
Chapter 2
An Architecture for Privacy-ABCs

Patrik Bichsel, Jan Camenisch, Maria Dubovitskaya, Robert R. Enderlein, Stephan

Krenn, Ioannis Krontiris, Anja Lehmann, Gregory Neven, Christian Paquin,

Franz-Stefan Preiss, Kai Rannenberg, and Ahmad Sabouri

Abstract One of the main objectives of the ABC4Trust project was to define a com-

mon, unified architecture for Privacy-ABC systems to allow comparing their respec-

tive features and combining them into common platforms. The chapter presents an

overview of features and concepts of Privacy-ABCs and introduces the architecture

proposed by ABC4Trust, describing the layers and components as well as the high-

level APIs. We also present the language framework of ABC4Trust through an ex-

ample scenario. Furthermore, this chapter investigates integration of Privacy-ABCs

with the existing Identity Management protocols and also analyses the required trust

relationships in the ecosystem of Privacy-ABCs.

As we mentioned in the previous chapter, there are several implementations of

Privacy-ABCs, based on different cryptographic primitives. Even though these

schemes have similar features, they are realized with different cryptographic mech-

anisms and many times they are even called differently, making these technologies

hard to understand and compare. Their differences and complexity also makes it dif-

ficult for application developers to use them in practice and it is almost impossible

to switch between them once the application has been deployed.

The ABC4Trust architecture presented in this chapter aims to overcome these

problems by defining an abstract interface to Privacy-ABCs, in such a way that they

are independent from the concrete algorithms or cryptographic components used

Patrik Bichsel, Jan Camenisch, Maria Dubovitskaya, Robert R. Enderlein, Stephan Krenn, Anja
Lehmann, Gregory Neven, and Franz-Stefan Preiss
IBM Research – Zurich, Switzerland, e-mail: {pbi,jca,mdu,enr,skr,anj,nev,frp}@
zurich.ibm.com

Ioannis Krontiris, Kai Rannenberg, and Ahmad Sabouri
Chair of Mobile Business & Multilateral Security, Goethe University Frankfurt, Germany, e-mail:
{kai.rannenberg,ahmad.sabouri}@m-chair.de

Christian Paquin
Microsoft Research, USA, e-mail: cpaquin@microsoft.com

11� Springer International Publishing Switzerland 2015
K. Rannenberg et al. (eds.), Attribute-based Credentials for Trust,
DOI 10.1007/978-3-319-14439-9_2

12 P Bichsel et al.

underneath. The functional decomposition foresees possible architectural extensions

to additional functional modules that may be desirable and feasible using future

Privacy-ABC technologies or extensions of existing ones.

2.1 Concepts and Features of Privacy-ABCs

The predominant way to authenticate users on the Internet today is by usernames

and passwords. When creating accounts, users often additionally have to provide

a list of self-claimed attributes such as their name, address, or birth date. Only a

few attributes, such as email addresses and credit card numbers, have some exter-

nal mechanism to check their authenticity; all other attributes are essentially self-

claimed.

Technical solutions such as the Security Assertion Markup Language (SAML),

OpenID, or X.509 certificates let users authenticate and transfer trusted attributes,

certified by issuers, to relying parties. Such technologies are slowly gaining momen-

tum but present considerable security and privacy concerns. Briefly, either an online

issuer unnecessarily exposes the issuance key to online attacks and learns the details

of all transactions between users and relying parties, or the relying party learns more

attributes than necessary, thereby becoming an attractive target for hackers.

Privacy-preserving attribute-based credentials (Privacy-ABCs) are a superior so-

lution offering the best of both worlds: Issuers do not have to be involved during

authentication, while users disclose only those attributes required by the relying

parties and can do so without being easily traceable across their transactions.

2.1.1 User Attributes

We view a user’s identity as a set of attributes. In most cases these attributes are in-

formation a party knows about a user. So, a user “identity” exists only in connection

to a party. Because different parties know different things about the same user, ev-

ery user has many different partial identities, possibly even multiple identities with

each party he or she interacts with. To verify the authenticity of a user’s attributes,

a party (often called Relying Party (RP)) can either perform identity vetting on the

attributes itself (for example, require the user to provide physical documents or take

an exam) or rely on a specialized issuer whose identity-vetting procedures it trusts.

For example, in Figure 2.1, Alice has many different attributes, subsets of which

make up Alice’s different identities with the people and institutions she interacts

with online. Alice should be able to manage these identities the same way she

manages them in a paper-based world. Identities sharing a unique attribute can of

course be linked; for example, her social security number can be linked across her

healthcare-related identities, but her other identities should remain unlinkable.

.

2 An Architecture for Privacy-ABCs 13

Fig. 2.1 Partial identities as subsets of attributes

Such user-centric identity management requires two basic mechanisms: one to

transfer certified attributes from an issuer to a verifier, and one to authenticate (or

re-authenticate) a user under a previously established identity. The former mecha-

nism is essential to conduct trusted electronic transactions and requires cryptogra-

phy. The latter mechanism can in principle be realized with a simple username and

password, but this provides poor security guarantees. Indeed, passwords are well

known to be vulnerable to password guessing, phishing, and social-engineering at-

tacks. Their insecurity affects privacy, too. To alleviate these shortcomings, many

service providers collect as much side information (for example, location or trans-

action history) about users as they can and analyze that data to detect suspicious

behavior and potential breaches. So, a stronger cryptographic mechanism for au-

thentication involving public-key cryptography seems advisable.

In our paper-based world, attribute transfer and authentication are often folded

into one mechanism. For instance, a driver’s license transfers the attribute “I’m al-

lowed to drive a car” from the issuer to any relying party and, via the photo on

it, provides an authentication mechanism. When realizing attribute transfer and au-

thentication for the digital world, mimicking the paper-based solutions, as often

happens, isn’t enough. Instead, one must consider the very different environment:

digital data is easily copied and virtually impossible to control once released. So,

any digital realization must follow the principle of data minimization. When a user

transfers an attribute from an issuer to a relying party, neither party should be able

to learn any information that the transferred attribute hasn’t already revealed, even

if the parties collaborated.

Of course, an identity management system adhering to these principles doesn’t

eliminate all the digital world’s dangers. Communication and stored information

should always be encrypted. Sensitive data should be accompanied with usage poli-

14

cies defining how to treat it, who can use it, for what purpose it’s to be used, and

when to delete it. We do not elaborate on these issues here; rather, we concentrate

on the identity management mechanisms.

Roughly, existing solutions to transfer certified user attributes from an issuer to a

relying party are either offline or online. Offline solutions involve the issuer only at

the time of issuance. Online solutions also actively involve the issuer during attribute

transfer.

2.1.2 Existing Solutions

The most prominent offline solution are X.509 v3 certificates with attribute exten-

sions. Here, the issuer or certificate authority (CA) signs the user’s public key to-

gether with his or her attributes and includes the signature in the certificate. Since all

attributes are needed to verify the CA’s signature, the user is forced to reveal all of

the attributes in the certificate when transferring an attribute. Moreover, the user’s

public key acts as a unique identifier that follows the user across all of his or her

online transactions.

In online solutions, the user first authenticates directly to the issuer. The issuer

then creates a verifiable token for the specific set of attributes required by the re-

lying party. Popular examples following this approach include SAML and WS-

Federation, as well as the more lightweight OpenID. The advantage of this approach

is that only the required attributes are revealed. However, the issuer learns which

user authenticates to which relying party at which time. Although some protocols

may optionally hide the user’s identity from the verifier or hide the verifier’s identity

from the issuer, this doesn’t help when verifiers and issuers compare their transac-

tion logs. Moreover, with online solutions, the issuance key must be on a system

that’s permanently connected to the Internet. This considerably increases the is-

suer’s vulnerability to intruders, thus endangering the entire system’s security.

2.1.3 Basic Concepts of Privacy-ABCs

Privacy-ABCs are similar to the offline approach in terms of the overall functional-

ity and provided security guarantees, while letting users control and separate their

different partial identities.

Similarly to X.509 certificates, users’ credentials in Privacy-ABC systems are

essentially signatures by the issuer on the attribute values assigned to the user. Un-

like X.509 certificates, however, the user can hide some of the attribute values while

keeping the issuer’s signature verifiable to a verifier.

This section provides a detailed explanation on the features supported by Privacy-

ABCs, on the different involved entities, and on the type of interactions that they

engage in.

P Bichsel et al..

2 An Architecture for Privacy-ABCs 15

Fig. 2.2 Entities and interactions diagram

Figure 2.2 gives an overview of the different entities and the interactions between

them.

• The user is at the center of the picture, collecting credentials from various issuers

and controlling which information from which credentials she presents to which

verifiers. The human user is represented by her user agent, a software component

running either on a local device (e.g., on the user’s computer or mobile phone) or

remotely on a trusted cloud service. The user may own special hardware tokens to

which credentials can be bound to improve security. In the identity management

literature, the user is sometimes referred to as the requestor or subject.

• An issuer issues credentials to users, thereby vouching for the correctness of the

information contained in the credential with respect to the user to whom the cre-

dential is issued. Before issuing a credential, the issuer may have to authenticate

the user, which it may do using Privacy-ABCs, using a different online mecha-

nism (e.g., username and password), or using out-of-band communication (e.g.,

by requiring the user to physically present herself at the issuer’s office). In the

identity management literature, the issuer is sometimes referred to as the identity

(service) provider or attribute authority.

• A verifier protects access to a resource or service that it offers by imposing re-

strictions on the credentials that users must own and the information from these

credentials that users must present in order to access the service. The verifier’s

restrictions are described in its presentation policy. The user generates from her

credentials a presentation token that contains the information required by the

presentation policy and the supporting cryptographic evidence. In the identity

management literature, the verifier is sometimes also referred to as the relying

party, server, or service provider.

16

• A revocation authority is responsible for revoking issued credentials, so that

these credentials can no longer be used to generate a presentation token. The

use of a particular revocation authority may be imposed by the issuer, in which

case the revoked credentials cannot be used with any verifier for any purpose,

or by the verifier, in which case the effect of the revocation is local to the veri-

fier and does not affect presentations with other verifiers. Both the user and the

verifier must obtain the most recent revocation information from the revocation

authority to generate, respectively verify, presentation tokens.

• An inspector is a trusted authority who can de-anonymize presentation tokens

under specific circumstances. To make use of this feature, the verifier must spec-

ify in the presentation policy which inspector should be able to recover which

attribute(s) under which circumstances. The user is therefore aware of the de-

anonymization options when the token is generated and actively participates to

make this possible; therefore the user can make a conscious decision based on

her trust in the inspector.

In an actual deployment, some of the above roles may actually be fulfilled by the

same entity, or split among many. For example, an issuer can at the same time play

the role of revocation authority and/or inspector, or an issuer could later also be the

verifier of tokens derived from credentials that it issued.

Moreover, some of the flows presented in this document could be adapted for

particular deployments and scenarios. It is assumed that verifiers have a reliable way

of obtaining the public information of issuers and revocation authorities needed to

validate presentation tokens, for example, by certifying the information through a

classical public-key infrastructure (PKI).

2.1.3.1 Credentials

A credential is a certified container of attributes issued by an issuer to a user. An

attribute is described by the attribute type, that describes the meaning of the at-

tribute (e.g., first name), and the attribute value, that gives its contents (e.g., John).

By issuing a credential, the issuer vouches for the correctness of the contained at-

tributes with respect to the user. The user can then later use her credentials to derive

presentation tokens that reveal partial information about the encoded attributes to a

verifier.

The credential specification specifies the list of attribute types that are encoded

in a credential. Since Privacy-ABCs natively only support integers of limited size

(typically 256 bits) as attribute values, the credential specification also specify the

encoding mechanism that maps attribute values to their integer representation. De-

pending on the data type and the size of the attribute value, this encoding may in-

volve a cryptographic hash function.

At setup, the issuer generates public issuer parameters and a secret issuance key.

The issuer parameters are used by verifiers to verify the authenticity of presentation

tokens. Trust management and distribution are out of scope of this specification; a

standard PKI, e.g., using hierarchical certification authorities, can be used to ensure

P Bichsel et al..

2 An Architecture for Privacy-ABCs 17

that verifiers obtain authentic copies of the credential specifications and issuer pa-

rameters. Apart from cryptographic information, the issuer parameters also contain

other meta-data such as the hash algorithm to use to create presentation tokens, as

well as information for key binding, and revocation (see later). The issuer keeps the

issuance key strictly secret and uses it only to issue credentials.

2.1.3.2 Presentation

To provide certified information to a verifier (for authentication or an access deci-

sion), the user uses one or more of her credentials to derive a presentation token
and sends it to the verifier. A single presentation token can contain information

from any number of credentials. The token can reveal a subset of the attribute val-

ues in the credentials (e.g., IDcard.firstname = “John”), prove that a value satisfies

a certain predicate (e.g., IDcard.birthdate < 1993/01/01) or that two values sat-

isfy a predicate (e.g., IDcard.lastname = creditcard.lastname). Apart from reveal-

ing information about credential attributes, the presentation token can optionally

sign an application-specific message and/or a random nonce to guarantee fresh-

ness. Moreover, presentation tokens support a number of advanced features such

as pseudonyms, key binding, inspection, and revocation that are described in more

details below.

A verifier announces in its presentation policy which credentials from which is-

suers it accepts and which information from these credentials must be revealed in

the presentation token. The verifier can cryptographically verify the authenticity of

a received presentation token using the credential specifications and issuer parame-

ters of all credentials involved in the token. The verifier must obtain the credential

specifications and issuer parameters in a trusted manner, e.g., by using a traditional

PKI to authenticate them or retrieving them from a trusted location.

The presentation token created in response to such a presentation policy consists

of the presentation token description, containing a mechanism-agnostic description

of the revealed information, and the presentation token evidence, containing opaque

technology-specific cryptographic data in support of the token description. Presen-

tation tokens based on Privacy-ABCs are cryptographically unlinkable and untrace-

able by default, meaning that verifiers cannot tell whether two presentation tokens

were derived from the same or from different credentials, and that issuers cannot

trace a presentation token back to the issuance of the underlying credentials. How-

ever, in what follows we will discuss additional mechanisms that, with the user’s

consent, introduce intentional linkability, or allow a dedicated third party to recover

the user’s identity.

Obviously, presentation tokens are only as unlinkable as the information that they

intentionally reveal. For example, tokens that explicitly reveal a unique attribute

(e.g., the user’s social security number) are fully linkable. Moreover, pseudonyms

and inspection can be used to purposely create linkability across presentation tokens

(e.g., to maintain state across sessions by the same user) and create traceability

of presentation tokens (e.g., for accountability reasons in case of abuse). Finally,

18

Privacy-ABCs have to be combined with anonymous communication channels (e.g.,

Tor onion routing) to avoid linkability in the “layers below”, e.g., by the IP addresses

in the underlying communication channels or by the physical characteristics of the

hardware device on which the tokens were generated.

2.1.3.3 Key Binding

Credentials can optionally be bound to a user’s secret key, i.e., a cryptographically

strong random value that is generated by and known only to a particular user. The

credential specification specifies whether the credentials issued according to this

specification are to employ key binding or not. A presentation token derived from

such a key-bound credential always contains an implicit proof of knowledge of the

underlying secret key, so that the verifier can be sure that the secret key of the cre-

dential was involved in the creation of the presentation token.

Key-bound credentials can optionally be issued in such a way that the newly

issued credential is bound to the same secret key as an existing credential already

owned by the user — without the issuer learning the secret key in the process (see

Section 2.1.3.6). A verifier can also optionally impose in its presentation policy that

all key-bound credentials involved in the creation of the token must be bound to the

same secret key.

Key binding can be used for several purposes. First, it can be used to prevent users

from “pooling” their credentials, i.e., sharing their credentials with other users. In

a presentation involving multiple credentials, the verifier can optionally insist that

all credentials must be bound to the same user secret, so that credentials issued to

different users cannot be used together. For this to work, users must be prevented

from choosing the same secret key and from sharing their secret key with others.

The former can be done by letting the secret be generated by a trusted hardware

device such as a smartcard, through a joint generation between the issuer and user

(see advanced issuance in Section 2.1.3.6), or by requiring the user to establish a

scope-exclusive pseudonym at issuance and making sure that no two users have the

same pseudonym (see Section 2.1.3.4). The latter can be enforced by making some

highly valuable information or services accessible with the user secret alone, e.g.,

by protecting access to the user’s main e-government account through a pseudonym

derived from the same secret key.

Second, by storing the user secret on a trusted hardware device such as a smart-

card, the credentials can be bound to the device. That is, if the key cannot be ex-

tracted from the device, but the device does participate in the generation of presen-

tation tokens, then credentials cannot be used without the physical presence of the

device.

Finally, key binding can be used to prevent users from being “framed” by a ma-

licious issuer, i.e., from being impersonated by the issuer towards a verifier. A mali-

cious issuer can of course always generate all the credentials that she wants, but she

can only do so for a user secret that is different from the real user’s secret. By let-

ting users establish scope-exclusive pseudonyms at issuance and at presentation, the

P Bichsel et al..

2 An Architecture for Privacy-ABCs 19

user can later prove that a presentation token was generated using a different user

secret than the one used at issuance. Some external mechanism must be in place to

prevent the issuer from tampering with the list of issued pseudonyms, for example,

by letting the user sign (digitally or on paper) the pseudonym and then checking this

signature.

2.1.3.4 Pseudonyms

There are many situations where a controlled linkability of presentation tokens is

actually desirable. For example, web services may want to maintain state informa-

tion per user or user account to present a personalized interface, or conversation

partners may want to be sure to continue a conversation thread with the same person

that they started it with.

Privacy-ABCs have the concept of pseudonyms to obtain exactly such controlled

linkability. If the secret key from Section 2.1.3.3 is seen as the equivalent of a user’s

secret key in a classical public-key authentication system, then a pseudonym is the

equivalent of the user’s public key. Just like a public key, it is derived from the user’s

secret key and can be given to a verifier so that the user can later re-authenticate by

proving knowledge of the secret key underlying the pseudonym. Unlike public keys

of which there is only one for every secret key, however, users can generate an

unlimited number of unlinkable pseudonyms for a single secret key. Users can thus

be known under different pseudonyms with different verifiers, yet authenticate to all

of them using the same secret key.

