
Chapter 2
The Space-Time Structure of Extreme
Current and Activity Events in the ASEP

Gunter M. Schütz

Abstract A fundamental question in the study of extreme events is whether during a
rare and strong fluctuation a system exhibits phenomena that are qualitatively differ-
ent from its typical behaviour. We answer this question quantitatively for the asym-
metric simple exclusion processes (ASEP) on a ring, conditioned to an atypically
large particle current or an atypical large hopping activity.We show that this classical
problem is related to the integrable quantum Heisenberg ferromagnet. For strongly
atypical fluctuations we show that the equal-time density correlations decay alge-
braically, as opposed to the typical stationary correlationswhich are short-ranged.We
compute the exact dynamical structure factor which shows that that the dynamical
exponent in the extreme regime is z = 1 rather than the KPZ exponent z = 3/2 for
typical behaviour. An open problem is the transition point from typical to extreme.

2.1 Introduction

In a many-body system with noisy dynamics intrinsic fluctuations may occur that
drive characteristic properties of the system far away from their typical values. An
example of this problem, that has attracted great attention in the last decade, are
fluctuations of the entropy production and related thermodynamic quantities such
as heat and work [1, 2]. Of interest in this context are not only the tails of the
probability distribution or the the statistics of extreme events, but particularly the
space-time structure of the system undergoing such a rare and intrinsic fluctuation.

Generally, in equilibrium systems, time-reversal symmetry implies that the fluc-
tuation out of an extreme event is the mirror image of the fluctuation that led into
it. Unfortunately, little more can be said generally. In systems that are driven per-
manently out of equilibrium, even less is known. The distribution of the entropy
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production satisfies the Gallavotti-Cohen symmetry (or similar relations [1, 2]).
However, the absence of time-reversal symmetry does not allow for generally valid
predictions of temporal behaviour.

A notable exception from this unfortunate state of affairs are driven diffusive
systems, i.e., lattice gas models for stochastic interacting particle systems [5–8].
For example, it could be demonstrated for a specific lattice gas model, the zero-
range process with open boundary conditions [9, 10], that a failure of the celebrated
Gallavotti-Cohen symmetry [3, 4] of the distribution function for entropy production
can arise from a real-space condensation phenomenon [11, 12]. A macroscopic fluc-
tuation theory, based on the seminal papers [13, 14] allows for the computation of
macroscopic density profiles during a long event of strongly atypical particle current
or hopping activity. Interestingly, for a particular model system, the asymmetric sim-
ple exclusion process (ASEP, see below) a dynamical phase transition occurs from a
macroscopically flat density profile to a travelling shock/antishock wave (atypically
low current in the driven case [15]) or a phase separation arises (low activity in the
undriven system [16]). Microscopic information about atypically low currents has
recently been obtained for the ASEP [17, 18] by making use of the mapping of the
generator of the ASEP to the Heisenberg quantum ferromagnet.

Following [19, 20] we use this approach to consider here the microscopic space-
time structure of the ASEP for large atypical current, and, going beyond our earlier
work, also for atypical activity. We derive detailed information about equal-time
correlations, relaxation times and the dynamical structure function, which indicate
a qualitative change of the typical dynamics in the universality class of the Kardar-
Parisi-Zhang equation with dynamical exponent z = 3/2 [21] to a ballistic univer-
sality class with z = 1 [22] during extreme events of strong current or activity.

2.2 Grandcanonical Conditioning for the ASEP

We proceed to define the model and to exhibit its relationship to the ferromagnetic
Heisenberg quantum spin chain. Then we define the conditioned dynamics and illus-
trate the setting for independent particles.

