This chapter discusses the one-sector neoclassical growth model—the foundation
for all the growth theory in the book. The primary focus of the chapter is growth via
capital accumulation. We think of capital as man-made durable inputs to the pro-
duction process. The first type of capital we include is physical capital. For our
purposes, physical capital can be primarily thought of as plant and equipment that is
produced in one period and then used in production in the following period." To
model production, we introduce firms, economic institutions that combine physical
capital and labor to produce goods and services.

Physical capital introduces two fundamental features to the economy. First, the
presence of physical capital allows the economy to expand its productive capacity
over time—that is to experience economic growth through investment and capital
accumulation. Second, the production of output generates endogenous income
flows to households that own and rent physical capital to firms. In addition, physical
capital will raise the productivity of the labor input and thereby raise the wage
received by workers.

The accumulation of capital must be financed or funded by household saving.
We use the life-cycle theory of household consumption as the basis for explaining
saving behavior. In the pure life-cycle theory, households save to finance retirement
consumption. Later in this chapter, we extend the life-cycle theory of the household
to include transfers of assets across generations—including investments in chil-
dren’s human capital by their parents. Human capital, a second type of man-made
durable input, is defined to be the embodied knowledge, skills, and health that affect
a worker’s productivity. Investments in human capital, just as with physical capital,
allow an economy to experience economic growth.

! Definitions of physical capital will vary depending on the purpose at hand. In some cases,
physical capital is defined to include inventories, software, land, and other inputs that extend
beyond plant and equipment.
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12 2 Neoclassical Growth Theory

Finally, we illustrate how the model with capital can be “estimated,” or more
precisely calibrated, to make quantitative analysis possible. In particular, we
examine how well our simple models can replicate the economic growth in the USA
from 1870 to 2000.

2.1 Firms, Production, and the Demand for Capital

The first step in developing a general equilibrium model of output and income is to
introduce a production technology. We assume that production takes place in
“firms”—organizations that hire labor and rent capital in order to produce output.
Each firm’s production knowledge or “technology” is represented by a Cobb-
Douglas production function,

Y, = AK'M} ", (2.1)

where Y denotes output, K denotes the capital stock rented, M denotes the hours of
work hired, and where A and o are technological parameters. The production
function is a technological “recipe” that relates the inputs hired and used by the firm
to the output that the firm is capable of producing. The parameter A is sometimes
referred to as fotal factor productivity (TFP). It captures a wide variety of
unmeasured variables that affect the productivity of labor and capital; from climate
and geography that determine natural resources available and the health environ-
ment of households to laws and regulations that restrict the way that production is
carried out. The parameter o measures the relative importance of physical capital in
the production process. This interpretation of o will become more clear as the
theory of the firm is developed below.

The output produced by firms is a single “all-purpose” good that can either be
consumed or invested as a physical asset (somewhat like corn that can be either
consumed or stored and invested as a physical asset to plant and produce more corn
in the future). This abstraction avoids the complication of having two distinct
sectors of production, one producing consumer goods and the other capital goods.
For some purposes, one may require this more elaborate two-sector model, but this
is not the way to begin an analysis of a growing economy.

The Cobb-Douglas production function is a special case of what is called a
“neoclassical” production function. All neoclassical production functions have
three general properties: (i) positive marginal productivity, (ii) diminishing mar-
ginal productivity, and (iii) constant returns to scale. Economists believe that these
properties are common to most production processes.

The marginal product of an input is the increase in output that results from an
increase in the use of the input. Formally, it is the derivative of the production
function with respect to a particular input, holding other inputs constant. For a
Cobb-Douglas production function, the marginal product of labor and the marginal

product of capital are f1- = (1 — o) AK?M; * and G = 2AK?~'M/~*. The marginal
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productivity of increasing the level of either input is always positive—more output
results when the firm hires either more labor or more capital.

Diminishing marginal productivity means the additional output, associated with
adding an additional unit of an input, decreases as more of that input is used. So while
output increases as the firm uses more of an input, the size of the increase gets smaller
as the amount of the input used in production increases. This assumption is based on
the intuitive notion of “input crowding.” The increasing scarcity of the input held
fixed, limits the production that results from adding more of the other input. For
example, if there is given amount of capital, as more workers are hired the amount of
capital that each worker can use decreases—serving to limit the rise in output. Note
that the marginal product of labor expression above is decreasing in M,, for a fixed
value of K;. The same reasoning applies to the marginal product of capital.

Constant returns to scale means that if both inputs were increased in the same
proportion, then the ability to produce output would also increase by that propor-
tion. This property makes sense because if the firm can simply duplicate its current
plant, equipment, and workforce, it should be able to duplicate or double its output
as well.

Finally, note that the properties we just established imply that the marginal
product expressions can be simplified by combining M, and K, into the capital—
labor ratio, also known as capital intensity, k, = K,/M,. The simplified expressions
for the marginal products are, g};’, = (1 — a)Ak? and g—}g = 0Ak*~'. The marginal
product of labor is increasing in capital intensity. The more capital per worker, the
more productive an additional worker is. The marginal product of capital is
decreasing in capital intensity. Higher capital intensity means that there are fewer
workers available to work with any additional capital bought to the workplace.

The fact that the marginal products of capital and labor are both functions of the
capital-labor ratio, k, and not the levels of K and M, is a consequence of the constant
returns to scale assumption. This property implies that the scale of a firm is inde-
terminate, i.e., the optimal size of a firm cannot be pinned down by the theory. Firms
are indifferent about the level of production, but they do want to hire capital and labor
in a particular ratio that depends on the relative market prices of the inputs.

From the point of view of microeconomics, the indeterminacy of firm size can be
seen as a disadvantage. One is forced to simply assume that firms are of a given size
and that there are enough of them competing to justify the perfect competition
assumption that is discussed below and used throughout the book. From a mac-
roeconomic point of view, the indeterminate size of firms can be seen as a con-
venient simplification. The key expressions that characterize the production side of
the economy apply both to the individual firm and to the collection of firms as a
whole. This is why in many macroeconomic models, the distinction between the
individual firms and production in the economy as a whole is not emphasized.

What makes (2.1) special in the class of neoclassical production functions is that
the Cobb-Douglas functional form implies that the shares of national output that
are paid to capital owners and workers are the constant output elasticity values a
and 1 — a. Data show that over the last century, income shares have in fact stayed
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roughly constant within and across countries. For this reason, many economists
view the Cobb-Douglas functional form as a reasonable approximation to an
economy’s aggregate production technology. To explicitly see that (2.1) has the
constant income share property, we next need to think about how capital owners
and workers are paid.

We assume that markets are perfectly competitive in our production economy.
As discussed in elementary economics, the notion of competitive markets applies
not only to the markets for goods but also to the factor markets for labor and capital.
The competitive assumption applied to the factor markets means that firms demand
inputs to maximize profits taking as given the market prices of the inputs: the wage
rate paid to labor (w) and rental rate for physical capital (). No single firm is large
enough to be able to influence market prices when they unilaterally change their
production or input levels. The price of the economy’s single output good is taken
to be one. So we can think of output and revenue as being the same. Therefore,
profit can then be written as Y, — w,M; — r,K;.

Maximizing profits requires that firms hire capital and labor as long as the
marginal benefit (marginal product) exceeds the marginal cost (factor price). For-
mally, the necessary conditions for profit maximization are

aAk?(_l = rl (223)
(1 — o)Ak} = wy. (2.2b)

Equation (2.2a, b) say that, in order to maximize profit, the marginal product of
each input must be equated to its market price, just as in the theory of competitive
factor markets from intermediate microeconomics.

From the perspective of an individual firm, that takes factor prices as given, it
appears that there are two independent equations, (2.2a, b), to determine one
unknown, k. In general, this situation leads to inconsistent solutions for k—i.e.,
different solutions for £ from each equation. This is not the case here because of an
important implication of competitive markets: economic profits are driven to zero.
Competition between firms for the available resources will force factor prices to
satisfy these equations, which in turn implies that economic profits are zero. Thus,
(2.2a, b) also play a role in determining the market factor prices and not just k.

To think about this last point further, first notice that we can write the production
function as Y; = Ak?M,. Next, multiply each side of (2.2a, b) by M, to get

(th == }’;K, (2.33)
(1 - OC)Y[ = W[M[ (2.3b)
Equation (2.3a) shows that the share of output and revenue paid to owners of

capital (by each firm and in the economy as a whole) is the constant, a, an inter-
pretation that was suggested above. Moreover, if aY; goes to capital owners as a
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gross rent to capital, there is just enough revenue left over, (1 — a)Y;, to pay
workers the competitive wage, implying that economic profit is zero.

The connection made in (2.3a, b) allows us to refer to o and 1 — « as the capital
and labor shares. The fact that the Cobb-Douglas technology, combined with
competitive markets, implies constant factor shares is a strong prediction of the
model. Remarkably, this prediction is approximately consistent with empirical
evidence that shows little trend in factor shares as a country develops.

The two Eqs. (2.2a, b) are then profit-maximizing conditions that determine two
variables: the firm’s demand for capital relative to labor and, via the zero profit
condition, one of the factor prices. To determine the remaining factor price, we need
the final requirement of a competitive equilibrium: market clearing. The firm’s
demand for capital per worker must equal the supply of capital per worker coming
from households. We will think of the rental rate on capital as the “price” that clears
the capital market. Then interpreting (2.2a, b) as determining the demand for capital
and the competitive wage rate that generates zero profit, we have three conditions to
determine the three unknowns: r,, w;, and k;.

The first step in developing the market clearing condition is to be more explicit
about what we mean by the demand for capital in the production economy. Start by
thinking of the capital-labor ratio on the left-hand side of (2.2a) as the capital-labor
ratio demanded by firms at different rental rates for capital. Call the firm’s demand
for k, k?. In period 7, firms will enter the capital market to rent capital that they can
use in production. Solving (2.2a) for k, we can write the demand for capital in
period ¢ as

(2.4)

Equation (2.4) indicates that as the rental rate required by the market rises, the
firm’s demand for capital declines. This is because, as the cost of capital rises, firms
will shift toward using less capital and more labor in production.