To be able to re-authenticate under a previously established pseudonym, the

user may need to store some additional information used in the generation of the

pseudonym. To assist the user in keeping track of which pseudonym she used at

which verifier, the verifier’s presentation policy specifies a pseudonym scope, which

is just a string that the user can use as a key to look up the appropriate pseudonym.

The scope string could for example be the identity of the verifier or the URL of the

web service that the user wants to access.

We distinguish between the following three types of pseudonyms:

• Verifiable pseudonyms are pseudonyms derived from an underlying secret key as

described above, allowing the user to re-authenticate under the pseudonym by

proving knowledge of the secret key. Presenting a verifiable pseudonym does not

involve presenting any related credentials and is useful in login scenarios, e.g., to

replace usernames/passwords.

• Certified pseudonyms are verifiable pseudonyms derived from a secret key that

also is bound to an issued credential. By imposing same-key binding in the pre-

sentation policy and token, a single presentation token can therefore prove owner-

ship of a credential and at the same time establish a pseudonym based on the same

secret key. As an example, a student could create several personas on a school

discussion board using its core student credential, presenting the pseudonym as-

sociated with each persona, and without the possibility of anyone else (including

20

a malicious issuer) to present a matching pseudonym to hijack’s the user’s iden-

tity.

• Scope-exclusive pseudonyms are certified pseudonyms that are guaranteed to be

unique for a specific scope string and secret key. For normal (i.e., non-scope-

exclusive) pseudonyms, nothing prevents a user from generating multiple unlink-

able pseudonyms for the same scope string. For scope-exclusive pseudonyms,

it is cryptographically impossible to do so. By imposing a scope-exclusive

pseudonym to be established, a verifier can be sure that only a single pseudonym

can be created for each credential or combination of credentials that are required

in the presentation. This feature can be useful to implement a form of “con-

sumption control” in situations (e.g., online petitions or one-time coupons) where

users must remain anonymous to the verifier but should not be allowed to cre-

ate multiple identities based on a single credential. Note that scope-exclusive

pseudonyms for different scope strings are still unlinkable, just like normal veri-

fiable pseudonyms.

2.1.3.5 Inspection

Absolute user anonymity in online services can easily lead to abuses such as spam,

harassment, or fraud. Privacy-ABCs give verifiers the option to strike a trade-off be-

tween anonymity for honest users and accountability for misbehaving users through

a feature called inspection.

An inspector is a dedicated entity, separate from the verifier, who can be asked to

uncover one or more attributes of the user who created a presentation token, e.g., in

case of abuse. The inspector must on one hand be trusted by the user not to uncover

identities unnecessarily, and must on the other hand be trusted by the verifier to

assist in the recovery when an abuse does occur.

Presentation tokens are fully anonymous by default, without possibility of in-

spection. To enable an inspector to trace a presentation token when necessary, the

presentation policy must explicitly specify the identity of the inspector, which in-

formation the inspector must be able to recover, and under which circumstances

the inspector can be asked to do so. The user then creates the presentation token in

a particular way so that the verifier can check by himself, i.e., without help from

the inspector, that the token could be inspected under the specified restrictions if

necessary.

In more technical detail, the inspector first sets up a public encryption key and

a secret decryption key; he makes the former publicly available but keeps the latter

secret. The presentation policy specifies

• (a reference to) the inspector’s public key,

• which attribute(s) from which credential(s) which inspector must be able to re-

cover, and

• the inspection grounds, i.e., an arbitrary human- and/or machine-readable string

describing the circumstances under which the token can be inspected.

P Bichsel et al..

2 An Architecture for Privacy-ABCs 21

The user then prepares the presentation token so that it contains encrypted ver-

sions of the requested attribute values under the respective public key of the sug-

gested inspector, together with a verifiable cryptographic proof that the encryption

contains the same attribute values as encoded in the user’s credentials and certified

by the issuer.

When the situation described in the inspection grounds arises, the inspection re-

quester can ask for an inspection. Besides the verifier, other entities such as criminal

prosecutors, courts or the user herself are also potential requesters for inspection.

Usually the verifier holds the stored copy of the presentation token and will send it

to the inspector for inspection, possibly together with some kind of evidence (e.g.,

transaction logs, inquiry of competent authority, court order) that the inspection

grounds have been fulfilled. The inspection grounds are cryptographically tied to

the presentation token, so the verifier cannot change these after having received the

token. The inspector uses its secret key to decrypt the encrypted attribute values and

returns the cleartext values to the inspection requestor.

De-anonymization of presentation tokens is probably the main use case for in-

spection, but it can also be used to reveal useful attribute values to third parties

instead of to the verifier himself. For example, suppose the verifier is an online mer-

chant wishing to accept credit card payments without running the risk of having the

stored credit card data stolen by hackers. In that case, he can make the user encrypt

her credit card number under the public key of the bank by specifying the bank as

an inspector for the credit card number with “payment” as inspection grounds.

2.1.3.6 Credential Issuance

In the simplest setting, an issuer issues credentials to users “from scratch”, i.e., with-

out relation to any existing credentials already owned by the users. In this situation,

the user typically has to convince the issuer through some out-of-band mechanism

that she qualifies for a credential with certain attribute values, e.g., by showing up in

person at the issuer’s office and showing a physical piece of ID, or by bootstrapping

from a government-issued electronic identity. Credential issuance is a multi-round

interactive protocol between the issuer and the user. The attribute values can be

specified by either parties, or jointly generated at random (i.e., the issuer can be en-

sured that an attribute value is chosen randomly and not chosen solely by user, but

without the issuer learning the attribute value).

Privacy-ABCs also support a more advanced form of credential issuance where

the information embedded in the newly issued credential is carried over from exist-

ing credentials already owned by the user, without the issuer being able to learn the

carried-over information in the process. In particular, the newly issued credential

can

1. carry over attribute values from an existing credential,

2. contain “self-claimed” attribute values, i.e., values chosen by the user himself,

3. be bound to the same secret key as an existing credential or verifiable pseudonym,

22

all without the issuer being able to learn the carried-over attribute values or secret

key in the process.

Moreover, the issuer can insist that certain attributes be generated jointly at ran-

dom, meaning that the attribute will be assigned a fresh random value. The issuer

does not learn the value of the attribute, but at the same time the user cannot choose,

or even bias, the value assigned to the attribute. This feature is for instance helpful to

impose usage limitation of a credential. To this end, the issuer first embeds a jointly

random value as serial number in the credential. A verifier requesting a token based

on such a credential can require that its serial number attribute must be disclosed by

the user, such that it can detect if the same credential is used multiple times. The

jointly random attribute hereby ensures that the verifier and issuer cannot link the

generated token and issued credential together, and the user can not cheat by biasing

the serial number in the credential.

The issuer publishes or sends to the user an issuance policy consisting of a pre-

sentation policy and a credential template. The presentation policy expresses which

existing credentials the user must possess in order to be issued a new credential,

using the same concepts and format as the presentation policy for normal token

presentation. The user prepares a special presentation token that fulfills the stated

presentation policy, but that contains additional cryptographic information to enable

carrying over attributes and user secrets. The credential template describes the rela-

tion of the new credential to the existing credentials used in the presentation token

by specifying

• which attributes of the new credential will be assigned the same value as which

attributes from which credential in the presentation token,

• whether the new credential will be bound to the same secret key as one of the cre-

dentials or pseudonyms in the presentation token, and if so, to which credential

or pseudonym.

The user and issuer subsequently engage in a multi-round issuance protocol, at the

end of which the user obtains the requested credential.

2.1.3.7 Revocation

No identification system is complete without an appropriate revocation mechanism.

There can be many reasons to revoke a credential. For example, the credential and

the related user or device secrets may have been compromised, the user may have

lost her right to carry a credential, or some of her attribute values may have changed.

Moreover, credentials may be revoked for a restricted set of purposes. For example,

a football hooligan’s digital identity card could be blocked from accessing sport

stadiums, but is still valid for voting or submitting tax declarations.

In classical public-key authentication systems, revocation usually works by let-

ting either the issuer or a dedicated revocation authority publish the serial numbers

of revoked certificates in a so-called certificate revocation list. The verifier then sim-

ply checks whether the serial number of a received certificate is on such a list or not.

P Bichsel et al..

2 An Architecture for Privacy-ABCs 23

The same approach does not work for Privacy-ABCs, however, as Privacy-ABCs

should not have a unique fingerprint value that must be revealed at each presenta-

tion, as this would nullify the unlinkability of the presentation tokens. Nevertheless,

there are cryptographically more advanced revocation mechanisms that provide the

same functionality in a privacy-preserving way, i.e., without imposing a unique trace

on the presentation tokens. We describe an abstract interface that covers all currently

known revocation mechanisms.

Credentials are revoked by dedicated revocation authorities, which may be sep-

arate entities, or may also take the joint role of issuer or verifier. The revocation

authority publishes its revocation parameters and regularly (e.g., at regular time in-

tervals, or whenever a new credential is issued or revoked) publishes the most recent

revocation information that verifiers use to make sure that the credentials used in a

presentation token have not been revoked. The revocation parameters contain infor-

mation where and how the verifiers can obtain the most recent revocation informa-

tion. Depending on the revocation mechanism, the identifiers of revoked credentials

may or may not be visible from the revocation information. It is important that ver-

ifiers obtain the most recent revocation information from the revocation authority

directly, or that the revocation information is signed by the revocation authority if it

is provided by the user together with the presentation token.

In order to prove that their credentials have not been revoked, users may have

to maintain non-revocation evidence for each credential and for each revocation

authority against which the credential must be checked. The first time that a user

checks one of her credentials against a particular revocation authority, she obtains

an initial non-revocation evidence. Later, depending on the revocation mechanism

used, the user may have to obtain regular non-revocation evidence updates at each

update of the revocation information. Also depending on the revocation mechanism,

these evidence updates may be the same for all users/credentials or may be different

for each user/credential. In the latter case, again depending on the mechanism, the

users may fetch their updates from a public bulletin board or obtain their updates

over a secure channel.

We distinguish between two types of revocation. Apart from a small list of ex-

ceptions, all revocation mechanisms can be used for either type of revocation.

• In issuer-driven revocation, the issuer specifies, as part of the issuer parameters,

the revocation authority (and revocation parameters) to be used when verifying a

presentation token involving a credential issued by his issuer parameters. Issuer-

driven revocation is always global in scope, meaning that any presentation token

must always be checked against the most recent revocation information from the

specified revocation authority, and that the issuer denies any responsibility for

revoked credentials. Issuer-driven revocation is typically used when credentials

have been lost or compromised, or when the user is denied any further use of the

credential. The revocation authority may be managed by or be the same entity

as the issuer, or may be a separate entity. Issuer-driven revocation is performed

through a revocation handle, a dedicated unique identifier that the issuer embeds

as an attribute in each issued credential (but that should not be unnecessarily

revealed in a presentation token). When the issuer, a verifier, or any third party

24

wants to revoke a credential, it must provide the revocation handle to the revo-

cation authority. How the party requesting the revocation learns the revocation

handle is out of the scope of this document; this could for example be done digi-

tally by insisting in the presentation policy that the revocation handle be revealed

to a trusted inspector, or physically by arresting the person and obtaining his or

her identity card.

• Verifier-driven revocation essentially allows the verifier to “black-list” certain

credentials and prevent them from being used for authentication. The verifier

specifies as part of the presentation policy against which revocation authority

or authorities (and revocation parameters) the presentation must additionally be

checked, i.e., on top of any revocation authorities specified by the issuer in the

issuer parameters. The effect of the revocation is local to those verifiers who ex-

plicitly specify the revocation authority in their presentation policies, and does

not affect presentations with other verifiers. Verifier-driven revocation is mainly

useful for purpose-specific revocation (e.g., a no-fly list for terrorists) or verifier-

local revocation (e.g., a website excluding misbehaving users from its site). Note

that if unlinkability of presentation tokens is not a requirement, the latter effect

can also be obtained by using scope-exclusive pseudonyms. The revocation au-

thority may be managed by or be the same entity as the verifier, or may be a sep-

arate entity. Verifier-driven revocation can be performed based on any attribute,

not just based on the revocation handle as for issuer-driven revocation. It is up to

the verifier and/or the revocation authority to choose an attribute that on the one

hand is sufficiently identifying to avoid false positives (e.g., the user’s first name

probably doesn’t suffice) and on the other hand will be known to the party likely

to request the revocation of a credential. Verifier-driven revocation is essentially

a black list of attribute values, banning all credentials with a blacklisted attribute

value.

2.1.4 Security and Privacy Features

Privacy-ABCs are a combination of several cryptographic building blocks, including

signatures, pseudonyms, zero-knowledge proofs, encryption, and revocation mech-

anisms. Properly defining the security and privacy guarantees offered by such an

encompassing framework is not an easy task. On a scientific level, the ABC4Trust

project has made great advances in this respect by creating the most comprehensive

formal security notions of Privacy-ABCs so far [CKL+14]. In this section, we avoid

technical details of cryptographic security notions, but rather give an intuitive de-

scription of the security and privacy features that application developers can expect

when working with Privacy-ABCs.

Roughly, one could summarize the security and privacy features of Privacy-

ABCs as security meaning that users cannot create valid presentation tokens with-

out having the proper underlying credentials and keys, while privacy guarantees that

presentation tokens do not reveal any more information than what was intentionally

P Bichsel et al..

2 An Architecture for Privacy-ABCs 25

disclosed. The various features of Privacy-ABCs deserve a more detailed discussion,

which we give in the following.

2.1.4.1 Basic Presentation

The most basic security guarantee is that credentials in a Privacy-ABC system are

unforgeable. This means that users, without access to an issuer’s secret key, cannot

create new credentials or change attribute values in the credentials they obtained

from that issuer. Presentation tokens are unforgeable as well, in the sense that in

order to create a valid presentation token that discloses a number of attribute values

or proves a number of (in)equality predicates, the user must possess credentials that

satisfy the disclosed criteria. Note that this unforgeability only holds as long as the

verifier can obtain authentic copies of the issuers’ public keys, e.g., by certifying

issuers’ keys using an external PKI.

Presentation tokens can optionally “sign” a message that can contain a nonce,

the intended verifier’s identity, or any application-provided content. The informa-

tion in that message is immutable: without the necessary credentials to regenerate a

complete presentation token, one cannot change the message signed by the presen-

tation token. The nonce in the signed message can be used to prevent replay attacks,

where an eavesdropper or cheating verifier reuses a presentation token generated by

an honest user to re-authenticate to the same or to a different verifier. Including the

verifier identity (e.g., its URL or public key) in the signed message prevents man-in-

the-middle attacks where a cheating verifier relays presentation tokens from honest

users to authenticate itself to a second verifier. The application layer on the user’s

side must check that the verifier identity included in the signed message matches the

application’s intended verifier.

In terms of privacy, presentation tokens only reveal the information that is explic-

itly disclosed by the token. This means for example that presentation tokens reveal

no information at all about the values of hidden credential attributes. If the presenta-

tion token includes attribute predicates, the token reveals nothing beyond the proof

of the predicate, and in particular does not reveal the exact value of the involved at-

tributes. It also means that presentation tokens are unlinkable, in the sense that even

a collusion of issuers and verifiers cannot tell whether two presentation tokens were

created by the same user or by different users, and cannot trace the presentation back

to the issuance of the credentials.

Of course, unlinkability is only guaranteed to the extent that neither the disclosed

attributes themselves nor the communication layer introduce trivial correlations be-

tween a user’s presentations. In particular, it is important that presentation takes

place over an anonymous communication channel, e.g., using Tor onion routing,

to avoid that the verifier can link visits by the same user through his IP address.

Achieving unlinkability at the physical layer can be particularly hard: intrinsic hard-

ware characteristics of the user’s device such as clock skews may be exploitable as

unique device fingerprints [KBC05].

26

2.1.4.2 Key Binding

A key-bound credential cannot be used in a presentation without knowledge of the

user secret. If the user secret is generated and stored on a trusted hardware de-

vice such as a smartcard, this means that the creator of the presentation token must

have access to the device at the time of presentation. The presentation policy can

optionally insist that different key-bound credentials or pseudonyms are bound to

the same secret key. In this case, the policy cannot be satisfied using credentials or

pseudonyms that are bound to or derived from different keys; the presentation token

does not leak any information about the value of the key, however.

2.1.4.3 Advanced Issuance

In an advance issuance protocol, the user essentially performs a presentation before

proceeding with the issuance. The same security and privacy properties hold for the

issuance token as for normal presentation. Additionally, the issuance can carry over

attribute values and user secrets from credentials involved in the presentation. In

this case, the issuer is guaranteed that the attribute values or key in the newly issued

credential are equal to those of the original credentials used in the presentation, but

he doesn’t see the actual value. For self-claimed attribute values, there is no such

guarantee; the issuer blindly signs any attribute value that the user chooses. Jointly

random attributes are guaranteed to be truly random, meaning that the user cannot

steer or bias the distribution in any way, but the issuer again doesn’t see the actual

value. The user always sees all attribute values in his credentials.

2.1.4.4 Pseudonyms

Verifiable and certified pseudonyms can be seen as public keys corresponding to

a user’s secret key, with the main difference that the user can generate arbitrarily

many pseudonyms from a single user secret. Pseudonyms are unlinkable, in the

sense that verifiers cannot tell whether two pseudonyms originated from the same

user secret or from different user secrets. Knowledge of the underlying secret key

is required to create a valid presentation token involving a pseudonym. An attacker

therefore cannot successfully authenticate under a pseudonym that was established

by an honest user. This also implies that two honest users with independent user

secrets will never accidentally generate the same pseudonym (because otherwise an

adversary could generate pseudonyms for his own user secret until he hits an already

established pseudonym).

Scope-exclusive pseudonyms are unique per scope and per user secret. Meaning,

for a given scope string and a given user secret, there is only one scope-exclusive

pseudonym for which a valid presentation token can be generated. Scope exclu-

sive pseudonyms are unlinkable in the sense that, without knowing the user secret,

P Bichsel et al..