2.2.1 The Asymmetric Simple Exclusion Process

The asymmetric simple exclusion process (ASEP) [6–8] with periodic boundary
conditions is a lattice gas model for a driven diffusive system where each site k on
a ring of L sites can be occupied by at most one particle. Particles hop randomly to
empty nearest neighbour sites after an exponentially distributed random time with
mean 1/(p + q). A jump to the right (in clockwise direction) is attempted with
probability p/(p + q) and to the left (anticlockwise) with probability q/(p + q).
If the target site is already occupied, the jump attempt is rejected. Physically, this
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models an on-site excluded-volume interaction.We shall set p = weφ andq = we−φ .
Here w plays the role of an attempt frequency of jumps and φ is proportional to a
driving force that acts on the particles. Without loss of generality we shall assume
φ > 0 throughout this article. We denote a microscopic configuration of the ASEP η

and the local occupation number by η(k) ∈ {0, 1}. The total number of particles N =∑
k η(k) is conserved. Originally the model was introduced in a biophysics context

to describe the kinetics of biopolymerization on RNA [23, 24] and independently
in the probabilistic literature to study the emergence of large scale hydrodynamic
behaviour [25].

2.2.1.1 Master Equation

This Markovian jump dynamics can be described in terms of a master equation for
the time evolution for the probability P(η, t) to find the configuration η at time t ≥ 0.
It is convenient to introduce a column vector |P(t)〉 which has these 2L probabilities
as components. To this end we assign to a configuration η a canonical basis vector
|η〉 = |η(1))⊗|η(1))⊗· · ·⊗|η(L)) ∈ (C2)⊗L where |0) = (1, 0)T and |1) = (0, 1)T

are the canonical basis vectors ofC2 and the superscript T denotes transposition [7].
By introducing also a dual basis of row vectors 〈η| and inner product 〈η|η′〉 = δη,η′
we canwrite P(η, t) = 〈η|P(t)〉with |P(t)〉 := ∑

η P(η, t)|η〉. Themaster equation
then takes the form

d

dt
|P(t)〉 = −H |P(t)〉 (2.1)

where the off-diagonal matrix elements Hη′,η of the generator H are the negative
transition rates for transitions from η to η′ and the diagonal elements are the inverse
sojourn times of a configuration η, i.e., Hη,η = ∑′

η Hη′,η. Notice that this con-
struction implies that the summation vector 〈s| := ∑

η 〈η| is a left eigenvec-
tor of H with eigenvalue 0. This property expresses conservation of probability
d/dt

∑
η P(η, t) = d/dt〈s|P(t)〉 = −〈s|H |P(t)〉 = 0.

The corresponding right eigenvector with eigenvalue 0 is a stationary distribution
|P∗〉of the process. For periodic boundary conditions andfixed number of particles N
this is the uniform distribution that gives equal probability to all microscopic config-
urations with N particles, independently of the driving force φ which is a direct con-
sequence of pairwise balance [26]. From these uniform canonical distributions one
can construct also a grand canonical distribution which is uncorrelated, i.e., on each
lattice on finds a particle with probability ρ, independent of the occupation of other
sites. In the thermodynamic limit these two stationary distributions become equiva-
lent for ρ = N/L . The stationary current takes the form j∗ = 2w sinh (φ)ρ(1− ρ).
The apparent (and unphysical) divergence of the current with the driving force stems
from the fact that for convenience we have chosen the time scale of the process to
be given by p and q. As will be seen below a physically more natural choice is a
normalization by the inverse mean time p + q = 2w cosh (φ) of jump attempts of
a single particle.
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The time-dependent solutionof (2.1) has the simple form |P(t)〉 = exp (−Ht)|P0〉
for an initial distribution |P0〉 := |P(0)〉. In particular, we have for the transition
probability P(η2, t |η1, 0) into a configuration η2, starting from η1,

P(η2, t |η1, 0) = 〈η2|e−Ht |η1〉. (2.2)

For the expectation of a function f (η) we obtain

〈 f (t)〉 :=
∑

η

F(η)P(η, t) = 〈η| f̂ e−Ht |P0〉 (2.3)

where f̂ = ∑
η f (η)|η〉〈η| is a diagonal matrix with the values f (η) on its diagonal.