The theory thus far gives us the firms’ demand for capital intensity. Now we
need to develop a theory for the supply of capital in period z. In other words, we
need to discuss who owns the capital and how much capital they are willing to
supply to the market.

2.2 Household Saving and the Supply of Capital

In our model, households purchase capital as an asset, a type of saving used to
finance retirement consumption. The capital generates funds for retirement con-
sumption purchases when the households rent the capital to firms. So, the supply of
capital referred to at the end of Sect. 2.1 results from older households attempting to
generate income for retirement consumption.
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To capture a retirement motive for saving in the simplest way possible, we
assume households live for two periods: one when they are young and working and
one when they are old and retired. This means that in any one period, there are two
household types from distinct generations: a young working household and an old
retired household. Macroeconomic models where different generations operate as
distinct decision makers in each period are called overlapping generations models.

Including the saving behavior of households is an important extension to the
Solow model of capital accumulation that you may have seen in undergraduate
macroeconomic courses. In the Solow model, saving is treated as an exogenous
variable. The economy’s saving rate is simply assumed to be a constant fraction of
total income with no explanation provided.

2.2.1 The Supply of Labor and Capital

As just mentioned, the supply of capital that is rented to firms is owned by old
retired households. They rent the capital to firms to generate income that finances
their retirement consumption. Once the firms complete production using the capital,
the retired households sell the capital to the young working households that are
looking to save assets to finance their future retirement consumption. The sale of
capital provides further resources for retirement consumption of the current old
households.

Formally, the currently old households, who own the capital, purchased the
capital as an asset during their working lives in the previous period. In period ¢ — 1,
each young household supplied one unit of labor to firms and earned the wage,
w;_1. For now, there is no variation in household labor supply. We model the
choice of how much to work in Chap. 5. With each household supplying one unit of
labor, the aggregate supply of labor in each period is then just the number of young
households. In period ¢ — 1, the total supply of labor to all firms is the total number
of young households from that generation, M; | = N;_;.

The capital supplied per unit of labor results from the household’s saving
behavior, s;_;. Young households save in period # — 1 by purchasing output and
treating it like a physical asset that generates income during retirement by supplying
or renting it to firms for use in production during period . The firms use this
physical capital to produce output and generate revenue in period ¢. The firms then
return the capital, that has been depreciated by use in production, back to house-
holds and pay them the rental rate r,. So, for every unit of capital that households
purchase and rent to firms, they receive back in period ¢, 1 —  + r,, as their return
to saving, where ¢ is the fraction of capital that depreciates from use. We somewhat
loosely refer to r; — ¢ as both the “return to capital” and the “interest rate” on
household saving.

The total supply of new capital to the market in period ¢ is the total saving of
young households in period 7 — 1, s,_N,—. To match the demand concept in (2.4),
we need an expression for the capital supplied per worker in period t. The supply of
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capital per worker in period ¢ is k! = s,_1N,—1 /M = s,_1N,_1 /N, = s,_1/n, where
n is the average number of children born in each young household. In Chap. 3, we
make fertility endogenous by allowing parents to choose the number of children,
but for now we treat n as an exogenous constant. The number of children each
household has determines the relative population size of different generations. For
example, if n = 1, then generations are of equal size and N; = N,_;. If n > 1,
N, > N,_; and there is positive population growth over time. Note that the rate of
population growth is (N;/N;—1) — 1 =n— 1.

2.2.2 Household Saving

We now develop a theory of household saving. Households do not directly benefit
from saving but rather use saving to create their desired lifetime consumption path.
The consumption path that households prefer depends on their attitudes about
consuming now rather than later in life. Household preferences are represented by a
utility function. The utility function captures the household’s preference for con-
suming at different points in their lifetime.

We assume that household preferences are represented by a constant elasticity of
substitution (CES) utility function,

(e =1+ e - 1)
(1—-1/0) '

For a generation ¢ household, consumption in the first and second periods, cy,
and ¢y, determine the value of lifetime utility. The CES utility function has the
standard properties that the marginal utility of consumption in each period is
positive but diminishing (try taking the first and second derivative with respect to
consumption in any one period).

The two parameters used to reflect individual preferences about the timing of
consumption are the pure time discount factor (5) and the intertemporal elasticity of
substitution (o). Typically, one assumes that <1 because people are generally
viewed as being “impatient,” i.e., they weigh utility gained from current con-
sumption higher than utility gained from future consumption. The intertemporal
elasticity of substitution is a measure of the individual’s willingness to substitute
current for future consumption when the relative price of future consumption falls,
but this will not be made clear for a while. Subtracting 1 from each consumption
term is done for purely technical reasons. It allows the commonly used logarithmic
utility function, Incy; + flncy. 1, to appear as a special case when o = 1.

Households face constraints that restrict the consumption paths they can afford.
In each period, there is a budget constraint that must be satisfied. In the first period
of life, a generation 7 household has its wage (w,) as a source of funds that can be
used to purchase output for consumption (cy,) or for saving (s;). This gives the
first-period budget constraint, c; + s; = w;. In the second period, consumption

U = U(Cltac2t+l) =
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(car41) is financed by the saving from the first period, cpq1 = R;S;,
where R, =14 r,; — 0 is the return from owning physical capital or what
sometimes is called the “interest factor.” The two single period budget constraints
can be combined to form a single lifetime budget constraint that says the present
value of consumption must equal the first-period wage, ci; + car+1/R; = Ws.

Households maximize lifetime utility subject to the lifetime budget constraint.
The solution to this problem gives us the optimal consumption and saving behavior
of a household

cy = Yw, (2.5a)
crr1 = Pouw, (2.5b)
si = Pup'RY wi, (2.6)
where ¥, = W <1 and ¥y, = %-

All choices are fractions of the wage rate that depends on the return to capital.
The return to capital affects the fraction differently depending on the value of o.

The effect of a change in R; can be conceptually decomposed into an income
effect and a substitution effect. The income effect refers to the fact that a higher
return to capital increases the purchasing power of savers that own capital. Greater
purchasing power increases the demand for consumption in both periods but lowers
saving. The substitution effect refers to the fact that a higher return to capital raises
the cost of consuming in the first period relative to consuming in the second period.
This is because the forgone interest income from consuming, and not saving, in the
first period has increased. The substitution effect from an increase in the return to
capital lowers current consumption but raises saving and future consumption. Thus,
the overall effect of an increase in the return to capital on current consumption and
saving is ambiguous. The relative strength of the income and substitution effects is
determined by o. The greater the value of o is, the stronger the substitution effect is
and the weaker the income effect is. When o = 1, the income and substitution effects

cancel exactly and the saving rate become a constant fraction of wages, % This
convenient special case is similar to the Solow model in that the saving rate is a
constant.

2.2.3 Supply of Capital Per Worker
Using Eq. (2.6), dated for a generation ¢t — 1, and the definition of &} that was

introduced previously, we can now write the economy’s supply of capital per
worker as
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Wi 1

ki = —0 l—o|"
nol+ (14— 0)

t

(2.7)

The economy’s supply of capital per worker next period is based on the saving per
worker this period and the growth of the economy’s workforce. An increase in this
period’s wage raises saving because a portion of the higher wage is consumed and a
fraction is put aside to allow consumption in the future to rise as well. The interest rate
has an ambiguous effect on saving because of conflicting income and substitution
effects (with the relative strength of the substitution effect determined by o).

The extent to which saving and capital supplied this period raises the capital—
labor ratio next period depends on the growth in the workforce. Greater fertility
implies a higher rate of population growth and a faster growing workforce. As the
workforce next period rises relative to the current workforce, less saving and capital
will be available per worker in the future. Thus, higher rates of population growth
lower the capital-labor ratio by forcing the available capital to be spread over a
larger workforce.

23 Competitive Equilibrium in a Growing Economy

Before moving to the determination of the market clearing condition in the capital
market, let us summarize the key actions taken in period t by each agent.

Firms hire labor, pay each worker w, and rent physical capital per
worker, kf , pay owners 7; per unit supplied

Young households  supply one unit of labor, receive wy, and purchase s, = nk;
units of physical capital

Old households supply s,—1 = nk units of physical capital and receive r, per
unit supplied

A market clearing equilibrium in the capital market requires that the firms’
demand for capital per worker equals the supply of capital per worker by old
households, i.e., kf’ = k7 for all values for . As in other competitive markets, the
market price is the mechanism for bringing the two sides of the market together. In
the capital market, the market price is the rental rate on capital that is paid by those
demanding capital and received by those supplying the capital. Market clearing
requires finding a value of r, that equates (2.4) and (2.7) in every period, as
sketched in Fig. 2.1.”

2 You can think of the value of r; as actually determined in period 7 — 1. In that period, households
make their saving decision based on the firms’ commitments to rent capital in period ¢ and pay the
rental rate r,. In other words, r; is determined in period # — 1 based on the savings behavior of
households and the planned investment demands of firms.
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Fig. 2.1 Market clearing
equilibria in the capital r kS (6= 1)
market t

0 Ki

The period ¢ equilibrium is sketched for two different “supply curves.” The
vertical supply curve assumes o = 1 (exactly offsetting income and substitution
effects) and the upward sloping supply curve assumes ¢ > 1 (a dominant substi-
tution effect). Note that once the equilibrium values of r, and &, are determined, then
the equilibrium value of w; is determined by (2.2b).

The figure above is the standard demand—equals—supply way of thinking about
how equilibrium is determined. While intuitive, it has limitations as an analytical
tool. The problem is that it is a static snapshot of a dynamic economy. In general, a
production economy will experience capital accumulation over time. In other words
the k, determined in the figure will be larger than k,_;. This implies that, using
(2.2b), w, will be larger than w,_;. The increase in wages over time will cause the
supply curve in the figure to shift to the right each period. Thus, the diagram reveals
that growth in the economy is due to the effect of capital on wages. As the capital
stock increases, wages increase. The increase in wages increases saving and leads to
further capital accumulation. However, there are important details of the growth
process that are not revealed by this essentially static depiction.