2 An Architecture for Privacy-ABCs 27

one cannot tell whether two scope-exclusive pseudonyms for different scope strings

were derived from the same or from different user secrets.

2.1.4.5 Inspection

Inspection allows the user to encrypt one or more attribute values under the pub-

lic key of a trusted inspector. The encryption is secure against chosen-ciphertext

attacks, meaning that the encrypted attribute values remain hidden even when the

adversary can guess the encrypted value or can ask the inspector to inspect other

presentation tokens. The user must encrypt his real attribute values for which he

has valid credentials. Any attempt by the user to encrypt a different value, or to

make the ciphertext undecryptable, will be detected by the verifier as an invalid pre-

sentation token. Finally, the inspection grounds are clear to the user at the time of

presentation and are “signed” into the token, so that they cannot be modified after-

wards. This prevents a malicious verifier from requesting a presentation token to be

inspected based on different grounds than those that the user agreed with.

2.1.4.6 Revocation

When a credential is used in a presentation token with issuer-driven or verifier-

driven revocation, the user merely proves that his revocation handle, respectively

his combination of attribute values, was not revoked when the revocation authority

published the stated revocation information. No other information about the value

of the revocation handle or attributes is leaked. It is up to the verifier to check that

the revocation information used in the presentation token is indeed the latest one as

published by the revocation authority.

Revocation inherently opens up a subtle attack on user privacy by malicious revo-

cation authorities. Namely, a cheating authority can always arbitrarily revoke valid

credentials, just to test whether these credentials are involved in an ongoing presen-

tation. The authority could even gradually “close in” on the user during subsequent

presentations. External precautions must be taken to prevent such an attack, for ex-

ample, by requiring that revocations must be logged on a public website or approved

by an external auditor.

The communication pattern between users, issuers, and the revocation authority

differs considerably for different revocation mechanisms. Some mechanisms follow

a whitelist approach, where the revocation authority keeps track of valid revocation

handles (attributes) and removes those of revoked credentials. These mechanisms

usually require the revocation authority to be involved during credential issuance.

Other revocation mechanisms use blacklists, where the revocation authority only

keeps track of revoked values.

The revocation information may or may not hide the values of valid and revoked

handles; this depends on the actual revocation mechanism that is used. Also depend-

ing on the mechanism, users may need to store non-revocation evidence with their

28

credentials and update it before using it in a presentation. Some mechanisms re-

quire individualized updates, meaning that the user has to identify himself towards

the revocation authority during the update. If the update occurs right before the pre-

sentation, this is a potential privacy leak. It is therefore better to let users perform the

update of their non-revocation evidence at regular time intervals, rather than during

presentation.

2.2 Architecture Highlights

The architecture of ABC4Trust is defined by following a layered approach, where

all Privacy-ABC related functionalities are grouped together in a layer called ABCE

(ABC Engine). It provides simple interfaces towards the application layer, thereby

abstracting the internal design and structure. More specifically, this means that we

define all the technology-agnostic components of the ABCE layer, as well as the

APIs they provide. The APIs can be divided into two categories: first the interfaces

that the ABCE components offer to the upper layers (e.g. Application), and second

the interfaces that the different components within the ABCE layer expose to each

other.

Equally important in the architecture is the specification of the data artefacts ex-

changed between the implicated actors, in such a way that the underlying differences

of concrete Privacy-ABCs are abstracted away through the definition of formats that

can convey information independently from the mechanism-specific cryptographic

data. So the ABC4Trust architecture emphasizes on the XML based specification

of the corresponding messages exchanged during the issuance, presentation, revo-

cation, and inspection of privacy-enhancing attribute-based credentials.

The way that the ABC4Trust architecture is designed offers several benefits and

facilitates their integration in today’s applications. More specifically:

• The API defined by the architecture enables application developers to integrate

Privacy-ABCs in their applications without having to think about their crypto-

graphic realization.

• Application developers can implement their own UI for the interaction of the

users with Privacy-ABCs, since it is considered to be an independent component

and can be replaced and adapted according to the needs of different platforms.

• Users are able to benefit from different Privacy-ABC technologies at the same

time on the same hardware and software platforms.

• Service providers and IdSPs are able to adopt whichever Privacy-ABC technol-

ogy best suits their needs and switch among them with a minimal effort spent on

adjusting their infrastructures. In this way, lock-in to specific technologies can be

avoided.

The architecture described in this chapter has been implemented by the ABC4Trust

project, it has been tested in the deployment of the two pilots and has been published

P Bichsel et al..

2 An Architecture for Privacy-ABCs 29

as a reference implementation. Chapter 9 describes in more details the technical im-

plementation of the architecture.

The architecture allows for deployments in actual production environments and

in several application areas. Two specific cases are the ABC4Trust pilots, described

in Chapters 6 and 7, where (1) minimal disclosure of identifying information when

accessing resources, (2) and the anonymous feedback to a community by accredited

members were in focus. Furthermore, some other application scenarios that could

benefit from the ABC4Trust architecture are discussed in Chapter 10.

2.3 Architectural Design

Following standard design principles, our architecture uses a layered approach,

where related functionalities are grouped into a common layer that provides sim-

ple interfaces towards other layers and components, thereby abstracting the inter-

nal design and structure. As mentioned in Chapter 1, the architecture focuses on

the technology-independent components for Privacy-ABC systems, grouped in the

ABCE layer, which can be integrated in various application and deployment scenar-

ios. That is, we do not propose a concrete application-level deployment but provide

generic interfaces to the ABCE layer that allow for a flexible integration. Note that

we aim at an architecture that is capable of supporting all the privacy-enhancing fea-

tures of Privacy-ABCs, but at the same time is not exclusive to those, i.e., it is also

generic enough to support standard ABC technologies such as X.509 certificates.

The Privacy-ABC architecture defines for each entity the necessary components

to operate with attribute-based credentials and to support the various features in-

troduced in Section 2.1. A simplified overview of this architecture is depicted in

Figure 2.3.

Fig. 2.3 Architecture of a Privacy-ABC System

30

2.3.1 Overview of the Components

We now briefly describe the different layers in our architecture and give an overview

of the internal components of the ABCE layer. The latter is rather for informational

purposes only, as the application developer does not have to deal with those in-

ternals of the ABCE but only invoked the external APIs. A more detailed view of

the Privacy-ABC architecture and its components on the user side is shown in Fig-

ure 2.4.

Fig. 2.4 Overview of the Privacy-ABC Architecture on the User Side

2.3.1.1 Application Layer

The application layer is actually not part of the Privacy-ABC architecture, but will

operate on top of that. Roughly, the application layer comprises all application-

level components, which in the case of the user-side deployment include the main

application and the user interface for the identity selection (see description below).

The application layer of verifiers and issuers will also contain the policy store and

the access control engine.

UserInterface (User): The UserInterface displays the possible choices of pseudonyms

and credentials a user can apply in an issuance or presentation session. To this

P Bichsel et al..

2 An Architecture for Privacy-ABCs 31

end, it shows a human-friendly description of the credentials and presentation/is-

suance token, namely, the information that will be revealed by presenting the

token.

2.3.1.2 ABCE Layer

The ABCE layer is the core of our Privacy-ABC architecture and contains all

technology-agnostic methods and components for a Privacy-ABC system. That is,

it contains, e.g., the methods to parse an obtained issuance or presentation policy,

perform the selection of applicable credentials for a given policy or to trigger the

mechanism-specific generation or verification of the cryptographic evidence. The

ABCE layer is invoked by the application-layer and calls out to the CryptoEngine

to obtain the mechanism-specific cryptographic data. To perform their tasks, the

internal components can also make use of other external components such as the

KeyManager, Smartcard or the RevocationProxy.

IssuanceManager (User, Issuer): The IssuanceManager receives the incoming is-

suance messages and routes them either to the CryptoEngine or to the PolicyCre-

dentialMatcher, depending on the content of the message.

PolicyCredentialMatcher (User): The PolicyCredentialMatcher prepares a list of

choices of credentials, pseudonyms, and inspectors for the UserInterface, based

on the policies it receives. When a choice was made by the user, the Policy-

CredentialMatcher then provides the CryptoEngine with the description of the

selected token and thereby starts the cryptographic proof generation.

PolicyTokenMatcher (Verifier): The PolicyTokenMatcher is responsible for check-

ing if a token received from the user matches a given policy. This verification is

done in two main steps. First, it checks whether the statements made in the token

description satisfy the required statements in the policy. If the policy requested

the re-use of an established pseudonym, the PolicyTokenMatcher calls on the

TokenManager (described below) to look up if a presented pseudonym already

exists. When the first check succeeds, i.e., the token description matches the pol-

icy, it subsequently invokes the CryptoEngine which then verifies the validity of

the crypto evidence. If the verification of the crypto evidence is successful as

well, the PolicyTokenMatcher stores the token in a dedicated store (if requested

by the application).

Token Manager (Verifier, Issuer): The TokenManager stores the issuance and pre-

sentation tokens (including the used pseudonyms) that were accepted by the is-

suer and the verifier respectively. The issuer’s token manager also stores a ”his-

tory” of the issuances, which consists of the list of issuer-specified attributes

(including the revocation handle) and the issuance token for all credentials that

were issued.

CredentialManager (User): The CredentialManager is responsible for storing all

secret or privacy-sensitive info of the user, i.e., credentials, pseudonyms, secrets.

It also seamlessly integrates the blobstore on the smartcards (via the smartcard

manager) and is responsible for detecting smartcards and getting the PIN of the

32

card from the user. In the course of an advanced issuance or presentation ses-

sion the CredentialManager provides the PolicyCredentialMatcher with a list

of all credentials and pseudonyms currently available in the storage and on all

active smartcards. During issuance it further downloads and caches the default

pictures associated with a credential, which are then passed to the PolicyCreden-

tialMatcher and are possibly displayed in a UserInterface.

PrivateKeyStore (Issuer, RevocationAuthority, Inspector): The PrivateKeyStore is

available for the issuer, inspector and revocation authority and is responsible for

storing private keys which are generated within the ABCE.

2.3.1.3 Crypto Layer

The crypto layer contains all the technology-specific methods needed in a creden-

tial life-cycle, e.g., to generate and verify presentation/issuance tokens, inspect at-

tributes or maintain the revocation information. The ABC4Trust reference imple-

mentation of our Privacy-ABC framework also provides a rather generic Crypto-

Engine that currently incorporates U-Prove and Idemix as the main credential com-

ponent, and also contains cryptographic realizations for all the additional features

introduced in the previous Chapter. For a more detailed description of the Crypto-

Engine we refer to Section 3.1.

CryptoEngine (User, Issuer, Verifier, Revocation Authority, Inspector): The Cryp-

toEngine is responsible for all cryptographic computations in the Privacy-ABC

framework. For instance, it creates pseudonyms, non-device-bound secrets, sys-

tem parameters, key pairs and transforms the presentation/issuance token de-

scription into a cryptographic proof or verifies a given cryptographic proof. Dur-

ing issuance, the CryptoEngine of the issuer also interacts with the revocation

authority (via the revocation proxy) to generate a new revocation handle and a

non-revocation evidence for a new credential. Subsequently, the CryptoEngine

also updates the non-revocation evidence of revocable credentials. Furthermore,

the CryptoEngine provides mechanism-dependent and human-friendly proof de-

scriptions which specify the information that is actually revealed in a presentation

or issuance token and which can be used in the identity selection.

2.3.1.4 Storage & Communication Components

The Privacy-ABC architecture also contains several components that assist the work

of the ABCE and Crypto layer, e.g., by providing a trusted public-key store or secure

storage (and computation) on an external smartcard. As those components are rather

use-case and technology-specific, they are described as individual modules and can

be customized depending on the concrete scenario in which Privacy-ABCs are used.

P Bichsel et al..

2 An Architecture for Privacy-ABCs 33

KeyManager (User, Issuer, Verifier, Revocation Authority): The KeyManager is re-

sponsible for storing trusted public keys, and if needed procuring these keys in

an authenticated manner.

RevocationProxy (User, Issuer, Verifier, Revocation Authority):The RevocationProxy

is responsible for secure communication between the revocation authority and

the user/issuer/verifier whenever dealing with revocable credentials. It creates,

parses and dispatches revocation messages.

SmartcardManager (User): The SmartcardManager is responsible for interacting

with smartcards. It allows the seamless operation of several cards in parallel. The

smartcard manager is NOT responsible for detecting new cards or asking for the

user’s PIN: that is the credential manager role.

Smartcard (User, Inspector): The Smartcard stores the secret and sensitive data.

It can be realized as software or as a physical device, and provides two different

interfaces.The DataInterface allows one to store the credentials, inspector keys

and other sensitive cryptographic objects in the card’s blobstore. The CryptoInt-

erface provides cryptographic functionality for issuance and presentation that is

related to a secret stored on the card.

2.4 Deployment of the Architecture

In this section we describe the high-level APIs provided by our framework, and

describe their usage along the main scenarios in a credential lifecycle. The API is

based on the reference implementation of a Privacy-ABC framework that was cre-

ated within the EU project ABC4Trust [abc, BCD+14, BBE+14]; the source code

of that implementation is available at https://github.com/p2abcengine/p2abcengine. To

focus on the main concepts of our architecture, the following description concen-

trates on the most significant methods and omits some convenience functions as well

as simplifies the behaviour of some of the described methods.

The ABCE exposes technology-agnostic methods to the application developer

that allow him to implement all the features introduced in the previous Chapter.

In summary, those methods comprise the generation of cryptographic parameters

and keys, import of these parameters, generation and verification of presentation

tokens, issuance of credentials, inspection of tokens, and revocation of credentials

or attributes.

2.4.1 Setup and Storage

To equip all parties in a Privacy-ABC system with the necessary key material, the

API provides several methods for generating public and/or private cryptographic

parameters.

34

However, before any entity can create its parameters, the global system parame-

ters have to be generated. This is done by invoking the method generateSystem-

Parameters with the desired security level as the input. The method then generates

the global system parameters which define the security parameters (e.g., size of se-

crets, size of moduli, size of group orders, prime probability), the range of values the

attributes can take, and the cryptographic parameters for the pseudonyms. To ensure

interoperability, every user, issuer, inspector, and revocation authority in the system

must use the same system parameters for generating their cryptographic keys and

parameters. To achieve this, for example, a trusted authority such as a standardiza-

tion body could generate and publish system parameters for various security levels,

which are then used by all parties.

For each party, the ABCE then offers a dedicated method to create the corre-

sponding key material. Thereby, the ABCE stores the private parameters in the

trusted storage and outputs the public part of the parameters.

Issuer Parameters: When generating issuer parameters, one must (in addition to

the system parameters) specify the concrete technology and the maximal number

of attributes that can appear in credential specifications that are used in conjunc-

tion with these issuer parameters. That number is required as it can influence the

issuer parameters, e.g., the issuer parameters of Idemix and U-Prove will contain

a dedicated generator for each attribute. Further, if the issuer supports issuer-

driven revocation, the method also needs the parameters of the corresponding

revocation authority as additional input.

Revocation Authority Parameters: For the generation of the revocation authority

parameters, one must specify the locations where users and verifiers can retrieve

all the necessary information to obtain or update their state of revocation infor-

mation and non-revocation evidence. Those comprise the location to obtain the

latest revocation information, the location of the initial non-revocation evidence

of newly issued credentials, and the location where users can obtain updates to

their non-revocation evidence.

User Secret Keys: On the user side, the ABCE allows the creation of private keys

to which subsequently credentials can be bound. We note that a user may gen-

erate multiple keys by calling this method multiple times. Our reference imple-

mentation also supports the storage of private keys on external devices such as

smartcards.

The ABCE further provides APIs to store public parameters of other parties. As

usual, it must be guaranteed that only authenticated parameters are imported and

that the public key storage is kept up-to-date. To later retrieve public parameters

from the ABCE again, they are stored together with a UID as unique identifier.

Similarly, the ABCE includes methods to import credential specifications which

define a particular type of credential.

The main methods to setup and maintain a credential system are listed in Table

2.1. Values in brackets denote that they are optional, i.e., can also be set to null.

P Bichsel et al..

2 An Architecture for Privacy-ABCs 35

Table 2.1 ABCE Interfaces for Setup and Storage

GLOBAL & STORAGE APIS

generateSystemParameters
input: int securityLevel
output: SystemParameters

storeSystemParameters
input: SystemParameters
output: boolean success

storeIssuerParameters
input: IssuerParameters
output: boolean success

storeInspectorParameters
input: InspectorParameters
output: boolean success

storeRevocationAuthorityParameters
input: RevocationAuthorityParameters
output: boolean success

storeCredentialSpecification
input: CredentialSpecification
output: boolean success

ISSUER

generateIssuerParameters
input: URI id, SystemParameters, URI technology, int maximalNumberOfAt-

tributes, [URI revocationAuthorityId]
output: IssuerParameters

INSPECTOR

generateInspectorParameters
input: URI id, SystemParameters, URI technology
output: InspectorParameters

REVOCATION AUTHORITY

generateRevocationAuthorityParameters
input: URI id, SystemParameters, URI technology, URI revocationInfoLocation,

URI nonRevocationEvidenceLocation, URI nonRevocationUpdateLoca-
tion

output: RevocationAuthorityParameters

USER

generateUserSecretKey
input: SystemParameters
output: URI id

36

2.4.2 Presentation of a Token

The process of presentation is triggered when the application on the user’s side

contacts a verifier to request access to a resource (Figure 2.5 – Step 1). Having

received the request, the verifier responds with one or more presentation policies,

which are aggregated in a PresentationPolicyAlternatives object. Recall that a pre-

sentation policy defines what information a user has to reveal to the verifier in order

to gain access to the requested resource. For example, it describes which creden-

tials from which trusted issuers are required, which attributes from those credentials

have to be revealed, or which predicates the attributes have to fulfill. A detailed

specification of a presentation policy is given in Section 2.5.