The real part of eigenvalues of the generator are the inverse relaxation times of the
system.

2.2.1.2 Link to Quantum Systems

The point behind choosing the tensor basis is the fact that the generator H of the
ASEP takes the form

H = −w
L∑

k=1

[
eφ(σ+

k σ−
k+1 − n̂k(1 − n̂k+1)) + e−φ(σ−

k σ+
k+1 − (1 − n̂k)n̂k+1)

]

(2.4)
with the matrices

σ+ =
(
0 1
0 0

)

, σ− =
(
0 0
1 0

)

, n̂ =
(
0 0
0 1

)

, (2.5)

the two-dimensional unitmatrix1 and the notation x̂k := 1⊗· · ·⊗x̂⊗. . .1 indicating
that the two-dimensional matrix x̂ acts non-trivially on the factor k in tensor space,
corresponding to site k in the ring. One recognizes in (2.4) the quantum Hamiltonian
of the spin-1/2 Heisenberg ferromagnet with an imaginary Dzyaloshinsky-Moriya
interaction term [27, 28]. This is an integrable model that can be solved with the
Bethe ansatz. The form of the master equation (2.1) and of the generator (2.4) has
given this tensor basis approach the name quantumHamiltonian formalism. It allows
the application of mathematical techniques borrowed from quantum mechanics to
treat this problem of classical stochastic dynamics.

For future purposes we split H into three parts

H = H+ + H− + H0 (2.6)
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where H+ = −weφ
∑

k σ+
k σ−

k+1 generates jumps to the right, H− = −we−φ
∑

k σ−
k

σ+
k+1 generates jumps to the left and H0 is the diagonal part for the conservation of

probability.

2.2.1.3 Non-interacting Particles

For reference purposes we also consider non-interacting particles. In this case each
lattice site can be occupied by an arbitrary integer number η(k) ∈ N of particles.
The generator H takes form [29, 30]

H = −w
L∑

k=1

[
eφ(â−

k â+
k+1 − n̂k) + e−φ(â+

k â−
k+1 − n̂k+1)

]
(2.7)

where the infinite-dimensional local hoppingmatrices havematrix elements (â+)i j =
δi, j+1, (â−)i j = iδi+1, j (with i, j ∈ N) and with the diagonal number operator
(n̂)i j = iδi, j . Notice that here a+ (a−) creates (annihilates) a particle. In the single-
site basis one has â+|k) = |k + 1) ∀k ∈ N and â−|0) = 0, â−|k) = k|k − 1)
∀k ≥ 1. The number operator is given by n̂ = â+â−. These operators commute at
different sites and satisfy the harmonic oscillator algebra [â−

k , â−
l ] = [â+

k , â+
l ] = 0,

[â−
k , â+

l ] = δk,l for the same site. In quantum language (2.7) is the Hamiltonian for
non-interacting bosons hopping on a lattice under the influence of an driving field
with imaginary amplitude, analogous to the Dzyaloshinsky-Moriya interaction. Also
the generator (2.7) can be split naturally into three parts analogous to (2.6).

The ground state with eigenvalue 0, corresponding to the stationary distribution
of the system, is the projection on N particles of the grand canonical factorized dis-
tribution where on each lattice site the number of particles is Poisson distributed with
parameter ρ. Here ρ is the average particle density. The factorization property of the
grand canonical distribution implies the absence of density correlations between dif-
ferent sites. The dynamics of fluctuations can be studied by considering the dynamical
structure function S(r, t) = 〈η(k + r, t)η(k, 0)〉−ρ2 where the expectation is taken
in the stationary distribution. Since the particles are non-interacting, the dynamical
structure function satisfies a lattice diffusion equation with a constant drift term.
On large space and time scales its solution is the Gaussian which is invariant under
dynamical scaling r → ar , t → azt where z = 2 is the dynamical exponent of the
diffusive universality class.