Fortunately, there is a nice way of displaying the dynamics of the economy more
explicitly. One can substitute the factor price equations from (2.2a, b) into (2.7) and
impose the equilibrium condition k¢ = k¢ to get

= L= Ak, ! —|. (2.8)
n L+ p7(1 + o0Ak*=1 —5)
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Fig. 2.2 Transitional growth K
t
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Mathematically, Eq. (2.8) is known as a difference equation, which is the dis-
crete-time analog to the differential equation in continuous time. This equation
highlights the underlying dynamics of the model that is driven by changes in the
capital-labor ratio over time. In economics, Eq. (2.8) is referred to as a transition
equation because it describes how the economy evolves over time.

Viewing (2.8), note that the variable we need to solve for, k,, appears on both
sides of the equation. In general, there is no way to use algebra to solve for the
unknown value of &, in terms of the parameters and the known value k,_; (the value
of k in the initial period is given as an initial condition of the economy). In this case,
one needs to use a numerical approach to find an approximate solution to (2.8). The
numerical approach will be discussed in Sect. 2.5.

The dynamic structure of the economy becomes more transparent when we
assume ¢ = 1. In this special case, (2.8) simplifies to

k, = BK™ |, (2.80)

where B = %ﬂ “:l“)A

In this case, we have an explicit algebraic solution because the expression
involving k; on the right-hand side of (2.8) vanishes. As mentioned previously, this
special case is similar to the Solow model because the saving rate of young
households is a constant, with no dependence on the return to capital.

The dynamic features of (2.8") can be easily sketched by plotting k, against k,_;
as in Fig. 2.2.

Imagine that the economy begins at k;,_; = k;. To find out what the capital-labor
will be in period 2, move vertically up to the transition equation to find k,. In period
2, k, will now be the initial capital-labor ratio, move horizontally from the tran-
sition equation to the 45-degree line and then back down vertically to the horizontal
axis. The process then repeats itself until one reaches k, = k, where the transition
equation crosses the 45-degree line.® At this point, the capital-labor ratio remains
constant from period to period and the economy is said to have reached a

3 The economy never literally reaches the steady state, although it will get arbitrarily close.
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steady-state equilibrium. An algebraic solution for the steady state is found by
setting k;, = k,—1 = k in (2.8) and then solving the equation for k. The transition
equation given by (2.8) is simple enough to allow an explicit solution for the
steady-state capital-labor ratio, k = Br.

The transition diagram reveals an important prediction about economic growth
via capital accumulation. In the early stages of growth, period-to-period changes in
k, are relatively large and the economy grows fast. Over time, the increases in k, get
smaller and the economy’s growth rate slows down, until growth ceases altogether
in the steady state. From the static demand and supply figure, we know that growth
occurs due to the effect of capital accumulation on wages and saving. What the
transition diagram makes clear is that the effect of capital accumulation on wages
becomes weaker over time. There is a diminishing effect of k;, on w; because a is
less than one. When an economy is undeveloped and capital is scarce, the creation
of new physical capital significantly raises worker productivity and wages. How-
ever, as the economy industrializes, the impact of further capital accumulation
weakens.*

Notice two things about the steady state. First, as k, grows in approaching the
steady state, we know from (2.2a, b) that interest rates will be falling and wages will
be rising. Once the steady state is obtained, because k; is constant, interest rates and
wages must also be constant. Thus, the steady state is characterized by constant
interest rates and zero growth in labor productivity, real wages, and consumption.
In many developed countries, the average values of interest rates and returns to
capital have been relatively constant over long periods of time—suggesting that we
might view the average position of the economy as being a steady state (with some
annual business cycle fluctuations around the economy’s typical or average posi-
tion). However, these same economies are observed to experience positive growth
rates in labor productivity and real wages on average. According to our model, if
interest rates show no downward trend, then this positive growth cannot come from
increases in the capital-labor ratio. Where does persistent, long-run growth come
from after the steady-state capital-labor ratio is obtained?

2.3.1 Steady-State Growth—Technical Progress

One explanation for persistent economic growth is technical progress—that is
increasing knowledge that improves productivity. Technical progress can be
thought of as improved production designs or improved factories and equipment.
To grow in the steady state with the same amount of capital per worker, we have to
get smarter about how we use and design the capital. They are some attempts to
explicitly model the research and development process that leads to technical

* The weakening effect of the capital-labor ratio on wages stems from the diminishing marginal
product of capital. As capital accumulates relative to labor, the effect of further capital accumul-
ation on output and wages gets smaller. Formally, note that the effect of an increase in k on the
marginal product of labor is (1 — «)aAk*™! = (1 — &) x marginal product of capital.
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process, but economists often treat technical progress as an exogenous variable, as
we do here.

Think of technology as the current stock of disembodied blueprints for pro-
duction methods and machine designs. The state of technology in period ¢ affects
the productivity of the workforce. We assume that there is an index number, D;, that
measures the extent to which the state of technology influences the effective
workforce. The effective workforce in period ¢ is defined as H, = D,M,, which
replaces M, as an input in the Cobb-Douglas production function. When D
increases, it raises the effective workforce proportionately. For example, if D,
doubles, and the number of workers remains the same, the effect on production will
be the same as doubling the number of workers. We further assume that technical
progress is such that D, increases from one period to the next at the constant rate,
d. Thus, H,1/H; = n(1 + d), the effective workforce increases due to both pop-
ulation growth and technical progress.

We can model the firms as choosing H, and paying a wage rate per unit of
effective labor, w;. The total wage payment received by an actual worker will now
be w,D;. The factor price equations given by (2.2a, b) remain the same, except we
now must interpret k as the capital-to-effective-labor ratio, i.e., k = K/H.

Now let us think about how the equilibrium and transition equation are altered
by technical progress. The firm’s demand for the capital, which we can think of as a
demand for the ratio of capital to effective labor, will take the same form as (2.2a).
On the household side, we need only adjust the saving function for the new concept
of household wages to get s, = ‘I’l,(ﬁ“R,“’lth,). The supply of capital per
effective worker is defined as kf = §,_1N;_1/D;N,. Using the household saving
function, the supply of capital per effective worker can be written as

k= n(mit:d ; LH)””(li’f* 6)1,0}. Finally, using the factor price equations, the adjusted

transition equation becomes

(1 — o)Ak,
n(l+d)

1
1+ (1 4 adks=1 = 8)' 7|

k, = (2.9)

which has the same form as (2.8), except for the presence of 1 + d in the
denominator of the expression on the right-hand side of the equation.

Thus, the transitional dynamics of the economy are the same as before. How-
ever, now there is an endogenous source of growth (increasing physical capital
intensity) and an exogenous source of growth (technical progress). When the steady
state is reached, the transitional growth from increasing physical capital intensity is
over and interest rates become constant. However, there will continue to be positive
economic growth from exogenous technical progress. Labor productivity, real
wages per worker (w,D,), and the standard of living (measured by consumption per
household) all increase at the rate d > 0 in the steady state.
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2.4 Intergenerational Transfers

In his presidential address to the American Economic Association, Becker (1988)
encouraged economists to pay greater attention to the role of the family in their
thinking about macroeconomic issues. Becker pointed out how intergenerational
transfers between family members are likely to influence economic growth and alter
the effects of important fiscal policies such as social security and government
borrowing. Understanding the causes and consequences of intergenerational
transfers is one of the most important motivations for taking an overlapping gen-
erations approach that recognizes the generational structure of the economy.

We define intergenerational transfers to be a private transfer of resources from
one generation to another generation. The transfers take two distinct forms: human
capital investments (x) and transfers of physical or financial assets (b). The financial
assets are identical to the assets used for life-cycle saving, but instead of being used
to increase future income for the household, they are used to increase the future
income of the household’s children.

Human capital investments are in-kind transfers of goods and services designed
to raise the recipient’s productivity by increasing knowledge, skills, or health. The
effect of these in-kind transfers on the child’s market productivity is given by a
human capital production function H(x;. ). Here, we are treating effective labor
supply as an endogenous function of parental investments. To focus on the human
capital component of effective labor supply, we temporarily ignore the exogenous
component of effective labor supply, D;.

The only assumption about the human capital production function that we will
use in this section is that the derivative of H with respect to x is positive but
diminishing (H' > 0, H" <0), i.e., H is increasing and strictly concave in x. This
assumption means that while spending more on children’s education this period will
always increase their knowledge and productivity next period, when they enter the
labor force, the marginal return to additional educational spending decreases with
the level of expenditures. In other words, there are natural limits to the rate at which
a child can accumulate skills and knowledge.

The distinction between the two types of transfers is important since there are
situations where human and financial investments of equal dollar amounts are not
equivalent in their effect on the recipient’s behavior and wealth. For example, a
dollar spent on a dependent child’s primary and secondary education is generally
not going to have the same economic effect as a dollar invested in a financial asset
that is ultimately bequeathed to the child. In other circumstances, the distinction
may be less clear. Is the payment of a child’s college tuition by a parent equivalent
to a cash transfer to the child? The answer is not obvious and will depend on the
preferences and constraints of both the parent and the child. It may also be true that
parents value the two transfers differently. For example, parents may value edu-
cation for its own sake, beyond its effect on the child’s future labor productivity in
the market.
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The accounting relationship between intergenerational transfers and the accu-
mulation of wealth is made precise by examining the household budget constraints
in our two-period model. Households have n children, an exogenous variable in this
chapter, in the first period of adulthood. During the first period, along with the
typical life-cycle consumption and saving choices, parents make human capital
investments in their children and save to make financial transfers to their children
when they become young adults in the next period. The first-period budget con-
straint is

ci+ 8 +n(xg1 + b)) =W, (2.10)

where W, = w,H; 4+ R,;_1b; is initial wealth and recalls that w,H, now represents
lifetime earnings with w; interpreted as the wage per unit of effective labor supply.”
The other term on the right-hand side of the initial wealth expression is the physical
or financial asset, plus interest, that the household receives from its parents during
the first period of adulthood. The second-period constraint remains the same as
before and given by

Co4+1 = R;Sr. (211)

In addition to the budget constraints, one important additional constraint is
needed. It is assumed that parents cannot accumulate debt that their children are
legally bound to pay (a legal restriction that exists in most societies). This means
there is a nonnegativity constraint on financial transfers

bt > 0. (2.12)

We next turn to two different approaches to modeling why parents make inter-
generational transfers. The first approach assumes parental altruism, parents care
about the welfare of their children. The altruistic approach provides an interesting
and rich theory, but also one that is technically demanding. Less advanced students
should skip to Sect. 2.4.3, where a second theory of transfers is presented. This
theory assumes that parents receive utility, a “warm glow,” directly from the
transfers they make to their children.

