological vector spaces.

2. Fix a compact subset K of some open nonempty set Ω ⊆ R
n and consider the

space C∞
K (Ω) of all functions φ : Ω → K which are infinitely often differentiable

on Ω and which have their support in K , i.e., supp f ⊆ K . On C∞
K (Ω) consider

the systems of semi-norms

PK (Ω) = {
pK ,m : m = 0, 1, 2, . . .

}
QK (Ω) = {

qK ,m : m = 0, 1, 2, . . .
}

introduced in Eq. (2.1), respectively in Eq. (2.2). Both systems are obviously
filtering, and both pK ,m and qK ,m are norms on C∞

K (Ω). In the Exercises it is
shown that both systems are equivalent and thus we get that

DK (Ω) = (C∞
K (Ω), PK (Ω)) = (C∞

K (Ω), QK (Ω)) (2.4)

is a Hausdorff locally convex topological vector space.
3. Now letΩ ⊆ R

n be an open nonempty subset which may be unbounded. Consider
the vector space Ck(Ω) of functions φ : Ω → K which have continuous deriva-
tives up to order k. Introduce two families of symmetric and subadditive functions
Ck(Ω) → [0,+∞] by defining, for l = 0, 1, 2, . . . , k and m = 0, 1, 2, . . . ,

pm,l(φ) = supx∈Ω , |α|≤l (1 + x2)m/2|Dαφ(x)|,
qm,l(φ) = (

∑
|α|≤l

∫
Ω

(1 + x2)m/2|Dαφ(x)|2dx)1/2.

For x = (x1, . . . , xn) ∈ R
n we use the notation x2 = x2

1 +· · ·+x2
n and |x| = √

x2.
Define the following subspace of Ck(Ω):

Ck
m(Ω) = {

φ ∈ Ck(Ω) : pm,l(φ) < ∞, l = 0, 1, . . . , k
}
.

Then the system of norms
{
pm,l : 0 ≤ l ≤ k

}
is filtering on this subspace and thus(

Ck
m(Ω),

{
pm,l : 0 ≤ l ≤ k

})
is a HLCTVS. Ck

m(Ω) is the space of continuously
differentiable functions which decay at infinity (if Ω is unbounded), with all
derivatives of order ≤ k, at least as |x|−m. Similarly one can build a HLCTVS
space by using the system of norms qm,l , 0 ≤ l ≤ k.

4. In this example we use some basic facts from Lebesgue integration theory [1].
Let Ω ⊂ R

n be a nonempty measurable set. On the vector space L1
loc(Ω) of all

measurable functions f : Ω → K which are locally integrable, i.e., for which

‖f ‖K =
∫

K

|f (x)|dx

is finite for every compact subset K ⊂ Ω , consider the system of seminorms
P = {‖·‖K : K ⊂ Ω , K compact}. Since the finite union of compact sets is
compact, it follows easily that this system is filtering. If f ∈ L1

loc(Ω) is given and
if f �= 0, then there is a compact set K such that ‖f ‖K > 0, since f �= 0 means
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that f is different from zero on a set of positive Lebesgue measure. Therefore,
by Theorem 2.2, the space

(L1
loc(Ω), {‖·‖K : K ⊂ Ω , K compact} )

is a HLCTVS.

2.1.2 Continuity and Convergence in a HLCVTVS

Since the topology of a LCTVS V [P] is defined in terms of a filtering system P
of seminorms it is, in most cases, much more convenient to have a characterization
of the basic concepts of convergence, of a Cauchy sequence, and of continuity in
terms of the seminorms directly instead of having to rely on the general topological
definitions. Such characterizations will be given in this subsection.

Recall: A sequence (xi)i∈N of points xi = (xi1, . . . , xin) ∈ R
n is said to converge

if, and only if, there is a point x ∈ R
n such that for every open Euclidean ball

Br (x) = {y ∈ R
n : |y − x| < r} only a finite number of elements of the sequence

are not contained in this ball, i.e., there is an index i0, depending on r > 0, such
that xi ∈ Br (x) for all i ≥ i0, or expressed directly in terms of the Euclidean norm,
|xi − x| < r for all i ≥ i0.

Similarly one proceeds in a general HLCTVS V [P] where now however instead
of the Euclidean norm | · | all the seminorms p ∈ P have to be taken into account.