2.2.2 Grandcanonically Conditioned Dynamics

The master equation describes the evolution of the probability distribution of the
configurations η, but does not provide any information about the number of jumps
that have occurred to reach a given final configuration at some time T . To describe
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also these properties of the process we introduce J±(T ) as the number of jumps to
the right (left) up to time T and also the integrated current J (T ) := J+(T )− J−(T )

and the integrated activity A(T ) := J+(T ) + J−(T ). These are random numbers
with initial value 0 at time 0 that depend on the particular realization of the stochastic
dynamics.

2.2.2.1 Joint Generating Function

Following [1, 31] the joint generating function Y (λ, μ, T ) = 〈exp (λJ (T ) + μA(T ))〉
for the distribution of A and J is given by

Y (λ, μ, T ) = 〈s|e−H̃(λ,μ)T |P0〉. (2.8)

Here
H̃(λ, μ) = eλ+μ H+ + e−λ+μ H− + H0 (2.9)

which in the case of the ASEP is also an integrable quantumHeisenberg ferromagnet
with imaginary Dzyaloshinsky-Moriya interaction. For non-interacting particles one
has a similar expression with the generator (2.7).

Notice that the generating function is by definition the average over all final
microscopic configurations η and all realizations of the process with final values
J (T ) = J and A(T ) = A. This generating function is formally analogous to a
grandcanonical partition functionwhere the intensive variables λ andμ are conjugate
to the extensive variables J and A (proportional to time T and length L).

Analogously we can study grandcanonically conditioned expectations of func-
tions f (η) of a configuration η. These are the quantities

〈 f (T )〉λ,μ
P0

:= 〈s| f̂ e−H̃(λ,μ)T |P0〉/Y (λ, μ, T ) (2.10)

In particular, for f (η) = 1η which is represented by the projector f̂ = |η〉〈η| we
find for the grand-canonically conditioned probability distribution Pλ,μ(η, T ) :=
〈η|e−H̃(λ,μ)T |P0〉/Y (λ, μ, T ). Therefore the fundamental quantity of interest is the
weighted probability distribution

|Pλ,μ(T )〉 := e−H̃(λ,μ)T |P0〉. (2.11)

In the limit T → ∞ we have asymptotically

e−H̃(λ,μ)T ∼ |g〉〈g|
〈g|g〉 e

−g(λ,μ)T (2.12)
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where g(λ, μ) is the lowest eigenvalue of H̃(λ, μ) and |g〉 (〈g|) is the corresponding
right (left) eigenvector whose components we denote by gR

λ,μ(η) (gL
λ,μ(η)). Since

H̃(λ, μ) is in general not symmetric the notion of the lowest eigenvalue refers to the
lowest real part.

2.2.2.2 Optimal Paths

With this approach one can study also how the particle configuration behaves at
intermediate times t within the conditioning time interval [0, T ]. This yields the
answer to the question how the typical time evolution of an untypical fluctuation is
realized, or, in other words, what is the optimal path that a random variable takes
under conditioned dynamics. The conditional expectation of a one-time observables
f (η) at time t is given by

〈 f (t)〉λ,μ,T
P0

:= 〈s|e−H̃(λ,μ)(T −t) f̂ e−H̃(λ,μ)t |P0〉/Y (λ, μ, T ) (2.13)

For long conditioning period T → ∞ we define edge intervals [0, u] and [T − v, T ]
and consider t ∈ [u, T − v]. In the limit u, v → ∞ we use (2.12) to find that
〈 f (t)〉λ,μ,T

P0
→ 〈g| f̂ |g〉/〈g|g〉 =: ∑

η f (η)P∗
λ,μ(η) is independent of t inside the

observation window and also independent of the initial distribution. The interpreta-
tion is that between an initial transient period and a final transient period the condi-
tioned system is in a stationary state with stationary conditional distribution

P∗
λ,μ(η) = gR

λ,μ(η)gL
λ,μ(η)/Z(λ, μ). (2.14)

Here Z(λ, μ) = 〈g|g〉 = ∑
η gR

λ,μ(η)gL
λ,μ(η) is the normalization factor.