Fig. 2.5 Presentation of a Token (Application Level)

Upon receiving the policy (Figure 2.5 – Step 2.a), the application on the user’s

side invokes the Privacy-ABC system first with the createIdentitySelector-

Arguments method on input of the received presentation policy alternatives (Fig-

ure 2.5 – Step 2.b). The Privacy-ABC system then determines whether the user

has the necessary credentials and pseudonyms to create a token that satisfies the

policy. Based on that investigation, the method returns either an object of type Ui-
PresentationArguments which describes all the possible combinations of the user’s

credentials and pseudonyms that satisfy the policy, or an error message indicating

that the policy could not be satisfied. The user’s application layer then performs

an identity selection, that is, it invokes a component (such as a graphical user in-

terface) that supports the user in choosing her preferred combination of credentials

and pseudonyms and to obtain the user’s consent in revealing her personal data.

P Bichsel et al..

2 An Architecture for Privacy-ABCs 37

The user’s choice is recorded in an object of type UiPresentationReturn and passed

to the createPresentationToken method. The Privacy-ABC system then invokes

the Crypto Engine to obtain the corresponding cryptographic evidence for the se-

lected token description. The method finally outputs a presentation token (Figure 2.5

– Step 3.a), consisting of the presentation token description and the crypto evidence,

according to the user’s choice. Afterwards, the presentation token is sent to the ver-

ifier (Figure 2.5 – Step 3.b).

When the verifier receives the presentation token from the user, it passes it to

its ABCE layer with the method verifyTokenAgainstPolicy (Figure 2.5 – Step

2.b+3.c). This method verifies whether the statements made in the presentation to-

ken satisfy the corresponding presentation policy alternatives. The token verifica-

tion is done in two steps. First, it is determined whether the statements made in the

presentation token description logically satisfy the required statements in the corre-

sponding presentation policy. Second, the validity of the cryptographic evidence for

the given token description is verified. If both checks succeed, the ABCE outputs a

boolean indicating the correct verification and, if requested, stores the presentation

token in a dedicated token store, which allows the verifier to subsequently recognize

established pseudonyms.

The ABCE interfaces available for the user and verifier in the context of gener-

ating and verifying a presentation token are summarized in Table 2.2 below.

Table 2.2 ABCE Interfaces for Token Presentation and Verification

USER

createIdentitySelectorArguments
input: PresentationPolicyAlternatives
output: UiPresentationArguments

createPresentationToken
input: UiPresentationReturn
output: PresentationToken

VERIFIER

verifyTokenAgainstPolicy
input: PresentationToken, PresentationPolicyAlternatives, boolean storeToken
output: boolean isCorrect, [URI tokenId]

getPresentationToken
input: URI tokenId
output: PresentationToken

38

2.4.3 Issuance of a Credential

Generally speaking, issuance is an interactive multi-round protocol between a user

and an issuer, at the end of which the user obtains a credential. In fact, issuance can

be seen as a special case of a standard resource request, where the resource is a new

credential that the user wants to obtain. Thus, to handle such a credential request,

the Privacy-ABC framework might invoke the same components and procedures as

in the presentation scenario described above. However, depending on the scenario,

the issuance transaction involves additional components to handle the case where

the user wishes to (blindly) carry over her attributes or her secret key from one of

her existing credentials to the new credential.

To start an issuance transaction, the user first authenticates towards the issuer

(Figure 2.6 – Step 1) and indicates the credential type she wishes to obtain (Fig-

ure 2.6 – Step 2). Note that the exact details of the initial authentication are outside

the scope of the Privacy-ABC framework and, for example, can be done using tradi-

tional means such as username and password. The issuer triggers the issuance of a

credential through the API when receiving a correct credential request from a user.

As described in Section 2.1 , there are two variants of issuance: simple issuance and

advanced issuance, where the latter applies if attributes or a key need to be carried

over from existing credentials.

Fig. 2.6 Issuance of a Credential (Application Level)

P Bichsel et al..

2 An Architecture for Privacy-ABCs 39

2.4.3.1 Simple Issuance

In the simple issuance variant, an issuer issues the user a credential that is unrelated

to any existing credentials or pseudonyms already owned by the user. In such a

setting, the issuer first invokes the initIssuanceProtocol method of the ABCE

with the set of attributes that shall be certified in the new credential, and with an

IssuancePolicy that merely contains the identifiers of the credential specification and

the issuer parameters of the credential that is to be issued (Figure 2.6 – Step 3). This

call initiates the cryptographic issuance protocol by invoking the Crypto Engine.

The method returns an IssuanceMessage containing cryptographic data (the format

of the data is specific to the technology of the credential to be issued) and a reference

that uniquely identifies the instance of the corresponding issuance protocol. The

returned issuance message is then sent by the issuer to the user.

Upon receiving an issuance message, both the user and the issuer pass the mes-

sage to their Privacy-ABC system using the issuanceProtocolStep method (Fig-

ure 2.6 – Step 4). If the output of that method in turn contains an issuance message,

that message is sent to the other party until the method on the user’s side completed

the credential generation. At the end of a successful issuance protocol, the user’s

Privacy-ABC system stores the new credential in the local credential store and re-

turns the description of the credential to the user.

2.4.3.2 Advanced Issuance

In the advanced issuance variant, the information embedded in the newly issued

credential can be blindly carried over from existing credentials and pseudonyms

that are already owned by the user. To this end, the issuance protocol is preceded

by the generation and verification of an issuance token, which is generated on the

basis of an issuance policy sent to the user. More precisely, the issuer triggers an

advanced issuance transaction by invoking the initIssuanceProtocol method on

input of an issuance policy and the set of known user attributes that shall be certified

in the new credential (Figure 2.6 – Step 3). The issuance policy must require the

user to present at least one credential or one pseudonym, otherwise simple issuance

is performed. The method returns an issuance message (containing the issuance

policy) which must then be sent to the user.

The user in turn invokes the method issuanceProtocolStep with the received

message. The user’s Privacy-ABC system recognizes that this is an advanced is-

suance scenario, and subsequently starts preparing an issuance token. This process

is similar to the generation of a presentation token in that the method’s output con-

tains an object of type UiIssuanceArguments for the user to perform an identity

selection. The method then expects the user’s response in form of a UiIssuanceRe-
turn object. Finally, based on the user’s choice, her Privacy-ABC system (with the

help of the Crypto Engine) generates an IssuanceToken, which includes additional

cryptographic data needed for the subsequent issuance protocol. The issuance to-

40

ken is wrapped in an issuance message, which the user then forwards to the issuer

(Figure 2.6 – Step 4).

As for simple issuance, the issuer’s issuanceProtocolStep method is then

called on input of the incoming issuance message from the user. The Privacy-ABC

system then verifies the issuance token contained in the message with respect to

the issuance policy (using similar methods as for the verification of a presentation

token). If the verification succeeds, the cryptographic issuance protocol is started,

again with the help of the Crypto Engine. The method outputs an issuance message

containing cryptographic data depending on the technology of the credential. The

issuer then sends the returned issuance message to the user (Figure 2.6 – Step 4).

Whenever the user or the issuer receive an issuance message, they invoke their

local issuanceProtocolStep method. The output is then either another issuance

message that must be sent to the other party, or an indication of the completion of

the protocol. At the end of the protocol, the user’s Privacy-ABC system stores the

obtained credential and returns a description of that credential to the user.

Overall, the issuance-related APIs of the ABCE are summarized in Table 2.3.

Table 2.3 ABCE Interfaces for Credential Issuance

USER

issuanceProtocolStep
input: IssuanceMessage
output: IssuanceMessage, CredentialDescription, [UiIssuanceArguments]

issuanceProtocolStep
input: UiIssuanceReturn
output: IssuanceMessage

ISSUER

initIssuanceProtocol
input: IssuancePolicy, List<Attribute> issuerSpecifiedAttributes
output: IssuanceMessage, boolean isLastMessage

issuanceProtocolStep
input: IssuanceMessage
output: IssuanceMessage, boolean isLastMessage

extractIssuanceToken
input: IssuanceMessage
output: IssuanceToken

P Bichsel et al..

2 An Architecture for Privacy-ABCs 41

Table 2.4 ABCE Interfaces for Inspection and Revocation

INSPECTOR

inspect
input: PresentationToken, URI credentialAlias, URI attributeType
output: Attribute

inspect
input: IssuanceToken, URI credentialAlias, URI attributeType
output: Attribute

REVOCATION AUTHORITY

revoke
input: URI revocationAuthorityId, List<Attribute> toRevoke
output: —

2.4.4 Inspection

As described in detail in Section 2.1.3.5 , the anonymity that is usually provided by

Privacy-ABCs can be lifted through inspection if the policy allows it. In particular,

if a policy mandates attributes to be inspectable, the user prepares her presentation

tokens in a special way: the inspectable attributes are not revealed to the verifier, but

are verifiably encrypted in the token under the public key of a trusted inspector and

inseparably tied to some inspection grounds.

In case the event specified in the inspection grounds occurs, the inspection re-

questor (e.g., the verifier) contacts the inspector to request the de-anonymization

of a presentation or issuance token. To do that, he sends the token (which he can

retrieve, e.g., with the help of the getPresentationToken method described in

Table 2.2) and the (non-cryptographic) evidence that the inspection grounds are ful-

filled to the inspector. If the inspector determines by means of the evidence that

these grounds are indeed fulfilled, he invokes the inspect method to decrypt the

inspectable attributes in question (see Table 2.4).

2.4.5 Revocation

Our framework also supports revocation of credentials, thereby distinguishing whether

a credentials may need to be revoked either globally (issuer-driven revocation) or for

a specific context (verifier-driven revocation) (see Section 2.1 for details). To revoke

a credential globally, the revocation authority calls the revoke method on input of

the credential’s revocation handle (see Table 2.4). For verifier-driven revocation, a

conjunction of attributes can be revoked by calling the same method. In the latter

case, all credentials that contain the combination of attribute values specified in the

list will get revoked. The revocation authority typically knows the attribute values

42

to revoke because they were either revealed in a former presentation token, or were

decrypted by an inspector.

All entities that deal with revocable credentials must ensure that their respective

revocation information is up-to-date. This is handled transparently by the ABCE

which – if required – will internally contact the corresponding revocation authority

through the Revocation Proxy and obtain the necessary updates or information. For

instance, issuers have to contact their revocation authority during issuance in order

to obtain a fresh revocation handle. On the verifier side, such a process is needed to

guarantee that the verifier uses the latest revocation information from the revocation

authority in order to correctly detect revoked credentials.

Similarly, users have to keep the non-revocation evidence of their credentials up-

to-date. The Privacy-ABC system of a user should allow her to configure whether

to contact the revocation authority only shortly prior to presenting a credential, or

whether to perform proactive updates at regular intervals. The latter approach has

the advantage that presentation is faster and that the revocation authority is not in-

volved each single time a user wants to present her credential(s). Depending on the

revocation technology, these updates may even fully preserve the anonymity of the

user.

2.5 Language Framework

Given the multitude of distributed entities involved in a full-fledged Privacy-ABC

system, the communication formats that are used between these entities must be

specified and standardized.

None of the existing format standards for identity management protocols such as

SAML, WS-Trust, or OpenID support all Privacy-ABCs’ features. Although most

of them can be extended to support a subset of these features, we define for the sake

of simplicity and completeness a dedicated language framework which addresses all

unique Privacy-ABC features. Our languages can be integrated into existing identity

management systems.

In this section we introduce our framework covering the full life-cycle of Privacy-

ABCs, including setup, issuance, presentation, revocation, and inspection. As the

main purpose of our data artifacts is to be processed and generated by automated

policy and credential handling mechanisms, we define all artifacts in XML schema

notation, although one could also create a profile using a different encoding such

as Abstract Syntax Notation One (ASN.1) [ASN08] or JavaScript Object Notation

(JSON) [Cro06].

The XML artifacts formally describe and orchestrate the underlying crypto-

graphic mechanisms and provide opaque containers for carrying the cryptographic

data. Whenever appropriate, our formats also support user-friendly textual names

or descriptions which allow to show a descriptive version of the XML artifacts to a

user and to involve her in the issuance or presentation process if necessary.

P Bichsel et al..

2 An Architecture for Privacy-ABCs 43

For didactic purposes, we describe the different artifacts realizing the concepts

and features of Privacy-ABCs (see Section 2.1) by means of an example scenario,

which scenario is described in the following section. For the sake of space and read-

ability, the artifact examples for the scenario do not illustrate all the features of

Privacy-ABCs. We refer the reader to [BCD+14] for the full specification. In the

following sections, we explicitly distinguish between user attributes (as contained

in a credential) and XML attributes (as defined by XML schema) whenever they

could be confused.

2.5.1 Example Scenario

In this section, we describe an example scenario for illustrating the language frame-

work artifacts that are introduced in the following sections.

The Republic of Utopia issues electronic identity cards to all of its citizens, con-

taining their name, date of birth, and the state in which they reside. These electronic

identities are used for many applications, such as interactions with government and

businesses. It is therefore crucial that any card that is reported lost or stolen will be

quickly revoked.

All citizens of Utopia may sign up for one free digital membership card to the

library of their state. To obtain a library card, the applicant must present her valid

identity card and reveal her state of residence, but otherwise remains anonymous

during the issuance of the library card.

The state library has a privacy-friendly online interface for borrowing both digital

and paper books. Readers can log in to the library website to anonymously browse

and borrow books using their library card based on Privacy-ABCs. Hardcopy books

will be delivered in anonymous numbered mailboxes at the post office; digital books

are simply delivered electronically. If paper books are returned late or damaged,

however, the library must be able to identify the reader to impose an appropriate

fine. Repeated negligence can even lead to exclusion from borrowing further paper

books—but borrowing digital books always remains possible. Moreover, the library

occasionally offers special conditions to readers of targeted age groups, e.g., longer

rental periods for readers under the age of twenty-six.

2.5.2 Credential Specification

A credential specification describes the common structure and possible features of

credentials. Remember that the Republic of Utopia issues electronic identity cards to

its citizens containing their full name, state, and date of birth. Note that libraries and

other verifiers may target different age groups in different policies, so hard-coding

dedicated “over twenty-six” attributes would not be very sensible. Utopia may issue

Privacy-ABCs according to the credential specification shown in Figure 2.7.

44

1 <CredentialSpecification KeyBinding=”true” Revocable=”true”>
2 <SpecificationUID> urn:creds:id </SpecificationUID>
3 <AttributeDescriptions MaxLength=”256”>
4 <AttributeDescription Type=”urn:creds:id:name” DataType=”xs:string” Encoding=”xenc:sha256”>
5 <FriendlyAttributeName lang=”EN”> Full Name </FriendlyAttributeName>
6 </AttributeDescription>
7 <AttributeDescription Type=”urn:creds:id:state” DataType=”xs:string” Encoding=”xenc:sha256”/>
8 <AttributeDescription Type=”urn:creds:id:bdate” DataType=”xs:date” Encoding=”date:unix:signed”/>
9 <AttributeDescription Type=”urn:revocationhandle” DataType=”xs:integer” Encoding=”integer:unsigned” />

10 </AttributeDescriptions>
11 </CredentialSpecification>

Fig. 2.7 Credential specification of the identity card

The XML attribute KeyBinding indicates whether credentials adhering to this

specification must be bound to a secret key. The XML attribute Revocable being set

to “true” indicates that the credentials will be subject to issuer-driven revocation and

hence must contain a special revocation handle attribute. The assigned revocation

authority is specified in the issuer parameters.

To encode user attribute values in a Privacy-ABC, they must be mapped to in-

tegers of a limited length. The maximal length depends on the security parameter

(basically, it is the bit length of exponents in the group) and is indicated by the

MaxLength XML attribute (Line 3), here 256 bits. In our example, electronic iden-

tity cards contain a person’s full name, state, and date of birth. The XML attributes

Type, DataType, and Encoding respectively contain the unique identifier for the user

attribute type, for the data type, and for the encoding algorithm that specifies how

the value is to be mapped to an integer of the correct size (Lines 4,7,8,9). Attributes

that may have values longer than MaxLength have to be hashed, as is done here for

the name using SHA-256. The specification can also define human-readable names

for the user attributes in different languages (Line 5).

2.5.3 Issuer, Revocation, and System Parameters

The government of Utopia acts as issuer and revocation authority for the identity

cards. It generates an issuance key pair and publishes the issuer parameters, and

generates and publishes the revocation authority parameters, which are illustrated in

Figure 2.8.

The ParametersUID element assigns unique identifiers for the issuer and revo-

cation authority parameters. The issuer parameters additionally specify the chosen

cryptographic Privacy-ABC and hash algorithm, the maximal number of attributes

that credentials issued under these issuer parameters may have, the parameter iden-

tifier of the system parameters that shall be used, and the parameters identifier of

the revocation authority that will manage the issuer-driven revocation. The Cryp-
toParams contain cryptographic algorithm-specific information about the public key.

P Bichsel et al..

2 An Architecture for Privacy-ABCs 45

1 <IssuerParameters>
2 <ParametersUID> urn:utopia:id:issuer </ParametersUID>
3 <AlgorithmID> urn:com:microsoft:uprove </AlgorithmID>
4 <SystemParametersUID> urn:utopia:id:system </SystemParametersUID>
5 <MaximalNumberOfAttributes> 4 </MaximalNumberOfAttributes>
6 <HashAlgorithm> xenc:sha256 </HashAlgorithm>
7 <CryptoParams> ... </CryptoParams>
8 <RevocationParametersUID> urn:utopia:id:ra </RevocationParametersUID>
9 </IssuerParameters>

1 <RevocationAuthorityParameters>
2 <ParametersUID> urn:utopia:id:ra </ParametersUID>
3 <RevocationMechanism> urn:privacy−abc:accumulators:cl </RevocationMechanism>
4 <RevocationInfoReference ReferenceType=”url”> https:utopia.gov/id/revauth/revinfo
5 </RevocationInfoReference>
6 <NonRevocationEvidenceReference ReferenceType=”url”> https:utopia.gov/id/revauth/nrevevidence
7 </NonRevocationEvidenceReference>
8 <CryptoParams> ... </CryptoParams>
9 </RevocationAuthorityParameters>

1 <SystemParameters>
2 <ParametersUID> urn:utopia:id:system </ParametersUID>
3 <CryptoParams> ... </CryptoParams>
4 </SystemParameters>

Fig. 2.8 Issuer, revocation authority, and system parameters

The revocation authority parameters can be used for both issuer- and verifier-

driven revocation. They specify a unique identifier for the parameters, the crypto-

graphic revocation mechanisms, and references to the network endpoints where the

most recent revocation information and non-revocation evidence can be fetched.