5 Note that the acquisition of financial assets occurs in the first period of adulthood and the
financial transfers are made in the second period of adulthood. Thus, the transfers are made when
both generations are alive. Transfers of this type are called intervivos transfers, as opposed to
bequests that are transferred at death. In our model, where we assume (i) perfect certainty, (ii)
perfect life-cycle credit markets, and (iii) no strategic interactions between generations, the timing
of financial transfers is irrelevant. However, the timing of transfers can matter when these cond-
itions are not met [see, e.g., Bernheim et al. (1985) and Cox (1987)].
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2.4.1 Altruism*

One natural way to explain why intergenerational transfers occur is to assume that
parents are altruistic, i.e., that they care about their children’s welfare as adults. An
important way of modeling altruism assumes that parents care about their adult chil-
dren’s lifetime utility. We call this type of altruism Barro—Becker altruism named after
the two economists who introduced the concept (Barro 1974; Becker 1974). As we
shall see, this particular way of modeling altruism has very interesting implications,
ones that have had a major effect on the development of macroeconomic theory.

Barro—Becker altruism implies a utility function for the generation ¢ parent of the
form, U, + fV;11(Wi41), where U, is utility from the consumption of the generation
t household, which we take to be of CES form throughout, and V is the maximum
attainable utility of the next generation. The function V;,; depends on W,
because it is the utility attained when adult children maximize their utility subject to
their initial wealth and market prices.® We assume that parents cannot directly affect
the choices of their adult children, but they can have a significant effect on their
children’s initial wealth and therefore on V. The value function is discounted by
parents because the adult utility of their children is generated in the future and the
parents have a positive rate of time preference. It is also possible that parents care
more or less about their adult children’s welfare than their own. In this case, the
generational discount factor would differ from the pure time discount factor, but the
qualitative conclusions would be the same.

We are now ready to formally lay out the optimization problem for the altruistic
household. The generation ¢ altruistic household chooses life-cycle consumption
and intergenerational transfers to maximize

U + Vit (Wigr), (2.13)

subject to W,y = w1 H(Xr11,-) + Ribry and the generation ¢ lifetime budget
constraint, formed by combining (2.10) and (2.11), along with (2.12). The problem
can be solved in two steps. First, for given values of the transfer variables, the
solution for life-cycle consumption follows as before

S In microeconomics, the maximum attainable utility function is called an indirect utility function.
In the pure life-cycle version of our model, with no altruism, an indirect utility function is easily
obtained. Take the optimal consumption choices of the household (2.5a, b) and substitute them
back into the CES utility function. For example, if we do this for the case of o = 1, we get the very
simple indirect utility function U} = f1In B+ (1 4 ) In; + (1 + ) Inw, + f1In R,. With altru-
ism, things are not nearly so simple. This is because generation #’s utility depends on generation
t + 1’s utility, which depends on generation ¢ + 2’s utility, and so on. As we shall see, in this case
V, cannot be found directly. Instead, it is implicitly defined by a difference equation in the function
V,—what is known as a Bellman equation. In this case, V; is called a value function and solving for
this function is tricky business. Stokey and Lucas (1989) provide a general discussion of the
conditions under which the value function exists, is unique, and is differentiable with respect to
initial wealth.
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cy = ‘P];(W, — n(x,H + b,+1)) (21421)

Cop+1 = [ﬁR,]GC“. (2141))

The life-cycle consumption choices can then be substituted back into (2.13),
making it solely a function of the intergenerational transfer choices.

Second, (2.13) can be maximized with respect to the transfer choices. The first-
order conditions for the transfer choices are

n(W, — n(x1 +bis1)) "W = BV, wie HY (2.15a)

n(W, — n(xier +besr)) 7%, > BV, R, (2.15b)

The left-hand side of each equation is the marginal cost of making a transfer to
children measured in terms of forgone consumption and utility of the parent. The
right-hand side is the marginal benefit of the transfer measured in terms of the
resulting rise in lifetime wealth and utility of the adult child. The inequality in
(2.15b) includes the possibility that a nonnegative financial transfer may not be
optimal. If not, (2.12) binds and (2.15b) becomes a strict inequality.

Note that solving this maximization problem gives us the maximum attainable
utility, or value function, of the current generation,

Vi(W) = max{U; + BVis1(Wii1)}-

This equation implicitly defines the value function and is known as the Bellman
equation. The Bellman equation allows us to obtain the following result (see
Appendix A)

Vi = (Wit — n(ia + b)) o7 = o1 Ve (2.16)

The derivative of the value function is just the marginal utility of consumption.
Using (2.16), the first-order conditions given by (2.15a, b) can be presented and
discussed intuitively for the two possible cases,

unconstrained transfer equations

Wi H' (X)) = R (2.17a)
Clt+1 = [ﬁRl/ferll (217b)

or
constrained transfer equations

by =0, (2.18a)
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Clr+1 = [ﬁWzHH/(era ')/n]aclz- (2-18b)

If the optimal financial transfers are positive, then human capital investments are
unconstrained. This allows the investments to be productively efficient in the sense
that the return on human investment is equated to the return on physical investment.
Parents invest in their children until the rate of return to human capital is driven
down to the rate of return on physical capital. At that point, any further intergen-
erational transfers are in the form of physical or financial assets.

In the efficient case, human capital investment is completely determined by
(2.17a), independent of consumption choices and household wealth. In addition,
when the generations are linked by financial transfers, one gets the familiar Euler
condition, (2.17b), where the growth of consumption over time (actually over
generations in this case) is determined by the return to capital—perfectly analogous
to the optimal pattern of life-cycle consumption growth in (2.14b).

Desired financial transfers may also be negative, i.e., parents may want to leave
debt for their children to repay. In this case, (2.12) binds and there is a strict
inequality in (2.15b). Now the human capital investment decision cannot be sep-
arated from the household’s consumption choices; (2.14a, b), and (2.18b) must be
solved simultaneously. Under these circumstances, the wealth of the current gen-
eration becomes a determinant of human capital investment. Combining (2.15a, b)
shows that this situation is productively inefficient, because the rate of return on
human capital investment exceeds the rate of return on financial assets. However,
the current generation cannot “afford” to invest more in their children’s education,
which is why they want to raise both their own consumption and human capital
investment in their children by leaving debt for their children to pay. The legal
restrictions forbids this, so they are forced to set b,; = 0. If parents could invest
more, by setting b,,1 <0, then x,,; would rise and H' would fall until (2.15a) is
satisfied. This situation implies that the ratio of consumption of the next generation
to the consumption of the current generation would also fall.

24.2 Explicit Household-Level Solutions in Some Special
Cases*

To go further in uncovering the behavioral implications of adding altruistic trans-
fers, we now solve the model for some special cases. For most of the special cases,
we also assume that the economy is in a steady state with zero technical progress, so
that r, =r and w, =w. This assumption serves to simplify the notation
considerably.

2.4.2.1 Exogenous Human Capital

To isolate the role of financial transfers, assume that human capital is exogenous
and constant, and, for simplicity, set H = 1. Under this assumption, a household
can only help its descendants by giving them financial transfers. In this case, the
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constrained solution, with b, = 0 for all ¢, reverts back to the pure life-cycle
solution—with no links between the generations. To solve the unconstrained case,
with b,y; > 0 for all ¢, we begin by writing out the lifetime budget constraints for
the first two generations

ciy + 4 nbiy = w+ Rby (2.19a)
cl1 + "2;2 +nbiyy =w+ Rb,. (2.19b)

Solving for b, in (2.19a), substituting into (2.19b), and rearranging gives

o+ (%) [cw N czﬂ n (%)nb,+2 = Rb, +w+ (%)w (2.20)

Notice that we could solve (2.20) for b,,, and substitute the solution into the
generation ¢ + 2 version of (2.19a, b) to get a version of (2.20) for three generations
of the family.

Proceeding in this way, by successively substituting into the lifetime budget
constraints of future generations, produces a budget constraint for the entire “family
dynasty,”

Cour+1 n Cou+2 n 2 €243
C1t+ R +(E> |:C1[+[+ R :| +(E) |:Cll+2+ R :| +:WOC7 (221)

where W, = Rb, +w + (2)w + (2)*w + - - -. Thus, Wy, is the wealth of the entire
family dynasty, a well-defined value provided that rate of return on assets exceeds
the sum of population growth and the growth rate in wages (zero in this case) over
time.

The left-hand side of (2.21) can be simplified by using the Euler equation for
life-cycle consumption, (2.14b), to get

2
‘I’flcll + (%) [TIICIH_]] + (%) [‘{11716‘1,4_2] + =W (222)

Next, use (2.17b), the Euler equation that applies to generations, to express
consumption for each generation in terms of consumption for the first generation to
get

wiaf i QR B e

The geometric sum in the curly brackets is finite provided ﬁ”(§)176<1 or

ﬁ”/ (1-0) <2 If R > n, then this condition holds if ¢ <1 and <1 Under these
conditions, Eq. (2.22) then gives us the solution
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— (1 5 (%)HT) W, (2.24)

which says the consumption of the current generation is a function of its wealth and
the wealth of all future generations as well. Once the current generation makes its
consumption choice, then by using (2.17b), we can find the consumption of every
member of the family dynasty. Thus, the current generation determines the family
consumption path into the indefinite future. In this sense, the current generation
behaves “as if” it is “infinitely lived.”

The infinitely lived agent model is perhaps the dominant model for studying
macroeconomics because it allows one to avoid treating each generation as a dis-
tinct household. Being able to ignore the generational structure of the economy is a
very handy simplification, especially when you have many generations coexisting
in the same period. In Problem 10, you will see that the infinitely lived model
allows the entire economy’s behavior to be determined by a single representative
agent.