Definition 2.4 Let V [P] be a HLCTVS and (xi)i∈N a sequence in V [P]. Then one
says:

1. The sequence (xi)i∈N converges (in V [P]) if, and only if, there is an x ∈ V

(called a limit point of the sequence) such that for every p ∈ P and for every
r > 0 there is an index i0 = i0(p, r) depending onp and r such thatp(x−xi) < r

for all i ≥ i0.
2. The sequence (xi)i∈N is a Cauchy sequence if, and only if, for every p ∈ P

and every r > 0 there is an index i0 = i0(p, r) such that p(xi − xj ) < r for all
i, j ≥ i0.

The following immediate results are well known in R
n.

Theorem 2.3

(a) Every convergent sequence in a LCTVS V [P] is a Cauchy sequence.
(b) In a HLCTVS V [P] the limit point of a convergent sequence is unique.

Proof Suppose a sequence (xi)i∈N converges inV [P] to x ∈ V . Then, for anyp ∈ P
and any r > 0, there is an i0 ∈ N such that p(x− xi) < r/2 for all i ≥ i0. Therefore,
for all i, j ≥ i0, one hasp(xi−xj ) = p((x−xj )+(xi−x)) ≤ p(x−xj )+p(xi−x) <
r
2 + r

2 = r , hence (xi)i∈N is a Cauchy sequence and part (a) follows.
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Suppose V [P] is a HLCTVS and (xi)i∈N is a convergent sequence in V [P].
Assume that for x, y ∈ V the condition in the definition of convergence holds, i.e.,
for every p ∈ P and every r > 0 there is an i1 such that p(x − xi) < r for all i ≥ i1
and there is an i2 such that p(y−xi) < r for all i ≥ i2. Then, for all i ≥ max {i1, i2},
p(x − y) = p(x − xi + xi − y) ≤ p(x − xi) + p(xi − y) < r + r = 2r , and since
r > 0 is arbitrary, it follows that p(x − y) = 0. Since this holds for every p ∈ P
and V [P] is Hausdorff, we conclude (see Proposition 2.2) that x = y and thus part
(b) follows. �

Part (a) of Theorem 2.3 raises naturally the question whether the converse holds
too, i.e. whether every Cauchy sequence converges. In general, this is not the case.
Spaces in which this statement holds are distinguished according to the following
definition.

Definition 2.5 A HLCTVS in which every Cauchy sequence converges is called
sequentially complete.

Example 2.3

1. Per construction, the field R of real numbers equipped with the absolute value | · |
as a norm is a sequentially complete HLCTVS.

2. The Euclidean spaces (Rn, | · |), n=1,2, . . . are HLCTVS. Here | · | denotes the
Euclidean norm.

3. For any Ω ⊂ R
n, Ω open and nonempty, and k=0,1,2, . . . , the space

Ck(Ω)[Pk(Ω)]

is a sequentially complete HLCTVS. This is shown in the Exercises. Recall the
definition

Pk(Ω) = {
pK ,m : K ⊂ Ω , K compact, 0 ≤ m ≤ k

}
.

Note that Ck(Ω)[Pk(Ω)] is equipped with the topology of uniform convergence
of all derivatives of order ≤ k on all compact subsets of Ω .

Compared to a general topological vector space one has a fairly explicit description of
the topology in a locally convex topological vector space. Here, as we have learned,
each point has a neighborhood basis consisting of open balls, and thus formulating
the definition of continuity one can completely rely on these open balls. This then has
an immediate translation into conditions involving only the systems of seminorms
which define the topology. Suppose that X[P] and Y [Q] are two LCTVS. Then a
function f : X → Y is said to be continuous at x0 ∈ X if, and only if, for every
open q-ball Bq,R(f (x0)) in Y [Q] there is an open p-ball Bp,r (x) in X[P] which is
mapped by f into Bq,R(f (x0)). This can also be expressed as follows:

Definition 2.6 Assume that X[P] and Y [Q] are two LCTVS. A function
f : X → Y is said to be continuous at x0 ∈ X if, and only if, for every seminorm
q ∈ Q and every R > 0 there are p ∈ P and r > 0 such that for all x ∈ X the
condition p(x − x0) < r implies q(f (x) − f (x0)) < R. f is called continuous on
X if, and only if, f is continuous at every point x0 ∈ X.
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