The system parameters fix some cryptographic parameters that are needed by the

Privacy-ABC system as a whole, such as the overall security level and the groups

that are to be used with the pseudonyms. Every party in the Privacy-ABC system

must use the same system parameters to ensure compatibility. Any trusted issuer can

create fresh system parameters, but ideally system parameters should be standard-

ized.

2.5.4 Presentation Policy with Basic Features

Assume that a user already possesses an identity card from the Republic of Utopia

issued according to the credential specification depicted in Figure 2.7. To get her

free library card the user must present her valid identity card and reveal (only) the

state attribute certified by the card. This results in the presentation policy depicted

in Figure 2.9.

We now go through the preceding presentation policy and describe how the dif-

ferent features of Privacy-ABCs can be realized with our language. We first focus on

46

1 <PresentationPolicy PolicyUID=”libcard”>
2 <Message>
3 <Nonce> bkQydHBQWDR4TUZzbXJKYUM= </Nonce>
4 </Message>
5 <Pseudonym Alias=”nym” Scope=”urn:library:issuance” Exclusive=”true”/>
6 <Credential Alias=”id” SameKeyBindingAs=”nym”>
7 <CredentialSpecAlternatives>
8 <CredentialSpecUID> urn:creds:id </CredentialSpecUID>
9 </CredentialSpecAlternatives>

10 <IssuerAlternatives>
11 <IssuerParametersUID> urn:utopia:id:issuer </IssuerParametersUID>
12 </IssuerAlternatives>
13 <DisclosedAttribute AttributeType= ”urn:creds:id:state”/>
14 </Credential>
15 </PresentationPolicy>

Fig. 2.9 Presentation policy for an identity card

the basic features and describe extended concepts such as inspection and revocation

in our second example.

Signing Messages

A presentation token can optionally sign a message. The message to be signed

is specified in the policy (Figure 2.9, Lines 2–4). It can include a nonce, any

application-specific message, and a human-readable name and/or description of the

policy. The nonce will be used to prevent replay attacks, i.e. to ensure freshness

of the presentation token, and for cryptographic evidence generation. Thus, when

making use of the nonce, the presentation policy is not static anymore, but needs to

be completed with a fresh nonce element for every request.

Pseudonyms

The optional Pseudonym element (Figure 2.9, Line 5) indicates that the presentation

token must contain a pseudonym. A pseudonym can be presented by itself or in

relation with a credential if key binding is used (which we discuss later).

The associated XML attribute Exclusive indicates that a scope-exclusive pseudonym

must be created, with the scope string given by the XML attribute Scope. This en-

sures that each user can create only a single pseudonym satisfying this policy, so

that the registration service can prevent the same user from obtaining multiple li-

brary cards. Setting Exclusive to “false” would allow an ordinary pseudonym to be

presented. The Pseudonym element has an optional boolean XML attribute Estab-
lished, not illustrated in the example, which, when set to “true”, requires the user to

re-authenticate under a previously established pseudonym. The presentation policy

can request multiple pseudonyms, e.g., to verify that different pseudonyms actually

belong to the same user.

P Bichsel et al..

2 An Architecture for Privacy-ABCs 47

Credentials and Selective Disclosure

For each credential that the user is requested to present, the policy contains a Cre-
dential element (Figure 2.9, Lines 6–14), which describes the credential to present in

detail. In particular, disjunctive lists of the accepted credential specifications and is-

suer parameters can be specified via CredentialSpecAlternatives and IssuerAlternatives
elements, respectively (Figure 2.9, Lines 7-9 and 10–12). The credential element

also indicates all attributes that must be disclosed by the user via DisclosedAttribute
elements (Figure 2.9, Line 13). The XML attribute Alias assigns the credential an

alias so that it can be referred to from other places in the policy, e.g., from the at-

tribute predicates.

Key Binding

If present, the SameKeyBindingAs attribute of a Credential or Pseudonym element (Fig-

ure 2.9, Line 6), contains an alias referring either to another Pseudonym element

within this policy, or to a Credential element for a credential with key binding. This

indicates that the current pseudonym or credential and the referred pseudonym or

credential have to be bound to the same key. In our preceding example, the policy

requests that the identity card and the presented pseudonym must belong to the same

secret key.

Issuance Policy

To support the advanced features described in Section 2.1 , we propose a dedicated

issuance policy. A library card contains the applicant’s name and is bound to the

same secret key as the identity card. So the identity card must not only be presented,

but also used as a source to carry over the name and the secret key to the library

card. The library shouldn’t learn either of these during the issuance process. Alto-

gether, to issue library cards the state library creates the issuance policy depicted in

Figure 2.10. It contains the presentation policy from Figure 2.9 and the credential

template that is described in detail below.

1 <IssuancePolicy>
2 <PresentationPolicy PolicyUID=”libcard”> ... </PresentationPolicy>
3 <CredentialTemplate SameKeyBindingAs=”id”>
4 <CredentialSpecUID> urn:utopia:lib </CredentialSpecUID>
5 <IssuerParametersUID> urn:utopia:lib:issuer </IssuerParametersUID>
6 <UnknownAttributes>
7 <CarriedOverAttribute TargetAttributeType= ”urn:utopia:lib:name”>
8 <SourceCredentialInfo Alias=”id” AttributeType=”urn:creds:id:name”/>
9 </CarriedOverAttribute>

10 </UnknownAttributes>
11 </CredentialTemplate>
12 </IssuancePolicy>

Fig. 2.10 Issuance policy for a library card. The presentation policy on Line 2 is depicted in Fig-
ure 2.9.

48

Credential Template

A credential template describes the relation of the new credential to the existing

credentials that were requested in the presentation policy. The credential template

(Figure 2.10, Lines 3–11) must first state the unique identifier of the credential spec-

ification and issuer parameters of the newly issued credential (notice that here those

are different than the identifiers of the credential specification and issuer parameters

of the credential that is presented). The optional XML attribute SameKeyBindingAs
further specifies that the new credential will be bound to the same secret key as a

credential or pseudonym in the presentation policy, in this case the identity card.

Within the UnknownAttributes element (Figure 2.10, Lines 6–10) it is specified

which user attributes of the new credential will be carried over from existing cre-

dentials in the presentation token. The SourceCredentialInfo element (Figure 2.10,

Line 8) indicates the credential and the user attribute of which the value will be

carried over.

Although this is not illustrated in our example, an attribute value can also be

specified to be chosen jointly at random by the issuer and the user. This is achieved

by setting the optional XML attribute JointlyRandom to “true”.

2.5.5 Presentation and Issuance Token

A presentation token consists of the presentation token description, containing the

mechanism-agnostic description of the revealed information, and the cryptographic
evidence, containing opaque values from the specific cryptography that “imple-

ments” the token description. The presentation token description roughly uses the

same syntax as a presentation policy. An issuance token is a special presentation

token that satisfies the stated presentation policy, but that contains additional cryp-

tographic information required by the credential template.

The main difference to the presentation and issuance policy is that in the returned

token a Pseudonym (if requested in the policy) now also contains a PseudonymValue
(Figure 2.11, Line 6). Similarly, the DisclosedAttribute elements (Figure 2.11, Lines 10–

12) in a token now also contain the actual user attribute values. Finally, all data from

the cryptographic implementation of the presentation token and the advanced is-

suance features are grouped together in the CryptoEvidence element (Figure 2.11,

Line 17). This data includes, e.g., proof that the contained identity card is not

revoked by the issuer and that it is bound bound to the same secret key as the

pseudonym.

P Bichsel et al..

2 An Architecture for Privacy-ABCs 49

1 <IssuanceToken>
2 <IssuanceTokenDescription>
3 <PresentationTokenDescription PolicyUID =”libcard” >
4 <Message> ... </Message>
5 <Pseudonym Alias=”nym” Scope=”urn:library:issuance” Exclusive=”true” />
6 <PseudonymValue> MER2VXISHI=</PseudonymValue>
7 </Pseudonym>
8 <Credential Alias=”id” SameKeyBindingAs=”nym” >
9 ...

10 <DisclosedAttribute AttributeType=”urn:creds:id:state” >
11 <AttributeValue> Nirvana </AttributeValue>
12 </DisclosedAttribute>
13 </Credential>
14 </PresentationTokenDescription>
15 <CredentialTemplate SameKeyBindingAs=”id” > ... </CredentialTemplate>
16 </IssuanceTokenDescription>
17 <CryptoEvidence> ... </CryptoEvidence>
18 </IssuanceToken>

Fig. 2.11 Issuance token for obtaining the library card

2.5.6 Presentation Policy with Extended Features

Recall that the state library has a privacy-friendly online interface for borrowing

books, but that it wants to identify readers who don’t properly return their books and

potentially ban them for borrowing more paper books. Also recall that the library

has a special program for young readers. Altogether, for borrowing books under the

“young-reader”-conditions, users have to satisfy the presentation policy depicted in

Figure 2.12.

A presentation policy that is used for plain presentation (i.e., not within an is-

suance policy) can consist of multiple policy alternatives, each wrapped in a sep-

arate PresentationPolicy element (Figure 2.12, Lines 2–34 and 35–63). The returned

presentation token must satisfy (at least) one of the specified policies.

The example presentation policy requires two Credential elements, for the library

and for the identity card, which must belong to the same secret key as indicated by

the XML attribute SameKeyBindingAs.

Attribute Predicates

No user attributes of the identity card have to be revealed, but the AttributePredicate
element (Figure 2.12, Lines 30–33) specifies that the date of birth must be after

April 1st, 1988, i.e., that the reader is younger than twenty-six. Supported predicate

functions include equality, inequality, greater-than and less-than tests for most basic

data types, as well as membership of a list of values. The arguments of the predicate

function may be credential attributes (referred to by the credential alias and the

attribute type) or constant values. See [BCD+14] for an exhaustive list of supported

predicates and data types and note that an attribute’s encoding as defined in the

credential specification has implications on which predicates can be used for it and

whether it is inspectable.

50

1 <PresentationPolicyAlternatives>
2 <PresentationPolicy PolicyUID= ”young−reader” >
3 <Message> ... </Message>
4 <Credential Alias=”libcard” SameKeyBindingAs=”id” >
5 <CredentialSpecAlternatives>
6 <CredentialSpecUID> urn:utopia:lib </CredentialSpecUID>
7 </CredentialSpecAlternatives>
8 <IssuerAlternatives>
9 <IssuerParametersUID> urn:utopia:lib:issuer </IssuerParametersUID>

10 </IssuerAlternatives>
11 <DisclosedAttribute AttributeType= ”urn:utopia:lib:name” >
12 <InspectorAlternatives>
13 <InspectorParametersUID> urn:lib:arbitrator </InspectorParametersUID>
14 </InspectorAlternatives>
15 <InspectionGrounds> Late return or damage. </InspectionGrounds>
16 </DisclosedAttribute>
17 </Credential>
18 <Credential Alias=”id” >
19 <CredentialSpecAlternatives>
20 <CredentialSpecUID> urn:creds:id </CredentialSpecUID>
21 </CredentialSpecAlternatives>
22 <IssuerAlternatives>
23 <IssuerParametersUID> urn:utopia:id:issuer </IssuerParametersUID>
24 </IssuerAlternatives>
25 </Credential>
26 <VerifierDrivenRevocation>
27 <RevocationParametersUID> urn:lib:blacklist </RevocationParametersUID>
28 <Attribute CredentialAlias =”libcard” AttributeType=”urn:utopia:lib:name” />
29 </VerifierDrivenRevocation>
30 <AttributePredicate Function= ”...:date−greater−than” >
31 <Attribute CredentialAlias =”id” AttributeType= ”urn:creds:id:bdate” />
32 <ConstantValue> 1988−04−01 </ConstantValue>
33 </AttributePredicate>
34 </PresentationPolicy>
35 <PresentationPolicy PolicyUID= ”regular−reader” >

Lines 36–62 are identical to lines 3–29 (i.e., without the AttributePredicate element).

63 </PresentationPolicy>
64 </PresentationPolicyAlternatives>

Fig. 2.12 Presentation policy for borrowing books

Inspection

To be able to nevertheless reveal the name of an anonymous borrower and to im-

pose a fine when a book is returned late or damaged, the library can make use of

inspection. The DisclosedAttribute element for the user attribute “...:name” contains

InspectorParametersUID and InspectionGrounds child elements, indicating that the at-

tribute value must not be disclosed to the verifier, but to the specified inspector with

the specified inspection grounds. The former child element specifies the inspector’s

public key under which the value must be encrypted, in this case belonging to a

designated arbiter within the library. The latter element specifies the circumstances

under which the attribute value may be revealed by the arbiter. Our language also

provides a data artifact for inspector parameters, which we omit here for space rea-

sons.

P Bichsel et al..

2 An Architecture for Privacy-ABCs 51

Issuer-Driven Revocation

When the presentation policy requests a credential that is subject to issuer-driven

revocation (as defined in the credential specification), the credential must be proved

to be valid with respect to the most recent revocation information. However, a policy

can also require the use of a particular past version of the revocation information.

In the latter case, the element IssuerParametersUID has an extra XML attribute Revo-
cationInformationUID specifying the identifier of the specific revocation information.

The specification of the referenced RevocationInformation is given in [BCD+14]. Pre-

sentation tokens can accordingly state the validity of credentials with respect to a

particular version by using a RevocationInformationUID XML element in the corre-

sponding Credential element.

Verifier-Driven Revocation

If customers return borrowed books late or damaged, they are excluded from bor-

rowing further paper books, but they are still allowed to use the library’s online

services. In our example, this is handled by a VerifierDrivenRevocation element (Fig-

ure 2.12, Lines 26–29), which specifies that the user attribute “...:name” of the library

card must be checked against the most recent revocation information from the re-

vocation authority “urn:lib:blacklist”. Revocation can also be based on a combination

of user attributes from different credentials, in which case there will be multiple At-
tribute child elements per VerifierDrivenRevocation. The presentation policy can also

contain multiple VerifierDrivenRevocation elements for one or several credentials, the

returned presentation token must then prove its non-revoked status for all of them.

2.5.7 Interaction with the User Interface

During a presentation, the user can potentially satisfy the presentation policy al-

ternatives in many ways. In order to allow the user to choose which presentation

policy he wishes to satisfy, to choose how to satisfy the chosen policy (e.g., if he

has multiple credentials of one type), and to check what he reveals by doing so,

the Privacy-ABC framework generates a UiPresentationArguments object and hands

it over to the application, which in turn will probably want to forward it to some

sort of user interface. The framework then expects an object of type UiPresentation-
Return with the user’s choice. There are similar objects UiIssuanceArguments and

UiIssuanceReturn for issuance. Standardizing the format of these objects is less criti-

cal than the other described in the remained of this section as they remain confined

to the user’s machine; we show here one possible embodiment of these objects.

We designed the UiPresentationArguments object (Figure 2.13) such that the com-

plexity of the user interface is minimized: (1) it contains enough information so

that the application does not have to query additional data from the Privacy-ABC

framework, and (2) it contains some redundant information so that it does not need

to do complex parsing of the policy to figure out what exactly is being revealed. It

52

1 <UiPresentationArguments>
2 <data>
3 <credentialSpecification id=”urn:utopia:lib”>...</credentialSpecification>
4 <credentialSpecification id=”urn:creds:id”>...</credentialSpecification>
5 <issuer id=”urn:utopia:lib:issuer”>...</issuer>
6 <issuer id=”urn:utopia:id:issuer”>...</issuer>
7 <inspector id=”urn:lib:arbitrator”>...</inspector>
8 <revocationAuthority id=”urn:utopia:id:ra”>...</revocationAuthority>
9 <credentialDescription id=”urn:utopia:lib:74bddfb3−6886−43ac−83f8−ca3b72ad050d”>...</

credentialDescription>
10 <credentialDescription id=”urn:creds:id:14f22b9d−06e0−4110−a8d9−b1a922462cd1”>...</

credentialDescription>
11 </data>
12 <tokenCandidatePerPolicy policyId=”0”>
13 <policy>...</policy>
14 <tokenCandidate candidateId=”0”>
15 <tokenDescription>...</tokenDescription>
16 <credential ref=”urn:utopia:lib:74bddfb3−6886−43ac−83f8−ca3b72ad050d” />
17 <credential ref=”urn:creds:id:14f22b9d−06e0−4110−a8d9−b1a922462cd1” />
18 <revealedFact>
19 <description lang=”EN”>You prove that urn:creds:id:bdate from credential urn:creds:id
20 is greater than 1988−04−01 (26 years ago).</description>
21 </revealedFact>
22 <revealedFact>
23 <description lang=”EN”>You prove that ‘Full Name’ from credential ‘Library Card’
24 is not revoked by the verifier urn:lib:blacklist.</description>
25 </revealedFact>
26 <revealedFact>
27 <description lang=”EN”>You prove that urn:creds:id is not revoked by urn:utopia:id:ra.</description>
28 </revealedFact>
29 <inspectableAttribute>
30 <credential ref=”urn:utopia:lib:74bddfb3−6886−43ac−83f8−ca3b72ad050d” />
31 <attributeType>urn:utopia:lib:name</attributeType>
32 <inspectionGrounds>Late return or damage.</inspectionGrounds>
33 <inspectorAlternative ref=”urn:lib:arbitrator” />
34 </inspectableAttribute>
35 </tokenCandidate>
36 </tokenCandidatePerPolicy>
37 <tokenCandidatePerPolicy policyId=”1”>...</tokenCandidatePerPolicy>
38 </UiPresentationArguments>

Fig. 2.13 Message sent to the User Interface for Presentation

consists of two parts: the first part is a data element, which lists all parameters and

similar objects that are referred to in the second part: a list of all credential specifica-

tions (Lines 3–4), summaries of all issuer parameters (Lines 5–6), summaries of all

inspector parameters (Line 7), summaries of all revocation authorities (Line 8), cre-

dential descriptions (Lines 9–10), and pseudonym descriptions (not shown for this

example, but see Line 4 of Figure 2.14). The second part consists of a list of token-
CandidatePerPolicy elements, which in turn comprise a presentation policy (Line 13)

and a list of tokenCandidate showing all possible alternatives to satisfy the policy.