However, the assumptions that must hold for the infinitely lived agent to be valid
are strong. In particular, intergenerational transfers must be strictly motivated by
Barro—-Becker altruism and financial transfers must be nonzero for all generations.
Evidence presented in Sect. 2.6 suggests that these assumptions do not generally
hold. Still, for some purposes, the convenience of the infinitely lived agent model
may be useful without doing obvious harm to the analysis. For example, to study
business cycles, each period must represent a year or even a quarter of a year. Thus,
you cannot aggregate time as we have in the two-period life-cycle model. If each
period corresponds to a year, then the life cycle of an adult must contain 50-60
periods. This, in turn, means that many generations will be present in each period of
the model. It simplifies the analysis greatly if this generational structure can be
ignored. In addition, business cycles do not cause resources to be shifted across
generations in any obvious systematic fashion. Here, the argument for the infinitely
lived agent model is convincing. For other issues, long-run issues that involve
significant transfers of resources across generations, use of the infinitely lived agent
model can be very misleading.

It is possible to derive an explicit solution for the optimal financial transfers.
This solution adds additional insights and gives a sense of the dramatic implications
of assuming intergenerational altruism. Using (2.14b), (2.19a), and (2.24), we get

nbyey = W, — (1 5 {%} H) W... (2.25)

Holding W, constant, an increase in W; will raise transfers to children one for
one. Note if W, is constant and W, increases, then the wealth of future generations
must have fallen in present value by the amount that W, rose (so as to maintain
Wso)- In this thought experiment, the rise in the wealth of the current generation is
entirely at the expense of future generations. The current generation acts to exactly
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offset the exogenous reallocation of the dynasty’s wealth by transferring the entire
increase in W, back to future generations. It does this by increasing transfers to its
children. Thus, any exogenous reallocation of dynasty wealth is completely undone
by endogenous intergenerational transfers in the opposite direction.

Next consider a rise in W, holding W, constant. In this thought experiment,
intergenerational transfers fall. To see the intuition, if W, increases, holding W,
constant, then one or more future generations in the dynasty must have experienced
a rise in wealth. The only way that the current generation can share in the rise in
dynastic wealth is by reducing transfers to the future generation, allowing its
consumption to rise as indicated by (2.24).

Finally, consider a rise in W, with no change in the wealth of future generations.
In this case, W, rises by the same amount as the rise in W,. The change in transfers

is ﬁ“(%)lf17 <1 times the change in W,. Thus, part of the rise in the wealth of the
current generation is consumed and part is transferred to future generations to allow
their consumption to rise.

2.4.2.2 Endogenous Human Capital

Adjusting the unconstrained solution above to allow for endogenous human capital
is straightforward. Begin by reintroducing (2.17a), the efficiency condition that
requires equal rates of return on human and physical assets. Let us assume a specific
form for the human capital production function, H,.; = @xf+ 1» Where
® > 0,0<0<1. Now (2.17a) gives the following explicit solution for x,

Xpat = [@’Tf’wr (2.26)

Notice again that, in the unconstrained case, the solution for human capital
investment is simple. It involves equating the returns on the two assets and does not
require any knowledge about the generational or dynastic wealth that determines
consumption. Higher market wages raise the return to human capital investment, so
investment must rise until the rate of return is driven back down to the interest rate.
A rise in the interest rate causes a shift away from human capital investment, until
its rate of return is driven up to the interest rate.

We complete the unconstrained solution by solving for consumption. Take the
solution from (2.26) and define the new variable

0w ™ O0w] ™
—n = )

s=vof%]

- (2.27)

which is the productively efficient lifetime wage income of the current generation
minus the investment needed to ensure that the next generation also receives the
efficient level of lifetime wages. Next, just substitute w for w in the expression for
W in (2.24). This substitution replaces the expression for wages due to exogenous
human capital with an expression for wages due to endogenous human capital, net
of the expenses of generating human capital across generations. After this
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substitution, the form of the solution for first-period consumption of the current
generation is the same as in the exogenous human capital case. Consumption of
subsequent generations then follows from the generational Euler conditions given
by (2.17b). Optimal financial transfer behavior will again be given by (2.25).

The constrained case is more difficult due to the interaction between household
wealth and human capital investment. However, if we specialize a bit more, by
assuming ¢ = 1, then an explicit solution is still possible. To obtain a solution, we
use what is known as a guess-and-verify method. First, an educated guess about the
form of the solution is made and then the solution is verified to satisfy the Bellman
equation. It is similar to a situation where you think you know the answer to an
algebraic equation and then you substitute the answer back into the equation to
make sure the equation is satisfied.

In order to see the full logic, and the recursive structure of the solution, we will
relax the steady-state assumption and allow 7, and w, to vary across generations.
Experience with models assuming logarithmic preferences suggests that a good
guess for the value function is

w4 [ a0t [2or). o

o0 o0
where E is an undetermined constant, ® = > 7 'InR,,; | and @ =3 !
i=1 i=1
In w;,;. Notice that (2.28) bears a family resemblance to the simple indirect utility
function, associated with the pure life-cycle model without altruism, given in
footnote 6. It is the experience in solving similar problems that form the basis for
making guesses in more complicated settings.
To verify that this does indeed represent a solution, go through the steps given in
Problem 11. In working out the problem, you will find that the optimal solution for
human capital investment is

ow,
xiy =200 (2.29)

The constrained solution provides a sharp contrast to the unconstrained solution
given by (2.26) for two reasons. First, human capital investment in children now
depends on wealth. Second, the relevant wealth concept is once again the wealth of
the current generation of parents and not the wealth of the entire family dynasty.
Thus, despite the presence of altruistically motivated investments in children, the
family is not connected as completely as in the unconstrained case. The wealth of
the current household constrains the investment in its children.

2.4.3 Warm Glow

Another approach to modeling intergenerational transfers is to assume that parents
get utility, or a “warm glow,” directly from making the transfers as opposed to
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getting utility from the effects of those transfers on their children’s adult welfare.
The warm-glow approach assumes that parents get direct satisfaction from taking
care of their children and satisfying their sense of duty as good parents, or perhaps
from the recognition they get from other adults in doing so. It also allows for the
possibility that they enjoy giving one kind of transfer more than another. For
example, they may prefer investing in their children’s education more than giving
them a saving bond, even when the effect on the child’s wealth is the same in both
cases.

An example of warm-glow preferences is given by the following utility function,

U=Inc;+ flncyy +yYyInHyyy +Enbyy g, (2~30)

where y and ¢ are nonnegative preference parameters. The household values the
human capital of children and the financial transfers to children, directly and
independently.’

Under the warm-glow approach, the household maximizes (2.30) subject to the
lifetime budget constraint associated with (2.10) and (2.11), and the human capital
production function H,,; = ®x” |, to generate the following equations for optimal

+1>
transfers
¢ W,
bp)=——->-—"T—— 2.31
t+1 l+ﬁ+01ﬁ+én ( a)
0 1%
X1 = v d (2.31b)

1+B+0p+En "

Both transfers are simply fractions of household wealth.

Contrasting (2.31a, b) to the transfer behavior when assuming altruism reveals
several important differences. Households always make financial transfers—parents
never find it optimal to give no financial transfers to their adult children. In addition,
financial transfers are no longer affected by the household wealth of future genera-
tions in the family, as they were in (2.25). Under the warm-glow assumption, parents
will not attempt to compensate for exogenous changes in their children’s wealth.

The presence of financial transfers across generations does not imply that human
capital investments are productively efficient as in (2.26). Depending on the wealth
of the parents, human capital investments can be less than or greater than the
efficient level. Some empirical researchers have concluded that marginal educa-
tional investments in most primary and secondary school students in the US yield
rates of return, in terms of future adult earnings, that are far below the rate of return
on financial assets. This observation is inconsistent with the altruistic model, but not

7 Often, when the focus of the analysis is on intergenerational transfers, the life-cycle feature of
the model is dropped. Households are modeled as living only a single period of adulthood in which
they consume and make transfers to their children. We will see examples of these models in future
chapters.
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with the warm-glow model. As indicated, parents may value education for reasons
beyond its impact on the wages of its adult children. If household wealth and y are
sufficiently large, then the optimal human capital investment will exceed the pro-
ductively efficient level, and the rate of return to educational investment will be
below the rate of return on physical assets.

Finally, note that (2.29) and (2.31b) are quite similar. This is an important point.
From the perspective of modeling human capital investments in children, assuming
warm-glow preferences is similar to assuming altruism when the bequest constraint
is binding. A binding bequest constraint is relevant because of the absence of
intergenerational loan markets. Thus, warm-glow preferences are a convenient way
of capturing the absence of intergenerational loans for human capital investment in
children.

2.5 Quantitative Theory

Over the last 30 years, there has been an increasing tendency for macroeconomists
to quantify their theoretical models. Quantifying a model means determining
numerical values for the model’s parameters, thereby enabling the model to gen-
erate numerical predictions that can be compared to real-world data. This healthy
tendency to develop theories that can be quantified has greatly improved the
understanding of many different phenomena and has created a progressive scientific
paradigm within which to conduct macroeconomic research. Indeed, it is one of the
main motivations for writing this book.

In this section, we quantify our simple growth model and compare its predictions
to important qualitative patterns we commonly see in the data as economies grow.
We are effectively repeating a version of the exercise conducted in the famous
article by King and Rebelo (1993). They showed that the standard neoclassical
model of physical capital accumulation is not consistent with the pattern of growth
rates and interest rates experienced by the USA as it developed.

In most cases, it is not possible to use the traditional econometric approach of
parameter estimation (due to a desire to limit the number of variables in the
analysis, the nonlinear structure of the model, or the lack of appropriate data).
Instead, the model is calibrated. That is, parameters are set so as to allow the model
to match certain targets—observations or previously estimated behavioral
responses.® Once calibrated, the model can generate predictions about the values of

8 There are differences of opinion about what qualifies as an appropriate target. Some believe that
calibration should not involve previous econometric estimation. According to this view, all par-
ameters within a model should be set to match particular data points or statistical moments of a
data set (sample means, variances, and covariances), but not to match econometric estimates found
in the literature. Others broaden the targets to include previous statistical estimates of the model’s
parameters and behavioral responses, even if the model used in the estimation is not the same as
the one used in the calibration. We are comfortable with either approach. The important point
from our perspective is that all quantitative models, however calibrated, should be tested by
comparing their predictions against observations or statistics not used in the calibration process.
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variables that were not used in the calibration. The predicted values can then be
compared against data to assess the model’s ability to replicate the real world.
Failures to replicate important real-world observations then lead to adjustments in
the model, or an entirely new model, that provides a better approximation. The
model currently providing the best approximation should be favored to conduct
policy analysis, where the effects of current and proposed government policies are
evaluated. Continually pursuing the best quantitative approximation is the best
chance we have of improving our understanding of economies and policies.