For two observables fa(η), fb(η) at different times t1, t2 ∈ [u, T −v]with t1 ≤ t2
one finds in the limit u, v → ∞

〈 fb(t2) fa(t1)〉λ,μ,T
P0

→ 〈g| f̂be
−[H̃(λ,μ)−g(λ,μ)]τ f̂a |g〉/Z(λ, μ) (2.15)

with τ = t2 − t1. As expected from a stationary process, the two-time correlation
function depends only on the time difference τ .

2.2.2.3 Effective Dynamics

Defining the diagonal matrixΔ(λ,μ)with the components gL
λ,μ(η) of the left eigen-

vector on the diagonal and defining the transformed Hamiltonian

G = ΔH̃Δ−1 − g (2.16)
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we can rewrite (2.15) as

〈 fb(t2) fa(t1)〉λ,μ,T
P0

→ 〈s| f̂be
−G(λ,μ)τ f̂a |P∗

λ,μ〉. (2.17)

In otherwords, the conditioned two-time correlation function turns into the stationary
correlation function of an effective process given by G. This effective process is a
dynamics under which the atypical, conditioned dynamics of the original process
become unconditioned, typical dynamics [32]. It realizes an optimal path (in the
sense described above) as typical path. The stationary distribution of this effective
process is given by (2.14).

2.2.3 Conditioned Dynamics in the Noninteracting Case

It is instructive to apply the grandcanonical conditioning to the case of non-interacting
particles. Since in this case H+, H− and H0, defined in (2.7) through (2.9), all
mutually commute, all eigenvectors are independent of μ and λ. Because of the
harmonic oscillator algebra all terms can be diagonalized simultaneously by Fourier
transformation (see e.g. [7] for details). In terms of the Fourier modes p one obtains
H̃ = ∑

p ε(p)b̂+
p b̂−

p where the momenta p are of the form p = 2πm/L with
m ∈ {0, 1, 2, . . . , L −1} and the summation over all p amounts to a summation over
all m. For the single-particle energy one has

ε(p) = w
[
2 cosh φ − eμ(eλ+φei p + e−λ−φe−i p)

]
(2.18)

The N -particle eigenstates are of the form b̂+
p1 . . . b̂+

pN
|0〉 where |0〉 is the vacuum

state with no particles. The corresponding eigenvalues are the sum of the single
particle energies with momenta pi . Hence the lowest eigenvalue in the N -particle
sector is obtained for choosing all momenta to be 0 which yields

g(λ, μ) = Nw
[
2 cosh φ − eμ+λ+φ − eμ−λ−φ

]
. (2.19)

This result allows us to describe the effective conditioned dynamics. Since the
ground state does not depend on μ and λ we have that the transformation matrix Δ

is the unit operator. Hence

G = H̃ − g = −weμ
L∑

k=1

[
eλ+φ(â−

k â+
k+1 − n̂k) + e−λ−φ(â+

k â−
k+1 − n̂k+1)

]
(2.20)

which is similar to the original process (2.7), but with renormalized hopping rates

p̃ = eλ+μ p, q̃ = e−λ+μq. (2.21)
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Therefore conditioning on higher than typical activity (μ > 0) corresponds to a
higher frequency w̃ = weμ for jumps. Conditioning on higher than typical current
(λ > 0) corresponds to a stronger driving force φ̃ = φ + λ. All other fluctuations in
the dynamics remain unchanged. Therefore, non-interacting particles conditioned on
high activity and/or current behave essentially like under typical conditions, except
that jumps occur with higher frequency and the hopping bias is stronger. Phrased
differently, one can generate the effective dynamics, where the untypical extreme
behaviour of the original dynamics becomes typical, just by changing the jump
frequency and the driving field. Conditioning on extreme behaviour does not lead to
any change in universal properties of the dynamics. Long-range correlations in the
stationary distribution remain absent and one has diffusive relaxation with dynamical
exponent z = 2.