The latter consists of a partially filled out presentation token description (Line 15);

the list of credentials that will be presented (Lines 16–17); all possible alternative

lists of pseudonyms that are compatible with the presented credentials and that sat-

isfy the policy (not shown in this example, but see Lines 9–11 in Figure 2.14), here

the Privacy-ABC framework will tentatively create new pseudonyms each time and

include those in the list, these pseudonyms are then only saved if the user actually

P Bichsel et al..

2 An Architecture for Privacy-ABCs 53

1 <UiIssuanceArguments>
2 <data>
3 ...
4 <pseudonym id=”nym:urn:library:issuance:965999d1−25e9−49e5−8db6−ad8ae9705807”>...</pseudonym>
5 ...
6 </data>
7 <tokenCandidate candidateId=”0”>
8 ...
9 <pseudonymCandidate candidateId=”0”>

10 <pseudonym ref=”nym:urn:library:issuance:965999d1−25e9−49e5−8db6−ad8ae9705807” />
11 </pseudonymCandidate>
12 ...
13 </tokenCandidate>
14 <issuancePolicy>...</issuancePolicy>
15 </UiIssuanceArguments>

Fig. 2.14 Message sent to the User Interface for Issuance

selects them for inclusion in the presentation token; a list of facts that will be re-

vealed as part of the presentation (Lines 18–28), such as equality between attributes,

predicates over the attributes, revocation checks—the friendly names of credentials,

attributes, and parameters are used whenever available; the list of attributes that

are revealed (not shown in this example), including attributes that are proven to be

equal to a revealed attribute; and the list of inspectable attributes (Lines 29–34) with

a choice of possible inspectors (Line 33).

The UiPresentationReturn object (Figure 2.15) indicates which policy (Line 2),

which presentation token within that policy (Line 3), and which inspector for each

of the inspectable attributes (Line 4) the user chose. Not shown in this example,

but also part of the UiPresentationReturn is the list of pseudonyms the user wishes

to chose, and whether the user wishes to change the metadata of any of the stored

pseudonyms (we show examples of those in Figure 2.16).

1 <UiPresentationReturn>
2 <chosenPolicy>0</chosenPolicy>
3 <chosenPresentationToken>0</chosenPresentationToken>
4 <chosenInspectors>urn:lib:arbitrator</chosenInspectors>
5 </UiPresentationReturn>

Fig. 2.15 Response from the User Interface for Presentation

The UiIssuanceArguments object (Figure 2.14) is similar to the UiPresentationArgu-
ments element. Since there is only one issuance policy per issuance transaction, we

removed the tokenCandidatePerPolicy element; instead the tokenCandidate elements

(Line 7) and issuancePolicy element (Line 14) are direct children of the root element.

The UiIssuanceReturn object (Figure 2.16) is similar to the UiPresentationReturn
object. It indicates which presentation token within the policy (Line 2), which in-

spectors (not shown in this example), and which list of pseudonyms (Line 3) were

54

1 <UiIssuanceReturn>
2 <chosenIssuanceToken>0</chosenIssuanceToken>
3 <chosenPseudonymList>0</chosenPseudonymList>
4 <metadataToChange>
5 <entry>
6 <key>nym:urn:library:issuance:965999d1−25e9−49e5−8db6−ad8ae9705807</key>
7 <value>I used this to obtain my library card.</value>
8 </entry>
9 </metadataToChange>

10 </UiIssuanceReturn>

Fig. 2.16 Response from the User Interface for Issuance

chosen. In this example, the user has also chosen to associate new metadata to the

pseudonym (Lines 4–9).

2.6 Applicability to Existing Identity Infrastructures

Many identity protocols and frameworks are in use today, and new ones are be-

ing developed by the industry, each addressing specific use cases and deployment

environments. Privacy concerns exist in many scenarios targeted by these systems,

and therefore it is useful to understand how they could benefit from Privacy-ABC

technologies to improve their security, privacy, and scalability.

We consider the following popular systems: WS-*, SAML, OpenID, OAuth, and

X.509.1 A short description of each system is given to facilitate the discussion, but

is by no means complete; the reader is referred to the appropriate documentation to

learn more about a particular system. Moreover, we mostly describe how integration

can be done, rather than discussing why as this is highly application-specific.

The last section describes the common challenges of these federated systems,

and how Privacy-ABC technologies can help to alleviate them.

2.6.1 WS-*

The set of WS-* specifications define various protocols for web services and ap-

plications. Many of these relate to security, and in particular, to authentication and

attribute-based access (such as WS-Trust [WST09], WS-Federation [WSF09], and

WS-SecurityPolicy [WSS07]). These specifications can be combined to implement

various systems with different characteristics.

1 Other popular frameworks, such as Facebook Login [Fac], OpenID Connect [Ope], and Fido
Alliance [Fid] are similar or built on top of the schemes presented here, and will therefore be
omitted in the discussion.

P Bichsel et al..

2 An Architecture for Privacy-ABCs 55

Fig. 2.17 WS-Trust protocol flow

The WS-Trust specification is the main building block that defines how security
tokens can be obtained and presented by users. The specification does not make

any assumption on the type of tokens exchanged, and provides several extensibility

points and protocol flow patterns suitable for Privacy-ABC technologies.

In WS-Trust, a requestor (user) requests a security token from the Identity

Providers Security Token Service (the issuer) encoding various certified claims (at-

tributes), and presents it (either immediately or at a later time) to a Relying Party

(the verifier); see Figure 2.17.

Integrating Privacy-ABC technologies in WS-Trust is straightforward due to

the extensible nature of the WS-* framework. The issuance protocol is initi-

ated by the requestor by sending, as usual, a RequestForSecurityToken
message to the STS. The requestor and the STS then exchange as many

RequestForSecurityTokenResponse messages as needed by the

ABC issuance protocol (using the challenge-response pattern defined in

Section 8 of [WS-12]). The STS concludes the protocol by sending a

RequestForSecurityTokenResponseCollection message. Typi-

cally, this final message contains a collection of requested security tokens. Due to

the nature of the Privacy-ABC technologies, the STS does not send the security

tokens per se, but the requestor is able to compute its credential(s) using the

exchanged cryptographic data. See Figure 2.18.

The issuance messages are tied together using a unique context, but otherwise do

not specify the content and formatting of their contents. It is therefore possible to

directly use the protocol artefacts defined in Section 2.5.

Presenting an ABC to a Relying Party is also straightforward. The exact mech-

anism to use depends on the application environment. For example, in a federated

56

Fig. 2.18 WS-Trust issuance protocol

architecture using WS-Federation, the presentation token could be included in a

RequestForSecurity TokenResponsemessage part of a wresultHTTP

parameter. Given the support of extensible policy (using, e.g., WS-SecurityPolicy),

the ABC verifier policy could be expressed by the Relying Party and obtained by

the client; e.g., it could be embedded in a services federation metadata (see Sec-

tion 3 of [WSF09]). Privacy-ABC technology integration into WS-Trust has been

successfully demonstrated; see, e.g., [UPW11].

2.6.2 SAML

The Security Assertion Markup Language (SAML) is a popular set of specifications

for exchanging certified assertions in federated environments. Different profiles ex-

ist addressing various use cases, but the core specification [SAM05] defines the

main elements: the SAML assertion (a XML token type that can encode arbitrary

attributes), and the SAML protocols for federated exchanges.

Typically, a User Agent (a.k.a. requester or client) requests access to a resource

from a Relying Party (a.k.a. Service Provider) which in turn requests a SAML as-

sertion from a trusted Identity Provider (a.k.a. SAML Authority). The User Agent

is redirected to the Identity Provider to retrieve the SAML assertion (after authen-

ticating to the Identity Provider in an unspecified manner) before passing it back to

the Relying Party. Figure 2.19 illustrates the protocol flow.

Contrary to WS-*, the SAML protocols only permit the use of the SAML as-

sertion token type. Therefore, one needs to profile the SAML assertion in order

P Bichsel et al..

2 An Architecture for Privacy-ABCs 57

Fig. 2.19 SAML protocol flow

to use the Privacy-ABC technologies with the SAML protocols. The SAML as-

sertion schema defines an optional ds:Signature element used by the Identity

Provider to certify the contents of the assertion. If used, it must be a valid XML

Signature [Bar02]. This means that XML Signature must also be profiled to support

ABC issuer signatures.2 The alternative would be to protect the SAML assertion

using a custom external signature element. ABC-based SAML assertions could be

used in the SAML protocols in various ways. One example would be for the client

to create a modified SAML assertion using a Privacy-ABC in response to a Relying

Partys authentication request rather than fetching it in real-time from the Identity

Provider (replacing steps 3 and 4 in Figure 2.19). The assertion would contain the

disclosed attributes, and encode the presentation tokens cryptographic data in the

SAML signature. Essentially, the SAML assertion would be an alternative token

type to the ABC presentation token. Additionally, the Identity Provider could issue

an on-demand Privacy-ABC using the SAML protocol; this might require multi-

ple roundtrips to accommodate the potentially interactive issuance protocol. Then

the SAML assertion presented to the Relying Party would need to be created as

explained above.

2 This could be achieved by applying the appropriate XML transforms on the assertions contents
before interpreting them as input to the ABC protocols.

58

2.6.3 OpenID

OpenID is a federated protocol allowing users to present an identifier3 to Rely-

ing Parties by first authenticating to an OpenID Provider. The current specification,

OpenID 2.0 [Ope07], specifies the protocol. Assuming that the user has an exist-

ing OpenID identifier registered with an OpenID Provider, we illustrate the steps in

Figure 2.20.

Fig. 2.20 OpenID protocol flow

1. To login to a Relying Party, the user presents her (unverified) OpenID identifier.

2. The Relying Party parses the identifier to discover the Users OpenID Provider

and redirects the User Agent to it.

3. The user authenticates to the OpenID Provider; how this is achieved is out-

of-scope of the OpenID specification (popular existing web deployments use

usernames and passwords).

4. Upon successful authentication, the OpenID Provider redirects the User Agent

to the Relying Party with a signed successful authentication message.

5. The Relying Party validates the authentication message using either a shared

secret with the OpenID Provider or alternatively, by contacting the OpenID

Provider directly.

OpenID follows a standard federated single sign-on model and therefore inherits

the security and privacy problems of such systems. The OpenID specification de-

3 The specification describe this as a URL or XRI (eXtensible Resource Identifier), but extensions
used by popular deployments use email addresses.

P Bichsel et al..

2 An Architecture for Privacy-ABCs 59

scribes in Section 15 some countermeasures against common concerns, but nonethe-

less, the systems remains vulnerable to active attackers, especially to attacks origi-

nating from protocol participants (see, e.g., [Bra] for a summary of the issues).

Privacy-ABC technologies could be used to increase both the security and pri-

vacy of the protocol, and reduce the amount of trust needed on OpenID Providers.

For example, certified or scope-exclusive pseudonyms derived from an ABC issued

by an OpenID Provider could be used as local Relying Party identifiers, therefore

providing unlinkability between the Users spheres of activities at different Relying

Parties (using the Relying Parties URL as a scope string). The cryptographic data in

the corresponding ABC presentation token would need to be encoded in extension

parameters defined in an ABC profile. A similar integration has been demonstrated

in the PseudoID prototype [DW10], using Chaums blind signatures [Cha83].

OpenID may also be used in attribute-based access scenarios. The OpenID At-

tribute Exchange [HBH07] extension describes how Relying Party can request at-

tributes of any type from the OpenID Provider by adding fetch parameters in the

OpenID authentication message, and how an OpenID Provider can return the re-

quested attributes in the response. OpenID Connect [Ope] is a new scheme built on

top of OAuth (see following section) that also addresses attribute exchange.

To generate an ABC-based response, the User Agent would create the OpenID re-

sponse on behalf of the OpenID Provider using the contents of a presentation token,

properly encoding the disclosed attributes using the OpenID Attribute Exchange

formatting and by encoding the cryptographic evidence in custom attributes.

2.6.4 OAuth

OAuth is an authorization protocol that enables applications and devices to access

HTTP4 services on behalf of users using delegated tokens rather than the users main

credentials. The current specification, OAuth 2.0 [Har12], is being developed by the

IETF OAuth working group.5 OAuth specifies four roles. Quoting from the spec:

resource owner: an entity capable of granting access to a protected resource (e.g.

end-user).

resource server: the server hosting the protected resources, capable of accepting

responding to resource requests using access tokens.

client: an application making protected resource requests on behalf of the owner

and with its authorization.

authorization server: the server issuing access tokens to the client after success-

fully authenticating the resource owner and obtaining authorization.

An example scenario is as follows: an end-user (resource owner) can grant a

printing service (client) access to her protected photos stored at a photo sharing ser-

vice (resource server), without sharing her username and password with the printing

4 Using a transport protocol other than HTTP is undefined by the specification.
5 OAuth 2.0 evolved from the OAuth WRAP [HTEG10] profile which has been deprecated.

60

service. Instead, she authenticates directly with a server trusted by the photo sharing

service (authorization server) which issues the service delegation-specific creden-

tials (access token).

A typical OAuth interaction is illustrated in Figure 2.21:

Fig. 2.21 OAuth 2.0 protocol flow

a. The client requests authorization from the resource owner. The authorization

request can be made directly to the resource owner (as shown), or preferably

indirectly via the authorization server as an intermediary.

b. The client receives an authorization grant which is a credential representing the

resource owner’s authorization, expressed using one of four grant types defined

in this specification or using an extension grant type. The authorization grant type

depends on the method used by the client to request authorization and the types

supported by the authorization server.

c. The client requests an access token by authenticating with the authorization

server and presenting the authorization grant.

d. The authorization server authenticates the client and validates the authorization

grant, and if valid issues an access token.

e. The client requests the protected resource from the resource server and authen-

ticates by presenting the access token.

f. The resource server validates the access token, and if valid, serves the request.

As we can see, two types of credentials are used in the protocol flow: the autho-

rization grant and the access token. A Privacy-ABC could be used for either one,

P Bichsel et al..

2 An Architecture for Privacy-ABCs 61

as we will describe in the following sections6. The OAuth protocol flow does not

allow presenting a dynamic policy to the client; if this functionality is needed, the

policy would need to be obtained and processed at the application layer; otherwise,

the application may use an implicit policy that drives the clients behaviour.

2.6.4.1 Authorization grant

The first step in the OAuth flow is for the client to request authorization from the

resource owner and getting back an authorization grant. The OAuth specification

defines four grant types (authorization code, implicit, resource owner password cre-

dentials, and client credentials) and provides an extension mechanism for defining

new ones.
Although one could use the authorization code or the client credential grant types,

the extension mechanism is better-suited to integrate ABC-based grants. How the
Privacy-ABC is obtained by the client is out-of-scope of the OAuth flow. To present
the Privacy-ABC to the authorization server, one could define a profile similar to the
SAML assertion one [MCM14]. For example, the client could send the following
access token request to the authorization server:

POST /token HTTP/1.1
Host: server.example.com
Content-Type: application/x-www-form-urlencoded;charset=UTF-8
grant_type=http://abc4trust.eu/oauth&abctoken=PEFzc2VGlv...

where the abctoken parameter would contain an encoding of a presentation

token (e.g., using a base64 encoding of the XML representation). As mentioned

above, the policy driving the clients presentation behaviour would be dealt with at

the application level (and might be fixed for an application).

2.6.4.2 Access token

An access token is issued by the authorization server to the client and later presented

to the resource server. The format and contents of the access token is not defined in

the OAuth specification, and therefore one could define a way to use a Privacy-ABC

to create an access token. This can be done by defining a new access token type (as

explained in Section 8.1 of [Har12]), or by encoding the presentation token content

into an existing extensible token type, such as the JSON Web Token [JWT].7

Since access tokens are typically long-lived, the issuance of the Privacy-ABC

can be done out-of-band of the OAuth protocol. It can also be done directly by

6 The OAuth specification does not describe how the resource owner authenticates the client before
issuing the authorization grant. Conceptually, this could also be done using an ABC.
7 The JSON Web Token format contains a set of attribute name and value pairs and corresponding
metadata (including a digital signature identified by an algorithm identifier). This is supported
by ABC technologies, but does not allow the representation of the most advanced features. JWT
extensions, such as the Proof-Of-Possession Semantics for JSON Web Tokens [JBT], might help
to enable all the ABC features.

62

the authorization server by embedding the issuance protocol messages in multiple

access token request-response runs (in which case the returned access tokens would

be the opaque issuance messages). When this process concludes, the client would

be able to create a valid ABC-based access token.

To present the ABC access token, client computes a valid presentation token us-

ing an application-specific resource policy (obtained out-of-band or implicitly de-

fined), encodes it in the right access token format, and includes it in the OAuth

protected resources access request.

2.6.5 X.509 PKI

Most of the schemes presented in this section require online interactions with an

Issuer to present attributes to a Relying Party. This provides flexibility about what

can be disclosed to the Relying Party, but impacts the privacy vis-à-vis the Issuer

(which typically learns where the attributes are presented). A Public Key Infrastruc-

ture (PKI) uses a different approach: PKI certificates encoding arbitrary attributes

and issued to users are typically long-lived. The decoupling of the issuance and

presentation protocols provides some privacy benefits to the user, but removes the

minimal disclosure aspect. Indeed, a Verifier will learn everything that is encoded in

a certificate even if a subset of the information would have been sufficient to make

its access decision. The integration of Privacy-ABC technology is therefore desir-

able to provide these privacy benefits while offering the same security level as in

PKI.