Let us make these ideas more concrete by calibrating a simple neoclassical
model of physical capital accumulation and then testing its predictions about
economic growth. The transition Eq. (2.9) provides the basic model. The equation
contains seven exogenous parameters: a, f, J, o, d, A, and n. To allow for
endogenous growth through increasing physical capital intensity, we will have to
start the economy in an initial position that is below its steady state. So, an initial
value, k;, will also have to be determined. Finally, the length of each time period in
the model must be chosen. In fact, other parameter values will depend on the time-
period choice.

To simplify things at first, let us assume ¢ = 1. This assumption yields an
explicit transition equation solution for k;, given k;_; and allows us to compute the
economy’s growth path with a calculator instead of a computer (although a com-
puter still comes in pretty handy even in this case). The transition equation is
simplified to

[ B U —a)AkE
k’{H—ﬁ] a(itd) (290)

Part of the calibration typically involves matching the steady state of the model
to certain observations (for example, the interest rate or return to capital). Since all
variables in the neoclassical growth model can be related back to k, we will need the
steady-state solution of (2.9"),

k [ﬁA 1_“]11_1. (2.32)

“litpatra

In our two-period life-cycle model, the first period is designated the “work
period” and the second period the “retirement period.” In this setting, it is often
assumed that each period lasts 30 years. In comparison with the real world, a
30-year period makes the working life too short and the retirement period too long.

(Footnote 8 continued)

The fact that these “tests” or comparisons are not as formal and refined as traditional hypothesis
testing in statistics does not particularly concern us. At this stage in the profession’s understanding
of macroeconomics, models that even roughly approximate reality are difficult to find. Hopefully,
as our approximations become more refined, we will need to worry about more formal testing
procedure.
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The more periods we allow in the life cycle, the more realistic the model becomes.
For example, we could instead assume that three twenty-year periods represent a
lifetime, with two working periods (40 years) and one retirement period (20 years).
However, as you add periods, the model becomes more complicated for reasons that
we highlight in Appendix B to this chapter. There, we also show that the com-
plication of keeping track of different generations is a clear disadvantage of using an
explicit overlapping generations approach rather than the infinitely lived agent
simplification. However, advances in computing are lessening the disadvantage
over time. For now, we stick with a two-period model.

With the time period selected, we can begin setting other parameter values. Our
application will examine the model’s ability to explain growth in the USA from the
end of the Civil War through the end of the twentieth century. In applying the
model, a useful way to proceed is to create a relatively simple baseline calibration
and then do a sensitivity analysis by examining how results change as we deviate
from the baseline calibration or model specification.

The annual rate of population growth actually fell over this historical period,
from 2.3 % in the late nineteenth century to about 1 % by the end of the twentieth
century (Barro 1997). For the baseline calibration, we set the annual rate of pop-
ulation growth to one percent throughout the entire period. Since our time periods
last 30 years, the value for population growth in the model is the one percentage
point annual rate of growth compounded for 30 years. The value of n is then chosen
to satisfy the equation n = (1.01)*° = 1.3478.

The capital share of output and income has shown no systematic trend in US
history or across countries at different stages of development today (Gollin 2002).
We set a to a commonly estimated value of 1/3. The annual rate of depreciation on
physical capital is estimated to be in a range between 5 and 10 % (e.g., Stokey and
Rebelo 1995). We set the annual rate of depreciation to 7 %. To translate the annual
depreciation rate into the depreciation rate over 30 years, think about how much
capital remains each year after depreciation occurs. In any given year, the physical
capital stock at year’s end is 93 % of its value at the beginning of the year. If you

start with one unit of capital today, then after 30 years, there would be 1 — 9 =

(1 —0.07)* = 0.93% = 0.1134 units of capital. So, & = 0.8866.

Note that we can write worker productivity or output per worker as
Y, Ak’DM,
— =—1—— = AK’D,. 2.33
M[ M[ t -t ( )

So we can write the ratio of worker productivity in 1990 to worker productivity
in 1870 as

(Y/M) g9 _ (k1990) “D1990. (234)
(Y/M) g7 kig70/) Digro
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For the baseline case, we arbitrarily set d so that exogenous technical progress
explains “half” the economy’s growth. The annual rate of growth in labor pro-
ductivity from 1870 to 1990 was about 1.6 % (Rangazas 2002). If the economy
grew at 1.6 % per year over 120 years, then labor productivity was 6.7180 times
higher in 1990 than in 1870. In terms of a geometric mean, half of this growth is
6.7180'/2 = 2.5919. The annual rate of technical progress needed to generate this
much growth is 0.7968 %. This means that 14 d = (1.007968)30 = 1.2688, or
d = 0.2688.

Finally, we set f§ to match the rate of return to capital. We take the rate of return
to capital to be the rate of return on the Standard and Poor’s 500 over the twentieth
century. The annual real rate of return on this portfolio of stocks averaged 7 % over
the twentieth century (Kocherlakota 1996). Due the absence of any trend in the
annual rate of return over the twentieth century, we assume that the US economy
was close to its steady by the end of the twentieth century. Thus, we have
1+7—6=1.07°=17.6123. Using (2.2a) and (2.32), we have

B o n(l+d)
1+ 1—a 7

. (2.35)

Plugging the calibrated values of the other parameters into (2.35) implies
S =0.1287.

We still have to set the initial value of k;. The idea is to set k; so that half of the
economy’s growth is explained by capital accumulation (that portion not explained
by technical progress). So, choose k| to satisfy

(Z—‘) =2.5919. (2.36)
1

Since both k values in (2.36) are unknown before the simulation is run, we have to
experiment with values for k; until we find one that satisfies (2.36).

By assuming that the economy is close to its steady state by 1990, we can get a
good guess for ki by using (2.36) to write k; = k/17.41. To determine the absolute
values of k and k;, we need to set a value for A. This parameter is different than the
others because it just scales the level of production. There is no particular reason for
us to replicate the level of production observed in the real world (even the real-
world index numbers for GDP are arbitrary). So, we set A to be one. This implies
k = 0.00937 and, as an initial guess, k; = 0.000538.

We are now ready to do a historical simulation. Plug the guess for k; into (2.9")
and let the model generate values for k;. Change the guess for k; until (2.36) is met.
Once finding values for k; that satisfy (2.36), then compute the predicted interest
rates and labor productivity growth rates. The annualized values of predicted
interest rates (solid line) and growth rates (dashed line) are displayed in Fig. 2.3.
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Fig. 2.3 Simulated US interest rates and growth rates: 1870-2000. Notes The solid line gives the
annualized rate of return to capital and the dashed line gives the annualized growth rate of labor
productivity. The annualized growth rates over 30-year periods were plotted above the midpoint of
the intervals between the periods

The model predicts high interest rates (14 %) and growth rates (3 %) for the late
nineteenth century and then a decline in both variables over the twentieth century.
These predictions miss the mark for a number of reasons.

Returns to capital were probably higher in the late nineteenth century than
during the twentieth century. We do not have returns on the Standard and Poor’s
500 that go back as far as 1870, but the returns on other assets were 2—6 % points
higher in 1870 than in the twentieth century. Wallis (2000, Figure 2), reports that
real interest rates on national government debt averaged about 5 % in the first half
of the nineteenth century and averaged about 2.5 % during the twentieth century.
Barro (1997) reports that real interest rates on commercial paper were 9 % from
1840 to 1880, but averaged about 3 % during the twentieth century. The model
predicts initial interest rates out of this range, 7 % points higher than in the
twentieth century. Also by 1900, interest rates showed no trend, while the model
predicts a downward trend throughout the twentieth century, especially in the first
third of the century.

The growth rate predictions are even less accurate. Table 2.1 presents estimates
of US labor productivity growth rates for two centuries (Mourmouras and Rangazas
2009). Growth rates showed little trend from 1840 to 2000. In contrast, the model
predicts high growth rates in the nineteenth century and then a steady decline.

The fundamental problem with the standard neoclassical growth model is clear.
In order to satisfy (2.36), the capital-labor ratio must be set well below its steady-
state value in 1870. The relatively low capital-labor ratio produces relatively high
returns to capital. The fact that the capital-labor ratio is well below its steady-state
value generates high and declining growth rates, as indicated qualitatively by the
transition equation diagram in Fig. 2.2.
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Table 2.1 Growth rate in

39

output per worker 1820 0.31
1840 1.82
1860 1.32
1880 1.84
1900 1.53
1920 1.40
1940 1.72
1960 2.45
1980 1.58
2000 1.62

Notes The table gives annual growth rates in worker productivity
over two centuries of US historical. See Mourmouras and
Rangazas (2009) for sources

Sensitivity analysis that allows for minor variations on the theme, such as
declining population growth rates or setting o < 1, helps a little but not enough to
change the basic pattern in Fig. 2.3. These variations help to increase the capital—
labor ratio at later stages of development and therefore smooth out growth rates a
bit, but we still get a clear declining pattern in growth rates and interest rates (see
Problem 13). The fundamental conclusion is that growth due to increased physical
capital intensity was not a major cause of growth in the USA over the twentieth
century—otherwise, the data would exhibit a clear declining pattern in growth rates
and interest rates.

One reaction to this conclusion has been to introduce human capital into growth
models. Human capital investments increased dramatically over the twentieth
century in the USA and many economists view human capital as an important
source of economic growth that is ignored in the standard model. Table 2.2 presents
two measures of human capital investment in children: real spending per child in
primary and secondary school (x,) and the fraction of the year spent in school by
children ages 0-19 years (e;). School spending per pupil expanded more than 25-
fold since 1870 and time spent in school expanded more than threefold.