It is natural to define the intrinsic time scale of the process by normalizing by
the inverse sum of the hopping rates, i.e., the mean sojourn time of a particle. Then
the normalized effective dynamics becomes independent of μ, i.e., conditioning on
untypical activity does not change the normalized dynamics. In the limit of high
current (λ → ∞) the hopping becomes totally asymmetric.

2.3 Results for the ASEP

Even though the Hamiltonian (2.6) is exactly solvable via Bethe ansatz it is very
hard to extract for general λ and μ explicit results for the weighted distribution
(2.11) for finite time T or the stationary correlations (2.17) in the infinite-time limit.
Nevertheless, some special cases can be studied in some detail.

2.3.1 Bethe Ansatz Equations

In order to obtain the Bethe ansatz equations for the spectrum of H̃ we introduce
new notation. Instead of labelling basis vectors by occupation number we choose the
particle positions which we shall denote by ki mod L for the i th particle and by k =
{k1, . . . , kN } the ordered set of all coordinates. The particle label i ∈ {1, 2, . . . , N }
is associated with the particles whose order remains preserved in the time evolution.
We also introduce z = {z1, . . . , zN } where the zi can be thought of as exponentials
of (possibly complex) pseudomomenta and the quantities

ai j = p̃ + q̃zi z j − (p + q)zi . (2.22)

Notice the appearance of the modified rates (2.21) in this definition.
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The Bethe ansatz for the right eigenvectors |z〉 (see e.g. [19, 28, 31] for the present
context) is given by

|z〉 =
∑

1≤k1<k2<k3≤L

∑

σ∈SN

Aσ zk1
σ(1)z

k2
σ(2)...z

kN
σ(N )|k〉 =

∑

1≤k1<k2<k3≤L

Y (k)|k〉
(2.23)

where the second sum is over all permutations σ of the N particle labels and the
coefficients Aσ are given by

A...σ (i j)...

A...i j....
= −a ji

ai j
= − peλ+μ + qe−λ+μzi z j − (p + q)z j

peλ+μ + qe−λ+μzi z j − (p + q)zi
. (2.24)

Periodic boundary conditions leads to a quantization condition: The Bethe roots z j

satisfy the Bethe ansatz equations

zL
k = (−1)N−1

N∏

i=1

peλ+μ + qe−λ+μzi zk − (p + q)zk

peλ+μ + qe−λ+μzi zk − (p + q)zi
(2.25)

for arbitrary N . The eigenvalue ε(z) of a Bethe eigenvector is a sum of single-particle
excitation energies

ε(z) =
N∑

i=1

ε(zi ) (2.26)

where ε(zi ) = −zi aii (z−1) (cf. (2.18) with the identification z = ei p). The rescaled
single-particle energies read

ε̃(z) = 2e−μ cosh (φ) − eφ+λz − e−φ−λz−1

eφ+λ + e−φ−λ
. (2.27)

For typical behaviour λ = μ = 0 the Bethe ansatz equations (2.25) have been
analyzed in [27, 28]. It turns out that the real part of the energy gap, which yields
the inverse of the longest relaxation time, scales with system size as L−z with the
dynamical exponent z = 3/2 of the Kardar-Parisi-Zhang (KPZ) universality class
[21]. Therefore the exclusion interaction changes the dynamical universality class
from diffusive (in the non-interacting case) to KPZ. The stationary distribution,
however, is uncorrelated, as is the case for non-interacting particles.