X.509 [CSF+08] is a popular PKI standard8 that defines two types of credentials:

public key and attribute certificates. A public key certificate contains a user public

key associated to a secret private key, and other metadata (serial number, a validity

period, a subject name, etc.) The certificate is signed by a Certificate Authority. An

attribute certificate, also signed by the CA, is tied to a public-key certificate and

can contain arbitrary attributes. Both types of certificates can also contain arbitrary

extensions.

The X.509 protocol flow is as follows. The client starts by generating a key pair,

and sends a certificate request that includes the generated public key to the Cer-

tificate Authority. The Certificate Authority creates, signs and returns the X.509

certificate to the client which stores it along with the associated private key. To

authenticate to a Relying Party, the client later uses the certificates private key to

sign a Relying Party-specified challenge (either a random number or an application-

specific message). The Relying Party verifies the signature and validates the certifi-

cate. This involves verifying the certificates Certificate Authority signature, making

sure that the Certificate Authority is a trusted issuer (is or is linked to a trusted root),

and making sure that the certificate has not expired and is not revoked. Checking

for non-revocation can be done by either checking that the certificates serial number

8 Other PKI systems exist, such as PGP [CDF+]. We will not consider them in this document, but
ABC integration would look similar.

P Bichsel et al..

2 An Architecture for Privacy-ABCs 63

does not appear on a Certificate Revocation List (CRL), or by querying an Online

Certificate Status Protocol (OCSP) responder.9 See Figure 2.22.

Fig. 2.22 X.509 protocol flow

Integrating Privacy-ABCs with X.509 certificates is possible and provides two

immediate benefits:

• Long-lived certificates support minimal disclosure (only the relevant properties

of encoded attributes are disclosed to the Relying Party rather than the full set of

attributes), and

• The users public key and the Certificate Authority signatures on the certificates

are unlinkable (the Certificate Authority and the Relying Parties cannot track and

trace the usage of the certificate based solely on these cryptographic values).

Two integration approaches are considered next. The first one consists of en-

coding the ABC artefacts contents in X.509 artefacts using ABC-specific algorithm

identifiers and extensions (i.e., the client would generate an X.509 certificate en-

coding the Privacy-ABCs contents at the end of the issuance protocol). Since the

presentation protocol of an X.509 certificate is not specified, the presentation token

artefact could be used almost as is, but including the modified X.509 certificate.

9 The mechanism and endpoint to be used are specified by the CA and encoded into the certificate.

64

The second and preferred10 approach would be to transform an existing X.509

certificate into a Privacy-ABC that can be presented to various Relying Parties. The

following example illustrates the concept: The protocol flow would be as follows:

1. The client visits the ABC issuer and presents her X.509 certificate.

2. After validating the certificate and its ownership by the User, the ABC Issuer

issues a Privacy-ABC encoding the certificates information into attributes:

a. The certificates expiration date is encoded in an attribute.

b. The certificates serial number is encoded as the revocation handle.

c. The revocation information (e.g., the CRL endpoint)11 is encoded in an

attribute.

d. The Certificate Authority identifier is encoded in an attribute.

e. The other certificate fields might also be encoded in the Privacy-ABC if

they need to be presented to Relying Parties.

3. The client later presents the ABC to the Verifier, disclosing the following infor-

mation:

a. Disclose the Certificate Authority identifier12 and revocation information

attributes.

b. Prove that the underlying certificate is not expired by proving that the undis-

closed expiration date is not before the current time.

c. Prove that the serial number does not appear on the current CRL (this can

be achieved using repetitive negation proofs on the CRL elements).13

4. The Verifier would perform these validation steps (on top of the normal ABC

validation):

a. Verify that the Certificate Authority is from a trusted set of issuers.

b. Retrieve the current CRL (using the disclosed revocation information) and

verify the non-revocation proof.

c. Verify the non-expiration proof.

After these steps, the Verifier is convinced that the user possesses a valid (i.e.,

non-expired, non-revoked) X.509 certificate from a trusted Certificate Authority.

10 We claim that this approach is preferred because of the broad existing code base implementing
X.509. It would be easier to develop an conversion module on top of existing X.509 components.
11 This example uses a CRL as the revocation mechanism. Using OCSP would also be possible by
having the client prove to the OCSP responder directly that the ABC is not revoked, and presenting
a freshly issued receipt to the Relying Party.
12 Alternatively, the client could prove that the CA is from a trusted set specified by the Verifier.
13 Alternatively, an ABC Revocation Authority could create an accumulator for the revoked values.

P Bichsel et al..

2 An Architecture for Privacy-ABCs 65

2.6.6 Integration Summary

The systems presented above follow a similar federated pattern of a Relying Party

requesting, through the user, login or attribute information from a trusted Identity

Provider. In PKI and OAuth the certified information (certificate and access token,

respectively) are typically obtained in advance and reused over time, while in the

other systems, the information is retrieved on-demand from the Identity Provider.

These architectures have some security, privacy, and scalability challenges that

might be problematic in some scenarios:

• The Identity Provider can often access the Relying Party using a users iden-

tity without the users knowledge. This is trivial in systems where the Iden-

tity Provider creates the pseudonym (like in SAML, OpenID, OAuth, WS-

Federation). In systems where a user secret is employed (like in PKI, or in some

WS-Trust profiles), this is more complicated but still could be possible.14 More-

over, Identity Providers can also selectively deny access to users by refusing to

issue security tokens (discriminating on the requesting user or requested service).

• For authentication depending on knowledge of a user secret (e.g., username/pass-

word), phishing attacks on the credential provided to the Identity Provider result

in malicious access to all Relying Parties that accept that identity.

• Strong authentication to the Identity Provider is often supported (including multi-

factor asymmetric-based authentication), but the resulting security tokens (e.g.,

SAML assertion, OAuth access token, OpenID authentication response) are typ-

ically weaker software-only bearer token which can be intercepted and replayed

by adversaries.

• The Identity Provider typically learns which Relying Party the user is trying to

access. For on-demand security token issuance, this information is often provided

to the Identity Provider in order to protect the security token (e.g., to encrypt it

for the Relying Party) or to redirect the user to the right location. When security

tokens are long-lived (like in PKI), this information is still available if the Identity

Providers and Relying Parties compare notes (since signatures on security tokens

generated using conventional cryptography are traceable).

• Central Identity Providers in on-demand federated systems limit the scalability

of the systems because if they are offline, users will not be able to access any

Relying Parties. This makes them interesting targets for denial of service attacks.

Privacy-ABC technologies help alleviate these issues by increasing the security,

privacy, and scalability of these systems. Indeed:

• Since Privacy-ABCs are by default untraceable, even when obtained on-demand,

Identity Providers are not able to track and trace the usage of the users informa-

tion.

14 As an example, in PKI, a Certificate Authority would not be able to re-issue a valid certificate
containing the users public key, but could re-issue one with a matching serial number and subject
and key identifiers often used for user authentication.

66

• Since Privacy-ABCs can be obtained in advance and stored by the user while

still being able to disclose the minimal amount of information needed for a par-

ticular transaction, the real-time burden of the issuer is diminished, improving

scalability.

• Since Privacy-ABCs are based on asymmetric cryptography, presenting login

pseudonyms and certified attributes involve using a private key unknown to the

Issuer, meaning that the Identity Provider (or another adversary) is unable to

hijack the users identity at a particular Relying Party.

Privacy-ABC technologies offer a wide range of features; not all of them trivially

compatible with the systems presented in this section. The important point is that

Privacy-ABC technologies offer a superset of the functionality and of the securi-

ty/privacy/scalability characteristics of these systems. Protocol designers and archi-

tects can therefore pick and choose which features and characteristics they would

like to use to improve existing systems or their future revisions.

It is also important to note that Privacy-ABC technologies can be used in con-

junction with these frameworks, since many real-life applications wont have the lux-

ury to modify the existing standards and development libraries. Most of the privacy

concerns occur in cross-domain data sharing, i.e., when information travels from

one domain to another. Therefore, an ABC proxy can be used as a privacy filter be-

tween domains using well-known federated token transformer pattern (such as the

WS-Trust STS). This is useful to avoid modifying legacy applications and infras-

tructure, and still benefit from the security and privacy properties of Privacy-ABC

technologies.

2.7 Trust Relationships in the Ecosystem of Privacy-ABCs

Several incidents in the past have demonstrated the existence of possible harm that

can arise from misuse of people’s personal information such as blackmailing, imper-

sonation, and so on. Giving credible and provable reassurances to people is required

to build trust and make people feel secure to use the electronic services offered

by companies or governments on-line. Indeed the use of Privacy-ABCs can help

mitigate many serious threats to user’s privacy. However, some risks still remain,

which are not addressed by Privacy-ABCs, requiring some degree of trust between

the involved entities. In this section, we focus on identifying the trust relationships

between the involved entities in the ecosystem of Privacy-ABCs and provide a con-

crete answer to “who needs to trust whom on what?”.

2.7.1 The Meaning of Trust

what do we mean by “trust”? A wide variety of definitions of trust exist in the bibli-

ography [Har04][O’H04]. A comprehensive study of the concept has been presented

P Bichsel et al..

2 An Architecture for Privacy-ABCs 67

in the work by McKnight and Chervany [MC96], where the authors provide a classi-

fication system for different aspects of trust. In their work, they define trust intention

as “the extent to which one party is willing to depend on the other party in a given
situation with a feeling of relative security, even though negative consequences are
possible.” [MC96]

Their definition embodies (a) the prospect of negative consequences in case the

trusted party does not behave as expected, (b) the dependence on the trusted party,

(c) the feeling of security, and the (d) situation-specific nature of trust. So, trust

intention shows the willingness to trust a given party in a given context, and implies

that the trusting entity has made a decision about the various risks of allowing this

trust.

2.7.2 Related Work

Some work already exists in trust relationships in identity management systems.

For example, Jøsang et al. [JP04] analyse some of the trust requirements in several

existing identity management models. They consider the federated identity manage-

ment model, as well as the isolated or the centralized identity management model

and they focus on the trust requirements of the users into the service and identity

providers, but also between the identity providers and service providers.

Delessy et al. [DFLP07] define the Circle of Trust pattern, which represents a

federation of service providers that share trust relationships. The focus of their work

however lies more on the architectural and behavioural aspects, rather than on the

trust requirements which must be met to establish a relationship between two enti-

ties.

Later, Kylau et al. [KTMM09] concentrated explicitly on the federated identity

management model and identify possible trust patterns and the associated trust re-

quirements based on a risk analysis. The authors extend their scenarios by consid-

ering also scenarios with multiple federations. Nevertheless, their work does not

match the ecosystem of Privacy-ABCs.

It seems that there is no work that discusses systematically the trust relationships

in identity management systems that incorporate Privacy-ABCs. However, some

steps have been done towards systematic threat analysis in such schemes, by the

establishments of a quantitative threat modelling methodology that can be used to

identify privacy-related risks on Privacy-ABC systems [LSK12].

2.7.3 Trust Relationships

To provide a comprehensible overview of the trust relationships, we describe the

trust requirements from each entity’s perspective. Therefore, whoever likes to realise

one of the roles in the ecosystem of Privacy-ABCs could easily refer to that entity

68

Fig. 2.23 Visualization of the trust relationships

and learn about the necessary trust relationships that need to be established. Figure

2.23 depicts an overview of the identified trust relationships between the involved

parties, which we will describe in the next sections. On the bottom of Figure 2.23,

the general trust requirements by all the parties are demonstrated.

2.7.3.1 Assumptions

Before delving into the trust relationships, it is important to elaborate on the assump-

tions that are required for Privacy-ABCs to work. Privacy-ABCs are not effective in

case of tracking and profiling methods that work based on network level identifiers

such as IP addresses or the ones in the lower levels. Therefore, in order to benefit

from the full set of features offered by Privacy-ABCs, the underlying infrastructure

must be privacy-friendly as well. If it is ensured that no additional information is be-

ing collected by the service providers, users can employ Privay-ABCs without any

concern. Otherwise, the recommendation for the users would be to employ network

anonymizer tools to cope with this issue.

Another important assumption concerns the verifiers’ enthusiasm for collecting

data. Theoretically, greedy verifiers have the chance to demand for any kind of infor-

mation they are interested in and avoid offering the service if the user is not willing

to disclose these information. Therefore, the assumption is that the verifiers reduce

the amount of requested information to the minimum level possible either due to

regulations or any other motivation such as not having to invest in technology to

protect the data.

P Bichsel et al..

2 An Architecture for Privacy-ABCs 69

2.7.3.2 Trust by all the parties

Independent from their roles, all the involved parties need to consider a set of fun-

damental trust assumptions that relates to design, implementation and setup of the

underlying technologies. It is worth noting that these kind of trust relationships ex-

ist for any kind of technologies. The most fundamental trust assumption by all the

involved parties concerns the theory behind the actual technologies utilized under-

neath. Everybody needs to accept that in case of a proper implementation and de-

ployment, the cryptographic protocols will offer the functionalities and the features

that they claim. However, this trust relationship can be relaxed by making the secu-

rity proofs publicly available so that different expert communities can verify them

and vouch for their correctness.

T1 All the involved parties need to put trust in the correctness of the underlying
cryptographic protocols.

Even a protocol that is formally proven to be privacy preserving does not operate

appropriately when the implementation is flawed. Consequently, the realization of

the corresponding cryptographic protocol and the related components must be trust-

worthy. For example, the Users need to trust the implementation of the so-called

UserAgent and the smart card application meaning that they must rely on the as-

sertion that the provided hardware and software components do not misbehave in

any way and under any circumstances, which might jeopardise the User’s privacy.

It is worth noting that there are mechanisms such as formal verification and code
inspection which can boost the users’ trust in the implementations.

T2 All the involved parties need to put trust in the trustworthiness of the imple-
mented platform and the integrity of the defined operations on each party.

A correct implementation of privacy preserving technologies cannot be trustwor-

thy when the initialization phase has been compromised. For example, some cryp-

tographic parameters need to be generated in a certain way in order to guaranty the

privacy preserving features of a given technology. A diversion in the initialization

process might introduce vulnerabilities to the future operation of the users. Never-

theless, it is possible to provide some information to the public so that the experts

can check whether the initialization is done properly.

T3 All the involved parties need to put trust in the trustworthiness of the system
setup and the initialization process.

2.7.3.3 Users’ Perspective

In typical scenarios, verifiers grant access to some services based on the credentials

that the users hold. A malicious issuer can trouble a user and cause denial of ser-

vice by not providing credible credentials in time or deliberately embedding invalid

70

information in the credentials. For example, in case of a discount voucher scenario,

the issuer of the vouchers can block some specific group of users with fake technical

failures of the issuance service until the offer is not valid anymore.

T4 The users need to put trust in the issuers delivering accurate and correct cre-
dentials in a timely manner.

When designing a credential, the issuer must take care that the structure of the

attributes and the credential will not impair the principle of minimal disclosure. For

example, embracing name and birth date in another attribute such as registration id

is not an appropriate decision since presenting the latter to any verifier results in

undesirable disclosure of data. In this regard, making the credential specifications

public enables the independent auditors to review them and therefore reduce the

concerns of the users who might not have the knowledge to evaluate the credentials

on their own.

T5 The users need to trust that the issuers design the credentials in an appropriate
manner, so that the credential content does not introduce any privacy risk itself.

Similar to any other electronic certification system, dishonest issuers have the

possibility to block a user from accessing a service without any legitimate reason

by revoking her credentials. Therefore the users have to trust that the issuer has no

interest in disrupting users activities and will not take any action in this regard as

long as the terms of agreement are respected.

T6 The users need to trust that the issuers do not take any action to block the use
of credentials as long as the user complies with the agreements.

It is conceivable that a user loses control over her credentials and therefore con-

tacts the issuer requesting for revocation of those credentials. If the issuer delays

processing the user’s request the lost or stolen credentials can be misused to harm

the owner.

T7 The users need to trust that the issuers will promptly react and inform the re-
vocation authorities when the users claim losing control over their credentials.

One of the possible authentication levels using Privacy-ABCs is based on a so-

called scope-exclusive pseudonym where the verifier is able to impact the generation

of pseudonyms by the users and limit the number of partial identities that a user can

obtain in a specific context. For example, in case of an on-line course evaluation

system, the students should not be able to appear under different identities and sub-

mit multiple feedbacks even though they are accessing the system pseudonymously.

In this case, the verifier imposes a specific scope to the pseudonym generation pro-

cess so that every time a user tries to access the system, it has no choice other than

P Bichsel et al..

2 An Architecture for Privacy-ABCs 71

showing up with the same pseudonym as the previous time in this context. In this sit-

uation, a dishonest verifier can try to unveil the identity of a user in a pseudonymous

context or correlate actives by imposing the “same” scope identifier in generation of

pseudonyms in another context where the users are known to the system. However,

similar to some other trust relationships, independent auditors could attest these

policies when they are publicly available.

T8 The users need to trust that the verifiers do not misbehave in defining policies
in order to cross-link different domains of activities.

If a revocation process exists in the deployment model, the user needs to trust the

correct and reliable performance of the revocation authority. Delivering illegitimate

information or hindrance to provide genuine data can disrupt granting user access

to her desired services.

T9 The users need to trust that the revocation authorities perform honestly and do
not take any step towards blocking a user without legitimate grounds.

Depending on the revocation mechanism setting, the user might need to show up

with her identifier to the revocation authority in order to obtain the non-revocation

evidence of her credentials for an upcoming transaction. If the revocation authority

and the verifier collude, they might try to correlate the access timestamps and there-

fore discover the identity of the user who requested a service. A possible way to

reduce this risk would be to regularly update the non-revocation evidence indepen-

dent of their use of credentials.

T10 The users need to trust that the revocation authorities do not take any step
towards collusion with the verifiers in order to profile the users.

Embedding encrypted identifying information within an authentication token for

inspection purposes makes the users dependent of the trustworthiness of the inspec-

tor. As soon as the token is submitted to the verifier, the inspector is able to lift the

anonymity of the user and disclose her identity. Therefore the role of inspector must

be taken by an entity that a user has established trust relationship with. Neverthe-

less, there exist techniques that could help to avoid putting trust on a single entity

but a group of inspectors. In this case, a minimum number of inspectors need to

collaborate in order to retrieve the identity information from the presentation token.