The growth implications of increasing human capital investment can be deter-
mined by generalizing the human capital production we used in discussing inter-
generational transfers. Our previous modeling either treated human capital as an
exogenous variable or as an endogenous variable that was a function solely of

Table 2.2 Human capital investments in the USA

Investment 1870 1900 1930 1960 1990
X1 1.0 1.8 4.6 9.5 25.2
et 0.09 0.11 0.215 0.29 0.30

Notes School spending is defined as total expenditures per pupil. The first row gives the real
spending per pupil for each year divided by the real spending for the 1870 (Rangazas 2002). The
time investment data are from Lord and Rangazas (2006)
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school spending per pupil. The more general specification given below includes
student time as an additional input in the human capital production function. It is
defined to include the previous treatments of human capital as special cases. The
more general human capital production function is given by

H, =D} "x0el, (2.37)

where 0, and 0, are constant parameters that capture the effect of increasing school
spending and student time on human capital and wages. We assume the parameters
satisfy the restriction 0 < 6, 4+ 0, < 1. Note that the model of exogenous effective
labor supply from Sect. 2.3 can be obtained by setting 0; = 0, = 0. The simple
model of intergenerational transfers from Sect. 2.4 assumed no technical change
(Dy = 1) and a full school-time input in every period (e, = 1).

To carry out a growth simulation, we need to derive the physical capital tran-
sition equation with human capital in the model. First, write (2.37) as
H, = D,)?f‘efz, where %; = x,/D;. Next, treat H,;; just as D;;; was treated in
deriving the transition equation at the end of Sect. 2.3. The adjusted transition
equation, with ¢ = 1, is

[ —wAk (2" e\
k’_[l+ﬁ} n(1+d)l(5c,) (e) ’ 238)
where k = K/H.

For this experiment, we will treat school spending and school time as exogenous
inputs (government mandated compulsory public schooling).” So we will simply
take the values from Table 2.1 and plug them into (2.37) and (2.38). In order to
proceed, we still need estimates of 6, and 6,. Based on econometric evidence, and
consistency with empirical estimates of the rates of return to human capital
investments, reasonable settings for these parameters are 0; = 0.10 and 0, = 0.40
(see a complete discussion in Rangazas 2002).

The experiment is conducted in the same manner as in the model without human
capital. The initial value of k is determined by

(’E) (j%) " (;) *_ 25010 (2.39)

Notice a few things about (2.39). As was true for Eq. (2.36), this expression
accounts for “half” the growth from 1870 to 1990, with the other half accounted for
by exogenous technical progress. The fact that (2.39) contains X, rather than x,

° One can think of the financing of public expenditures as coming from a tax on capital or capital
income (similar to the property tax used to finance schooling in the USA). When o = 1, a capital
tax has no effect on saving and the transition equation.
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means that we are giving credit to technical progress for explaining some of the rise
in school spending and the resulting effect on economic growth. This is a relatively
conservative approach to gauge the causal effect of school spending on growth,
because it is only school spending increases that exceed technical progress that are
given credit for causing economic growth. Second, physical capital intensity is now
getting help from human capital in explaining half the economy’s growth over this
period. As a result, k; will not have to be as far below ks in order to satisfy (2.39) as
in our first experiment. This feature should help in eliminating the counterfactual
predictions given in Fig. 2.3. Finally, note that while human capital investments
rose sharply over the period, both types of investments are subject to diminishing
returns because 0; and 0, are both significantly less than one. Thus, there will be
two opposing forces on the economy’s growth rates—rising rates of human capital
investment versus diminishing returns to those investments.

Figure 2.4 presents the model’s historical predictions regarding interest rates and
growth rates. Both time series have flattened considerably compared to the series in
Fig. 2.3. Growth rates now show no trend over the entire period and interest rates no
trend over the twentieth century—making both series more consistent with the data.

The slow growth in human capital inputs caused human capital growth to be
slow before 1900. As a result, much of the model economy’s growth before 1900
was due to rising physical capital intensity. This is clear from the approximately
2 % age point drop in interest rates from 1870 to 1900—within the range of the
decline seen in the historical interest rate data. During the twentieth century,
physical capital intensity and interest rates showed no trend—in the model and in
the data. The explained growth over this period was due to rising human capital
investments. However, growth rates in the model showed no trend during the

0.08 \
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Fig. 2.4 Simulated US interest rates and growth rates: 1870 to 2000—with human capital. Notes
The solid line gives the annualized rate of return to capital, and the dashed line gives the
annualized growth rate of labor productivity. The annualized growth rates over 30-year periods
were plotted above the midpoint of the intervals between the periods
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twentieth century, also consistent with the data, because the diminishing returns to
human capital investments roughly offset the effect of the rising human capital
investments on growth rates.

2.6 Related Literature

The first two-period overlapping generations model with physical capital and pro-
duction was due to Diamond (1965). It has become one of the two workhorse models
of macroeconomics. Unfortunately, most students are not exposed to this model, or
any other model built on microeconomic foundations, as undergraduates. If the
model does not sound familiar, you may want to read an undergraduate text along
side of this book. An excellent intermediate undergraduate textbook treatment of the
overlapping generations model is provided by Auerbach and Kotlikoff (1998).
Farmer and Schelnast (2013) provide a nice introduction to a graduate treatment of
the overlapping generations model, with a special focus on international trade. More
advanced and more general treatments of the overlapping generations model can be
found in Azariadis (1993) and de la Croix and Michel (2002). These are important
books for graduate students who want to concentrate on theoretical work.

The overlapping generation model was extended to include altruistic intergen-
erational transfers by Barro (1974), Drazen (1978), and Becker (1981, 1988). If the
nonnegativity constraint on financial transfers is ignored, altruism provides a jus-
tification for infinitely lived agent model, the other workhorse model of macro-
economics. Barro (1997) provides an intermediate undergraduate treatment of
macroeconomics using the infinitely lived agent model. A more advanced under-
graduate textbook that covers the overlapping generations model, and the extension
to include intergenerational transfers is Lord (2001). Graduate treatments of the
infinitely lived agent model include Romer (2001) and Acemoglu (2009).

A large empirical literature has developed to test the implications of altruistically
motivated transfers. Most econometric tests indicate that either financial transfers
are not motivated by altruism alone or altruistic financial transfers are not operative
for significant fractions of the population (see, e.g., the papers by Wilhelm (1996)
and Altonji et al. (1997). The finding that the intergenerational credit market is
imperfect due to binding nonnegativity constraints on financial transfers is con-
sistent with empirical results suggesting that parent’s lifetime resources affect the
level of investments in their young children (Heckman and Cunha 2007).

There are other reasons, not examined here, for intergenerational transfers. Some
transfers are unintended or accidental. Individuals save for their own retirement, but
die earlier than expected. The remaining wealth is often left to children. For analysis
and applications of models with unintended transfers, start with articles by Davies
(1981), Abel (1985), and Hurd (1989). In addition, some transfers may be inten-
tionally made for strategic reasons. In particular, parents might accumulate wealth
that is potentially bequeathed to children in order to elicit services from them when
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they are adults. For more reading on strategic bequests, begin with Bernheim et al.
(1985) and Cox (1987).

Calibrated dynamic general equilibrium models were first used in public finance
to examine the effects of tax reform (Summers 1981; Auerbach et al. 1983) and in
macroeconomics to explain business cycles (Kydland and Prescott 1982). Cali-
bration methods have since been extended to every area of macroeconomics. For a
general discussion of the approach, including additional applications, see Kydland
and Prescott (1996), followed by a critique from Hansen and Heckman (1996).

The calibration experiment we presented in Sect. 2.5, that uses the model with
physical capital to explain economic growth, is based on King and Rebelo (1993).
The extension to include human capital is based on Rangazas (2000, 2002).
Cérdoba and Ripoll (2013) and Manuelli and Seshadri (2014) offer quantitative
theories where human capital accumulation is the dominant determinant of an
economy’s labor productivity. An alternative approach that stresses the connection
between TFP and broad notions of capital, emphasizing the knowledge embodied
in firms rather than individuals, has been developed by Parente and Prescott (2000).

2.7 Exercises
Questions

1. Define the following concepts and give an example of each.
(a) technology
(b) capital
(c) physical capital
(d) human capital

2. Explain the meaning of (2.2a, b). What variables are determined by these two
equations?

3. Think of the physical capital stock as fixed, as in the short-run model of the
competitive firm from introductory and intermediate microeconomics. Sketch
the marginal product of labor as a function of the employment level of an
individual firm. Next, add the competitive market wage rate to the diagram.
Finally, locate the firm’s profit-maximizing employment level. How does the
profit-maximizing solution change if there an increase in the firm’s capital
stock?

4. Explain the differences between rental rate, rate of return on capital, and
interest rate.

5. Explain how each of the following affects current consumption, future con-
sumption, and saving: (a) wages, (b) return to capital, and (c) the preference
parameter J.

6. Sketch Eq. (2.7) with k on the horizontal axis and r on the vertical axis. Explain
what determines the sign of the slope of the sketch. How is the sketch affected
by an increase in w? An increase in n? Explain
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. Explain why an increase in this period’s capital stock causes an increase in next
period’s capital stock. Why does the linkage become weaker as the economy
accumulates more capital?

8. As the economy moves toward the steady state from below what happens to its
growth? What happens to the growth rate if it heads to the steady state from above?

. Suppose that economy A and economy B have identical structures (production
technologies, preferences, and population growth rates), but economy A has a
higher capital-labor ratio. Which country is “richer”? Which country grows
faster? Your answer explains what is known as conditional convergence.
Show, by example, that if two countries do not have identical structures that
absolute or unconditional convergence is not guaranteed.

10. Explain why a high rate of population growth will make a country poor.

11. How does an increase in exogenous technological change affect capital
intensity, interest rates, and labor productivity? In what way is it similar to an
increase in population growth and in what way is it different?

12. Give an example of a human capital transfer and a financial transfer. When
would a parent’s payment of college tuition be equivalent to a financial transfer
to the child? Do government guaranteed college loans alleviate the effects of
the legal restriction that parents cannot leave debt to their children?

13. If intergenerational transfers are altruistically motivated, explain why human
capital investments are productively efficient if financial transfers are positive,
but are inefficiently low if financial transfers are zero.