2.3.2 Stationary State for High Activity or High Current

In the limit of high activity μ → ∞ or high current |λ| → ∞ the Bethe equations
(2.25) simplify considerably. The right hand side reduces to the factor (−1)N−1 which
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means that the Bethe roots are of the form zk = e2π imk/L where mk is either integer
(N odd) or half integer (N even). As pointed out in [19] the model becomes a free
fermion system. The N -particle wave function Y (k) becomes a Slater determinant

Y (k) = det

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

zk1
1 zk2

1 ... zkN
1

zk1
2 zk2

2 ... zkN
2

... ... ... ...

zk1
N zk2

N ... zkN
N

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (2.28)

Following [19] the ground state corresponds to the choice of Bethe roots mk =
k − (N − 1)/2 with k = 0, 1, 2, . . . , N − 1. The stationary distribution can then be
expressed in the form of a double product

PL(k) = 2N (N−1)

L N

∏

1≤i< j≤N

sin2
(

π
ki − k j

L

)

(2.29)

From this one obtains the well-known expression [33] for the static two-point density
correlation for the particle occupation numbers

S(r) := 〈η(k)η(k + r)〉 − ρ2 = − sin2 rπρ

r2π2 . (2.30)

Remarkably, the correlations decay algebraically, unlike for typical dynamics where
the stationary distribution is uncorrelated, or in the non-interacting case where also
the conditioned stationary distribution is uncorrelated.

For the stationary current per site we find after rescaling of the time scale

j∗ = tanh(φ̃) sin (πρ)

L sin (π/L)
(2.31)

with φ̃ = φ + λ. In this quantity another interesting feature appears: The finite-
size corrections are of order 1/L2 rather than of order 1/L which is expected from
typical behaviour in systems with short-range interactions. In the thermodynamic
limit L → ∞ we get

j∗ = 1

π
tanh(φ̃) sin (πρ) (2.32)

2.3.3 Dynamical Properties

The relaxational behaviour is encoded in the spectrum of H̃ , which can be computed
using the free fermion structure of the process conditioned on large activityμ → ∞.
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In order to do so we rescale time by the effective single-particle sojourn time and
adapt the approach of [19] to the present case where

H̃ = − 1

2 cosh φ̃

L∑

k=1

[
eφ̃σ+

k σ−
k+1 + e−φ̃σ−

k σ+
k+1

]
(2.33)

In the limit λ → ∞ we recover the case of large current studied in [19, 20].

2.3.3.1 Longest Relaxation Time

From the ground state choice of the Bethe roots one obtains the lowest excited state
by exchanging the root with m = 0 with m = −1. The real part of the spectral
gap, i.e., the inverse of the longest relaxation time τL in a finite system of size L is
independent of φ̃ and given by

1/τL = 2 sin (πρ) sin
(π

L

)
∝ 1/L (2.34)

where ρ = N/L is the particle density.
For large L the gap is inversely proportional to the system size, unlike in the

unconstrained ASEP where the real part of the spectrum gap scales as O(1/L3/2)

[27, 28] with the dynamical exponent z = 3/2 of the KPZ universality class. We
conclude that the conditioned dynamics is in a different dynamical universality class,
characterized by a dynamical exponent z = 1 and first studied by Spohn [22] in
the context of the relatedmodelwith long-range interactions. Indeed, generalizing the
work of [19] it is readily seen that the generator G of the effective process in the
symmetric case φ̃ = 0 is identical with the quantum Hamiltonian of Spohn. As
pointed out in that work this symmetric case can be interpreted classically as a
system of non-intersecting randomwalks or quantummechanically as a latticemodel
of Dyson’s Brownian motion of the eigenvalues of a random matrix [34]. Non-
intersecting random walks appear also in the study of diffusive pair annihilation
processes and many different techniques (see e.g. [35–38] and references therein)
allow for a detailed analysis of this problem.