T11 The users need to trust that the inspectors do not disclose their identities with-
out making sure that the inspection grounds hold.

72

2.7.3.4 Verifiers’ Perspective

Provisioning of the users in the ecosystem is one of the major points where the ver-

ifiers have to trust the issuers to precisely check upon the attributes that they are

attesting. It holds for any certification scheme that the verifiers rely on the certi-

fied information by the issuers for the authentication phase, therefore the issuers

assumed to be trustful.

T12 The verifiers need to trust that the issuers are diligent and meticulous when
evaluating and attesting the users’ attributes.

When a user loses her credibility, it is the issuer’s responsibility to take the ap-

propriate action in order to block the further use of the respective credentials. There-

fore, the verifiers rely on the issuers to immediately request revocation of the user’s

credentials when a user is not entitled anymore.

T13 The verifiers need to trust that the issuers will promptly react to inform the
revocation authorities when a credential loses its validity.

In an authentication scenario where inspection is enabled, the only party who

is able to identify a misbehaving user is the inspector. The verifier is not able to

deal with the case if the inspector does not to cooperate. Therefore, similar to trust

relationship T11 by the users, the verifiers dependent of the fairness and honesty

of the inspector. Moreover, in a similar fashion, the trust can be distributed to more

than one inspector to reduce the risk of misbehaviour. In this case, a subset of all the

inspectors would enough to proceed with the inspection.

T14 The verifiers need to trust that the inspectors fulfil their commitments and will
investigate the reported cases fairly and deliver the identifiable information in case
of verified circumstances.

The validity of credentials without expiration information is checked through the

information that the verifier acquires from the revocation authority. A compromised

revocation authority can deliver outdated or illegitimate information to enable a user

to get access to resources even with revoked credentials. Therefore the revocation

authority needs to be a trusted entity from the verifiers’ perspective.

T15 The verifiers need to trust that the revocation authorities perform honestly and
deliver the latest genuine information to the verifiers.

Often user credentials are designed for individual use, and sharing is not allowed.

Even though security measures such as hardware tokens can be employed to support

this policy and limit the usage of the credentials to their owners, the users can still

share the tokens and let others benefit from services that they are not normally eli-

gible for. The verifiers have no choice than trusting the users and the infrastructure

on this matter.

P Bichsel et al..

2 An Architecture for Privacy-ABCs 73

T16 The verifiers need to trust that the users do not share their credentials with
the others, if this would be against the policy.

2.7.3.5 Issuers’ Perspective

As mentioned earlier T13, the issuer is responsible to take the appropriate steps to

block further use of a credential when it loses its validity. The issuer has to initiate

the revocation process with the revocation authority and trust that the revocation

authority promptly reacts to it in order to disseminate the revocation status of the

credential. For instance, when a user cancels her subscription for an online maga-

zine, the publisher would like to stop her access to the service right after the termi-

nation of the contract. A compromised revocation authority can delay or ignore this

process to let the user benefit from existing services.

T17 The Issuers need to trust that the revocation authorities perform honestly and
react to the revocation requests promptly and without any delay.

2.7.3.6 Inspectors’ Perspective

In order to have a fair inspection process, the inspection grounds must be precisely

and clearly communicated to the users in advance. It can be said that presenting

inspection grounds is as challenging as privacy policies where long, ambiguous and

tedious texts would cause typical users to overlook or misunderstand the conditions.

Therefore, in case of an inspection request, the inspector has to rely on the verifier

that the users had been informed about these conditions properly.

T18 The Inspector need to trust that the verifier has properly informed the users
about the actual circumstances that entitle the verifier for de-anonymisation of the
users.

2.7.3.7 Revocation Authorities’ Perspective

Revocation authorities are in charge of delivering up-to-date information about the

credentials’ revocation status to the users and the verifiers. However, they are not in

a position to decide whether a credential must be revoked or not, without receiving

revocation requests from the issuers. Therefore, their correct operations depends on

the diligent performance of the issuers.

T19 In order to provide reliable service, the revocation authorities need to trust
that the issuers deliver legitimate and timely notice of the credentials to be revoked.

74

2.8 Policy-based View of the Architecture

Policy can be represented at different levels, ranging from business goals to device-

specific configuration parameters [WSS+01]. In this section, with the term “policy”

we refer to a more abstract concept than the issuance policy and presentation pol-
icy artefacts of ABC4Trust. We consider policy to be “a definite goal, course or

method of action to guide and determine present and future decisions”, as defined

in [WSS+01] . A view on the ABC4Trust architecture from this policy perspective

delivers useful observations, even though policy handling is something that happens

at a layer higher than the ABC4Trust architecture.

The ABC4Trust architecture does not define the roles and the corresponding op-

erational processes for Policy Decisions Points (PDP) [WSS+01] and Policy En-

forcement Points (PEP) [WSS+01], as this falls outside of its scope. However, we

would like to emphasize that the ABC4Trust architecture offers valuable technical

possibilities, awareness of which can be useful when designing and implementing

PDPs. In the next step, it provides the technical means to support the Policy Actions

[WSS+01] and enables the PEPs. To elaborate more, we consider an example for

different stages in the life-cycle of Privacy-ABCs, namely, issuance, presentation,

revocation and inspection. Specifically for the inspection and revocation phase, let

us take the example of the Söderhamn pilot, which supports both.

One of the interesting features of Privacy-ABCs that concerns the credential is-

suance phase is the carry-over attribute. It allows blind transfer of an attribute value

from another credential to the one being issued. A typical use of such mechanism

is when the credential is issued to anonymous users but the issuer needs to make

sure that the new credential cannot be transferred to anybody else. Therefore, the

issuer binds the credential to the user’s identity (e.g., Passport NR), retrieved as an

attribute from another trusted credential that the users holds, but without actually

being able to see the attribute value. Knowing about such a feature, which does

not exist in the common identity management platforms, could prevent the decision

makers from investing in much more expensive infrastructure and processes in or-

der to achieve the same goal. When such a decision is made, it can be expressed in

the XML artefact issuance policy and enforced when a credential issuance is taking

place.

With regard to the presentation phase, the knowledge that attributes can be tech-

nically treated separately helps privacy advocates make the argument that creden-

tials should only contain the minimum information, e.g. whether the user is of legal

age and that there is no need to collect more information, while still all the required

guarantees are offered to the relaying party.

Taking the Söderhamn pilot as an example: the school administration acted as

a PDP by deciding (for compliance with Swedish regulations for schools) that the

School Community Interaction Platform must make it possible for misbehaving stu-

dents to be identified - in specific cases such as bullying or harassment. The decision

was expressed in the presentation policy of the various sections of the system so that

only Privacy-ABC presentation tokens with inspectable data would be considered to

grant access to the activity area. As a result, there was a process to reveal the iden-

P Bichsel et al..

2 An Architecture for Privacy-ABCs 75

tity of misbehaving students in extraordinary circumstances. The PEP was where

the system requested the users to include inspection data in their Privacy-ABC pre-

sentation tokens to access a resource. A possible further PEP would at the entity

executing the inspection (possibly the school management together with another

entity, so that the 4-eye principle would be followed). Note that Privacy-ABCs al-

low to change the policy requiring inspectable tokens at any point in time without

the need to reissue credentials.

In the case of credential revocation, the school administration decided that who-

ever is not part of the school anymore should not be able to participate in the ac-

tivities of the community platform. This decision was reflected by the application

designers in the credential specification as well as the deployment architecture in

order to enable the revocation process. We can consider two points where the policy

enforcement was taking place: The first point was at the submission of the revo-

cation request by the school administration to the revocation authority. In the next

stage, the policy was enforced everytime the platform refused to give access to a

user with a revoked credential.

References

[abc] ABC4Trust EU Project. https://www.abc4trust.eu.
[ASN08] Abstract syntax notation one (ASN.1), 2008. International Telecom-

munication Union - ITU-T recommendation X.680.

[Bar02] Bartel, Mark and Boyer, John and Fox, Barb and LaMacchia, Brian and

Simon, Ed. XML-Signature Syntax and Processing. http://www.
w3.org/TR/2002/REC-xmldsig-core-20020212/, Febru-

ary 2002.

[BBE+14] Thomas Baignères, Patrik Bichsel, Robert R Enderlein, Hans Knud-

sen, Kasper Damgård, Jonas Jensen, Gregory Neven, Janus Nielsen,

Pascal Paillier, and Michael Stausholm. Final Reference Im-

plementation. Deliverable D4.2, The ABC4Trust EU Project,

2014. Available at https://abc4trust.eu/download/D4.
2%20Final%20Reference%20Implementation.pdf, Last

accessed on 2014-11-08.

[BCD+14] Patrik Bichsel, Jan Camenisch, Maria Dubovitskaya, Robert R. En-

derlein, Stephan Krenn, Ioannis Krontiris, Anja Lehmann, Gregory

Neven, Janus Dam Nielsen, Christian Paquin, Franz-Stefan Preiss,

Kai Rannenberg, Ahmad Sabouri, and Michael Stausholm. Archi-

tecture for Attribute-based Credential Technologies - Final Version.

Deliverable D2.2, The ABC4Trust EU Project, 2014. Available

at https://abc4trust.eu/download/Deliverable_D2.
2.pdf, Last accessed on 2014-11-08.

[Bra] Stefan Brands. The ID Corner blog. The problem(s) with OpenID.

http://www.untrusted.ca/cache/openid.html.

76

[CDF+] J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and R. Thayer.

OpenPGP Message Format. http://www.rfc-editor.org/
rfc/rfc4880.txt.

[Cha83] David Chaum. Blind signatures for untraceable payments. In Advances
in cryptology, pages 199–203. Springer, 1983.

[CKL+14] Jan Camenisch, Stephan Krenn, Anja Lehmann, Gert Læssø

e Mikkelsen, Gregory Neven, and Michael østergaard Peder-

sen. Scientific Comparison of ABC Protocols: Part I For-

mal Treatment of Privacy-Enhancing Credential Systems. De-

liverable D3.1, The ABC4Trust EU Project, 2014. Avail-

able at https://abc4trust.eu/download/Deliverable\
%20D3.1\%20Part\%201.pdf, Last accessed on 2014-11-08.

[Cro06] Douglas Crockford. The application/json media type for JavaScript

Object Notation (JSON). Technical Report RFC 4627, Internet Engi-

neering Taskforce (IETF), 2006.

[CSF+08] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and

W. Polk. RFC 5280 - Internet X.509 Public Key Infrastructure Certifi-

cate and Certificate Revocation List (CRL) Profile. Technical report,

IETF, May 2008.

[DFLP07] Nelly Delessy, Eduardo B Fernandez, and Maria M Larrondo-Petrie.

A pattern language for identity management. In Computing in the
Global Information Technology, 2007. ICCGI 2007. International
Multi-Conference on, pages 31–31. IEEE, 2007.

[DW10] Arkajit Dey and Stephen Weis. PseudoID: Enhancing Privacy in Fed-

erated Login. In Hot Topics in Privacy Enhancing Technologies, pages

95–107, 2010.

[Fac] Facebook Login. https://developers.facebook.com/
products/login/.

[Fid] Fido Alliance. http://fidoalliance.org.

[Har04] Russell Hardin. Trust and trustworthiness, volume 4. Russell Sage

Foundation, 2004.

[Har12] Dick Hardt. OAuth 2.0 Authorization Protocol. http://tools.
ietf.org/html/rfc6749, October 2012.

[HBH07] Dick Hardt, Johnny Bufu, and Josh Hoyt. OpenID Attribute Exchange

1.0. http://openid.net/specs/openid-attribute-
exchange-1_0.html, December 2007.

[HTEG10] D. Hardt, A. Tom, B. Eaton, and Y. Goland. OAuth Web Resource Au-

thorization Profiles. http://tools.ietf.org/html/draft-
hardt-oauth-01, January 2010. draft version 19 at time of writ-

ing.

[JBT] M. Jones, J. Bradley, and H. Tschofenig. Proof-Of-Possession Seman-

tics for JSON Web Tokens (JWTs). http://tools.ietf.org/
html/draft-jones-oauth-proof-of-possession-00.

P Bichsel et al..

2 An Architecture for Privacy-ABCs 77

[JP04] Audun Jøsang and Stéphane Lo Presti. Analysing the relationship be-

tween risk and trust. In Trust Management, pages 135–145. Springer,

2004.

[JWT] Json web token (jwt). http://datatracker.ietf.org/doc/
draft-ietf-oauth-json-web-token. draft version 19 at

time of writing.

[KBC05] Tadayoshi Kohno, Andre Broido, and Kimberly C Claffy. Remote

physical device fingerprinting. Dependable and Secure Computing,
IEEE Transactions on, 2(2):93–108, 2005.

[KTMM09] Uwe Kylau, Ivonne Thomas, Michael Menzel, and Christoph Meinel.

Trust requirements in identity federation topologies. In Advanced In-
formation Networking and Applications, 2009. AINA’09. International
Conference on, pages 137–145. IEEE, 2009.

[LSK12] Jesus Luna, Neeraj Suri, and Ioannis Krontiris. Privacy-by-design

based on quantitative threat modeling. In Risk and Security of Internet
and Systems (CRiSIS), 2012 7th International Conference on, pages

1–8. IEEE, 2012.

[MC96] D. Harrison Mcknight and Norman L. Chervany. The Meanings of

Trust. Technical report, University of Minnesota, 1996.

[MCM14] C. Mortimore, B. Campbell, and Jones M. SAML 2.0 Bearer Asser-

tion Profiles for OAuth 2.0. http://tools.ietf.org/html/
draft-ietf-oauth-saml2-bearer-19, March 2014. draft

version 19 at time of writing.

[O’H04] Kieron O’Hara. Trust: From Socrates to Spin. Icon Books Ltd, 2004.

[Ope] OpenID Connect. http://openid.net/connect/.

[Ope07] OpenID Authentication 2.0. http://openid.net/specs/
openid-authentication-2_0.html, December 2007.

[SAM05] Assertions and Protocols for the OASIS Security Assertion Markup

Language (SAML) V2.0. http://docs.oasis-open.org/
security/saml/v2.0/saml-core-2.0-os.pdf, March

2005.

[UPW11] U-Prove WS-Trust Profile V1.0. http://www.microsoft.com/
u-prove, March 2011.

[WS-12] WS-Trust 1.4. http://docs.oasis-open.org/ws-sx/ws-
trust/v1.4/ws-trust.html, April 2012.

[WSF09] Web Services Federation Language (WS-Federation) Version 1.2.

http://docs.oasis-open.org/wsfed/federation/
v1.2/os/ws-federation-1.2-spec-os.html, May 2009.

[WSS+01] Andrea Westerinen, John Schnizlein, John Strassner, Mark Scherling,

Bob Quinn, Jay Perry, Shai Herzog, An-Ni Huynh, Mark Carlson, and

Steve Waldbusser. Terminology for Policy-Based Management. Inter-

net RFC 3198, November 2001.

[WSS07] WS-SecurityPolicy 1.2. http://docs.oasis-open.org/ws-
sx/ws-securitypolicy/200702/ws-securitypolicy-
1.2-spec-cs.html, April 2007.

78

[WST09] WS-Trust 1.4. http://docs.oasis-open.org/ws-sx/ws-
trust/v1.4/os/ws-trust-1.4-spec-os.html, February

2009.

P Bichsel et al..

http://www.springer.com/978-3-319-14438-2

	2 An Architecture for Privacy-ABCs
	2.1 Concepts and Features of Privacy-ABCs
	2.1.1 User Attributes
	2.1.2 Existing Solutions
	2.1.3 Basic Concepts of Privacy-ABCs
	2.1.3.1 Credentials
	2.1.3.2 Presentation
	2.1.3.3 Key Binding
	2.1.3.4 Pseudonyms
	2.1.3.5 Inspection
	2.1.3.6 Credential Issuance
	2.1.3.7 Revocation

	2.1.4 Security and Privacy Features
	2.1.4.1 Basic Presentation
	2.1.4.2 Key Binding
	2.1.4.3 Advanced Issuance
	2.1.4.4 Pseudonyms
	2.1.4.5 Inspection
	2.1.4.6 Revocation

	2.2 Architecture Highlights
	2.3 Architectural Design
	2.3.1 Overview of the Components
	2.3.1.1 Application Layer
	2.3.1.2 ABCE Layer
	2.3.1.3 Crypto Layer
	2.3.1.4 Storage & Communication Components

	2.4 Deployment of the Architecture
	2.4.1 Setup and Storage
	2.4.2 Presentation of a Token
	2.4.3 Issuance of a Credential
	2.4.3.1 Simple Issuance
	2.4.3.2 Advanced Issuance
	2.4.4 Inspection
	2.4.5 Revocation

	2.5 Language Framework
	2.5.1 Example Scenario
	2.5.2 Credential Specification
	2.5.3 Issuer, Revocation, and System Parameters
	2.5.4 Presentation Policy with Basic Features
	2.5.5 Presentation and Issuance Token
	2.5.6 Presentation Policy with Extended Features
	2.5.7 Interaction with the User Interface

	2.6 Applicability to Existing Identity Infrastructures
	2.6.1 WS-*
	2.6.2 SAML
	2.6.3 OpenID
	2.6.4 OAuth
	2.6.4.1 Authorization grant
	2.6.4.2 Access token

	2.6.5 X.509 PKI
	2.6.6 Integration Summary

	2.7 Trust Relationships in the Ecosystem of Privacy-ABCs
	2.7.1 The Meaning of Trust
	2.7.2 Related Work
	2.7.3 Trust Relationships
	2.7.3.1 Assumptions
	2.7.3.2 Trust by all the parties
	2.7.3.3 Users’ Perspective
	2.7.3.4 Verifiers’ Perspective
	2.7.3.5 Issuers’ Perspective
	2.7.3.6 Inspectors’ Perspective
	2.7.3.7 Revocation Authorities’ Perspective

	2.8 Policy-based View of the Architecture
	References