14. Suppose that intergenerational transfers are unconstrained. Intuitively guess
what happens to ¢}, and cy,+; when R, increases. To make your guess note that
(2.17b) has exactly the same form as the expression for the optimal ratio of
future to current consumption over the life cycle (see Problem 4 or (14)).
Suppose now that households are constrained. Use (2.18b) to guess what
happens to ¢y, ci;+1 and x;1; when wy | increases.

15. Under special assumptions, Eq. (2.29) gives an explicit solution for constrained
human capital investments. Use your answer to question 14 to explain why
w41 does not enter the Eq.

16. Assume that intergenerational transfers are altruistically motivated and that

financial transfers are positive. Explain what happens to human capital

investments in children and financial transfers if

(a) W, increases by one unit and W, is held constant

(b) W increases by one unit and W; is held constant.

Nel

Repeat the exercise when (i) financial transfers are zero and then again when (ii)
transfers are motivated by warm glow.

17. Explain why (2.29) and (2.31b) are similar despite the fact that they are gen-
erated by two different assumptions about intergenerational transfers.

18. Under each of the motives for intergenerational transfers, explain if and when
investments in human capital can be greater than the productively efficient
level.
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19.

20.

21.
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Explain what it means to calibrate a model. Briefly describe the calibration of
the model of physical capital accumulation.

Discuss the design and the results of the calibration experiment when the model
of physical capital accumulation was used to historically replicate growth in the
USA from 1870 to 2000.

Discuss the design and the results of the calibration experiment where the
model of physical capital accumulation was extended to include human capital.

Problems

(O8]

N N D B

10.

11.

9
. Leté:landa:1

. Show that (2.1) exhibits the neoclassical properties of diminishing marginal

productivity and constant returns to scale.

. Derive Egs. (2.2a, b) and (2.3a, b). How are they related?
. What is total income in the model with capital and production? Show that the

value of output is equal to the value of income.

. Derive the optimal life-cycle behavior given by (2.5a, b) and (2.6).

. Starting from the definition of k%, derive Eq. (2.7).

. Starting with the adjusted definition of k%, derive the transition Eq. (2.9).

. If ¢ = 1, how do we know that the transition equation will be concave in

Fig. 2.2?7 The concavity of the transition function establishes three crucial
properties of the steady-state equilibrium: (i) existence (there is a steady state),
(i1) uniqueness (there is only one steady state), and (iii) dynamic stability (if
you start away from the steady state you will always move toward it). Use the
diagram to explain this.

in (2.9). Derive an explicit transition equation for &, in

terms of k;_;. Sketch the transition equation as accurately as you can.

. Derive the financial transfer equations under the two motives for intergenera-

tional transfers. In particular, use (2.14b), (2.19a) and (2.24) to derive (2.25).
Next, maximize (2.30) subject to the household lifetime budget constraint to
get (2.31a).

Assuming that (i) intergenerational transfers are altruistically motivated and (ii)
the nonnegativity constraint on financial transfers does not bind, derive
aggregate consumption in period 7 in terms of the behavior of a “representative
agent,” whose consumption behavior is a function of the dynasty’s wealth. First
note that aggregate consumption in period ¢ is C; = N;cy, + Ni—jcy

=N {cl, _,_2} Next use (2.14b) and (2.17b) to get C, = kN,cy;, where k =
n

1 4+ n°~! and ¢y, are given by (2.24). This shows that aggregate consumption is
proportional to the consumption of a single representative agent, the current
young adult, of the family dynasty.

Take a deep breath and complete the following steps to verify that (2.28) and
(2.29) are indeed the solution to the constrained problem with human capital
when ¢ = 1.
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12.

13.

14.

2 Neoclassical Growth Theory

(i) Write (2.28) for generation ¢ + 1 instead of generation ¢.

(i) Substitute your answer to (i) for V(W) in (2.13).

(iii)) Use (2.5a, b) to write U, solely in terms of ¢}, and then in terms of W, and
X;+1 by using the lifetime budget constraint associated with (2.10) and
(2.11) (remember that ¢ = 1 and b,y = 0)

(iv) Now you have the objective function in (2.13) written solely in terms of
the choice variable x;;;. Show the first-order condition for maximizing
(2.13) with respect to x4 yields (2.29).

(v) Finally, substitute (2.29) back into the objective function from (iv) and
show that V(W,) is in fact (2.28). This is done by organizing all the
constant terms into a term labeled E and then forming three other
expressions that group terms involving W,, human capital rental rates, and
interest rates. Careful, this is probably the most difficult part.

Using a calculator or computer, reproduce the historical simulations displayed

in Fig. 2.3.

Use a computer to generate historical simulations for model of physical capital

accumulation when ¢ = 0.5. You will need a program that includes a nonlinear

equation solver to find a numerical solution for k;, given k,_; in each period.

An alternative way of thinking about equilibrium is to focus on the goods

market rather than the capital market. In the simple model of physical capital

accumulation, with no human capital or technological progress, the goods
market clearing condition just says that the supply of goods or output, ¥;, must
equal the demand for consumption and investment goods,

C,+ K1 — (1 — 0)K,, so that

Ct+KH»1 - (1 - 5)K[ = Yl;

where, as in Problem 10, you must think of C; as the total consumption of all
generations. We can write this as a transition equation in the capital-labor ratio by
dividing by M, and rearranging a bit to get

G

I’lkHl :Ak?‘ - (1 - 5)]([ _Ml .

Show that in the two-period overlapping generation model, this condition is

equivalent to the transition Eq. (2.8) that was derived from the capital market
equilibrium condition.
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A: Derivative of the Value Function

Substituting (2.14a, b) back into U, gives

(W1, (W, — n(x 1 + bt+1))]171/0 [(BR)" ¥ 1:(W; — n(xi41 + bt+1))]l_l/ﬂ

U =
! 1—1/0 +h 1—1/c
_ oyl (W — n(xq1 + bt+1))171/0
lt 1-1/c

Next, denote the optimal choices of the intergenerational transfers with an
asterisk so that we can write

% % 1-1/0
—1/a (Wtfn(xz-q—l +bz-‘,—l)) /
I 1-1/c
+ BV (WI+IH(X:<+1) +(1+ Vt+1)bf+1)~

Vi(W,) = ¥

Note that the optimal intergenerational transfers are in general functions of W,
(in the constrained case, financial transfers are zero and thus do not depend on W,).
However, because the derivative of the right-hand side with respect to these choices
is zero, then we may ignore these indirect effects of W, when differentiating V, with
respect to W, (in the constrained case, the derivative is taken only with respect to
human capital investments). Thus, the derivative of the value function with respect
to W, includes only the direct effect, working through U, in the first expression
above. This result is a general one and is known as the envelope theorem. Equa-
tion (2.16) is the envelope theorem applied to V, 1 (W;i1).

B: Many-Period Models

In models that extend beyond two periods, it is easier to proceed by thinking of the
equilibrium or market clearing condition in terms of goods rather than capital. The
two ways of thinking about things are actually equivalent, but the exposition is
easier if we conduct the discussion in terms of goods (see Problem 14). This is
especially true if one wants to contrast the infinitely lived agent approach with the
overlapping generations approach. To reduce notation, we will limit the discussion
to the simple model of physical capital accumulation with no human capital or
technical progress. In addition, the key points can be made for the case with o = 1
and n = 1.

As shown in Problem 14, using the goods market approach allows the transition
equation for the economy to be written as
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In the overlapping generations model with two-period lifetimes, this equation
reduces nicely to a first-order difference equation (Problem 14). This is because the
right-hand side can be reduced to the consumption behavior of a single generation
whose consumption depends only on period ¢ wages and thus only on ;. The old
generation consumes all its income. As a result, their income and their consumption
are equal and cancel from the right-hand side of the transition equation.

However, with more periods of life there will be more generations on the right-
hand side, whose income is less than their consumption, i.e., who save by pur-
chasing capital. The consumption behavior of these generations will depend on
wages earned before period t. For example, think of a model with five periods of
life—four working periods and one retirement period. The aggregate consumption
behavior on the right-hand side sums over five different generations. In general, it is
only the generation who is retired that will “cancel out.” The saving of other
generations will generally not be zero, so all variables that affect their consumption
behavior will appear in the transition equation.

Consider the next oldest generation, who is in the last period of its working life.
This generation’s working life began three periods ago. Their consumption
behavior in period ¢ will depend on the wages they earned in each of those periods.
Thus, wages as far back at period 7-3 will appear in the transition equation. The
wages in each period are determined by the capital-labor ratio from that period.
This implies that the transition equation will be a fifth-order difference equation,
including the variables, k1, k;, k;—1, k;—2, k;—3. The important point is that the state
variables, here the capital-labor ratios, characterizing the economy increase as the
number of periods of the life-cycle increase. This curse of dimensionality raises the
computational complexity of the model when the number of periods in the life cycle
is large.

In contrast, if one assumes that the generations are linked by intergenerational
financial transfers, the transition equation of the economy is a second-order dif-
ference equation, no matter how many periods in the life cycle are included. To see
this, first note that as long as financial intergenerational transfers link the genera-
tions together, then we can write C; = kN;cy; (see Problem 10). As periods in the
life cycle are added, only the value of x changes. For example, x = 2, with two
periods of life, and x = 5, if there are five periods of life.

Next, solve for ¢y, using the transition equation to get

M
c = N—’ [AK? — (1 — 8)k; — nkyy].
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Now substitute into (2.17b) to get

B(1 + oAk — 9)

[A z“+1 - (1 - 5)kt+1 - nk,+2] = 0

[Ak} — (1 = 8)k, — nk,11],

This is a second-order difference equation in k; that is completely independent of
the number of periods in the life cycle. Thus, the infinitely lived agent simplification
is able to avoid the dreaded curse of dimensionality. A very nifty and useful result.

The lesson is that if you want to do computations, use the infinitely lived agent
approach whenever you can get away with it (e.g., business cycle analysis).
Unfortunately, the evidence suggests that for the issues we examine in this book,
those that directly focus on private intergenerational transfers and government
policies that transfer resources across generations, one must stick with the over-
lapping generations approach.
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