2.3.3.2 Dynamical Structure Function

This ballistic universality class can be studied in terms of the dynamic structure
factor which is defined as the Fourier transform of the time-dependent stationary
correlation function SL ,N (r, t) = 〈η(k + r, t)η(k, 0)〉 − ρ2. In order to compute this
quantity we follow the approach of [20]. We introduce the Fourier transform
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ŜL ,N (p, t) =
L−1∑

r=0

e−2π i pn/L SL(r, t) (2.35)

which has the particle-hole symmetry, i.e., ŜL ,L−N (p, t) = ŜL ,N (−p, t). Therefore
we can restrict the computation to the case 0 ≤ ρ ≤ 1/2. After some computation
one finds from the free-fermion property

ŜL ,N (p, t) = 1

L

N−1∑

k=0

[
e(εk−εk+p)t − e−(εk−εk−p)t

]

+ 1

L

N−1∑

k=0

L−1∑

l=N

e−(εk−εl )tδp,k−l (2.36)

where in contrast to [20]

εk = − 1

2 cosh φ̃

(
eφ̃e−iαk + e−φ̃eiαk

)
(2.37)

with

αk = 2π

L

(

k − N − 1

2

)

. (2.38)

This yields

εk − εk−p = −
eφ̃

(

1 − e
2π i p

L

)

e−iαk + e−φ̃

(

1 − e
−2π i p

L

)

eiαk

cosh φ̃

=
(

1 − cos

(
2πp

L

))

cosαk + sin

(
2πp

L

)

sin αk

+ i tanh φ̃

[

sin

(
2πp

L

)

cosαk −
(

1 − cos

(
2πp

L

))

sin αk

]

(2.39)

Taking the thermodynamic limit L → ∞ with density ρ = N/L fixed turns
the sums into integrals as in [20] and thus yields an exact expression valid for all
p ∈ [−π, π ] and t ≥ 0. In order to explore the large-scale behaviour of the dynamic
structure factor we study the behaviour for small momentum p and large times t .
To this end we define the scaling variable u = pzt and the limit t → ∞ with u
fixed. Inspection of (2.39) shows that non-trivial scaling behaviour is obtained for
z = 1, as expected from the scaling of the energy gap (2.34). In this scaling we have
t (1 − ei p) = −iut and therefore

Ŝ(u) = |u|
2π t

e−iu tanh φ̃ cos ρπ−|u| sin ρπ (2.40)
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which is valid for all ρ ∈ [0, 1]. We read off the collective velocity

vc = tanh φ̃ cos ρπ (2.41)

of the lattice gas. Hence for conditioning on high activity we recover the univer-
sal scaling function of the ASEP conditioned on high current even for finite current.
Conditioned on an atypical current amounts only to a shift in the driving field φ → φ̃.
By comparing with (2.32) one sees that one has vc = ∂ j∗/∂ρ as in lattice gases with
static short-range correlations. To our knowledge this is the first verification of this
relation for a lattice gas with long-range correlations. The validity is in agreement
with the notion [39] that this relation should remain generally valid for static corre-
lations that decay faster than 1/r .

2.4 Conclusions and Open Questions

The perhaps most significant results of our studies are the emergence of long-range
stationary correlations and the change of the dynamical universality class from KPZ
to ballistic as one goes from typical to high activity or current. Hence, in a state
of extremely high current or activity the ASEP does not behave essentially like
“normal”, with just upscaled parameter values as is the case for non-interacting
particles. It is important to understand whether this is specific for the ASEP (where
it can be traced to the underlying non-intersecting random walks) or whether this is
a generic phenomenon for driven diffusive systems.

A more specific open problem concerns the location of the phase transition
point. Does the ballistic universality class arise for any finite deviation from the
typical activity or current, or is some threshold required? This question can be
addressed by a careful analysis of the Bethe ansatz equations (2.25) along the lines of
[27, 28], since the finite-size scaling of the spectral gap of the generator will reveal
the dynamical exponent. Also the answer to this question could be of interest beyond
the ASEP.
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