
Chapter 2
Observability Property of AC Machines

Abstract In many cases the implementation of control algorithms requires the
knowledge of all the components of the state vector. However, because of the high
cost of sensors, the reduction of the physical space inside or around the motor, the
weight, or the increase of the system complexity, it is often necessary to limit the
number of sensors. A similar situation arises when a sensor breaks down. A solution
to avoid these difficulties is to eliminate the sensors by replacing them with soft sen-
sors, which are well known as observers in control theory. The soft sensor can also
be used to increase the reliability by redundancy with respect to hardware sensors.
However, before designing an observer, it is necessary to verify if the system satis-
fies the observability property. Several techniques and tools have been developed to
study whether a nonlinear system is observable or not. Generally, the observability
property of a nonlinear system can depend on the inputs. An analysis of the inputs
applied to the system is then required to verify if there exist some input that renders
the system unobservable. It is clear that in this case the observer may not work cor-
rectly. Usually, these inputs are used to control the system, so they are necessary.
It is possible to deal with this problem by introducing a class of inputs for which
it is conceivable to construct an observer. These inputs are called persistent inputs:
inputs with a sufficient quantity of information, so that the observability property is
retained. Regarding AC machines, an intrinsic characteristic is that the observability
property of the machines is, in most cases, lost at low speed. This phenomenon lim-
its the implementation or degrades the performance of the control algorithms. Then,
from the mathematical model of AC machines, a study of the observability property
has to be made. If this property is satisfied from the only available measurements,
i.e., currents and voltages, the next step is to check if a nonlinear observer can be
designed to estimate the nonmeasurable variables, in order to be able to implement
the control algorithms.

2.1 Observability Property of AC Machines

The purpose of this chapter is first to introduce definitions and concepts about the
observability theory and observer normal forms for nonlinear systems, and then to
apply these concepts to ACmachines.More precisely, for the PMSM it will be shown
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46 2 Observability Property of AC Machines

that if the angle position and/or rotor speed are notmeasurable, it is necessary to check
under which conditions themachine is observable. Similarly, it will be shown that for
IM, since the rotor flux is not easily measurable and if the rotor speed measurement
is not available, then the observability of the machine is affected. This information
can be used to know if it is possible to reconstruct the nonmeasurable components
of the state.

A way to reconstruct the state of the system is the use of an observer. An observer
is a mathematical algorithm (often called soft sensor) which is able to reconstruct the
state of the system from the limited information obtained from the measured output
and the input.

In this chapter, the observation problem of nonlinear systems is presented. Con-
trary to the linear systems, the observability of the nonlinear systems can depend
on the applied input. Taking into account this difficulty, definitions and concepts to
determine if a nonlinear system is observable will be introduced.

It is well known that if a linear system is observable, it is possible to design an
observer to reconstruct the nonmeasurable state. However, for nonlinear system, even
if the system is observable, it is not obvious how to design an observer. To overcome
this difficulty some solutions have been proposed. For example, there is a class of
nonlinear systems that, by means of a diffeomorphism, can be transformed into a
linear system plus an input–output injection, for which it is possible to design an
observer, called the nonlinear Luenberger observer.

On the other hand, there is another class of nonlinear systems, such that after a
transformation of coordinates, can be represented into a nonlinear system for which
the observability property is preserved for any input. For this class of systems several
results have been proposed how to design an observer.

By contrast, there is a class of nonlinear systems where the observability depends
on the input, i.e., there are inputs rendering the system unobservable. However,
for such a class of systems the observability property can be preserved provided
the input is persistent [3]. In this case, the observer design is possible for such a
class of nonlinear systems, working in the presence of inputs that render the system
unobservable.

Taking into account the above, note that there is no normal (canonical) observ-
ability form for general nonlinear systems, for which it is possible to construct an
observer.

The purpose of this chapter is to analyze the observability property of the PMSM
and the IM, and to establish the conditions to reconstruct the nonmeasurable state of
these machines.

More precisely, first, an analysis of the observability property for nonlinear sys-
tems is presented. After that, since the observability of the system depends on the
input, definitions on the different classes of inputs will be introduced. Finally, several
structures have been introduced for which it is possible to design an observer.
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2.2 Observability

First of all, what is observability? The answer to this question is: Observability is
the possibility to reconstruct the full trajectory of the system from the data obtained
from the input and output measurements.

2.2.1 Observability of Linear Systems

The observability theory of linear systems is well known. The main result is the
observability of the linear systems only requires the output measurements and thus
does not depend on the input applied to the system. The methodology to verify this
property is based on the Kalman criteria of observability. This criteria is verified
from the structural representation of the linear system.

The observability of a linear system can be established as follows:
A time invariant linear system is represented by

{
ẋ = Ax + Bu
y = Cx

(2.1)

where x(t) ∈ �n represents the state, u(t) ∈ �m is the input and y(t) ∈ �p is the
output; and A, B, and C are matrices of compatible dimensions. System (2.1) is
observable, if and only if the observability matrix OA,C

OA,C =

⎡
⎢⎢⎢⎣

C
C A
...

C A(n−1)

⎤
⎥⎥⎥⎦

has full rank, i.e., rankOA,C = n, where n is the dimension of the system.
Notice that this condition is independent of the input applied to the system. Fur-

thermore, this result can be extended to the Linear Time-Variant systems.

2.2.2 Observability of Nonlinear Systems

In this section, the observability property of a nonlinear system will be investigated.
Furthermore, since the observability of a nonlinear system can be lost, tools to

verify under what conditions a nonlinear system are observable will be introduced.
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The observability analysis of a nonlinear system can be divided into two main
cases when:

(1) the observability property of the system is independent of the input,
(2) the observability property depends on the input.

For the class of systems where the observability property does not depend on the
input, we can find some normal (canonical) forms for which it is possible to design
an observer. This class of nonlinear systems, which can be transformed into such a
canonical form is called the u uniformly observable systems class.

However, if the observability property can be lost when an input is applied to the
system, the observer design becomes more difficult and it is necessary to take into
account this class of inputs.

On the other hand, several methodologies have been proposed to estimate the state
of nonlinear systems. A classical approximate methodology to design an observer is
to apply linear techniques to estimate the system state. The first step is the approxi-
mate linearization of the nonlinear system around an equilibrium point. The resulting
linearized system can be used to design an observer. Of course, this observer can
only be efficient around the equilibrium point. Another way to construct an observer
is based on the algorithm called the Extended Kalman Filter.

The Extended Kalman Filter is widely used, because its design is relatively simple
and this observer gives good results for the nonlinear system observation. However,
there is no theoretical justification concerning its effectiveness and no analytic proof
of convergence. The observer works in a neighborhood of a particular point, which
limits its dynamic performance. Another possibility to design an observer for a
nonlinear system is to transform it into another system for which a class of observers
is known. For this purpose, several methodologies have been proposed to transform
a nonlinear system into particular classes of general nonlinear systems. For example,
in [46] for the SISO case and in [75] for the MIMO case, a nonlinear system is
transformed into a linear system (or a linear systemplus an output injection) forwhich
it is possible to design a linear observer called aGeneral Luenberger Observer.When
this transformation does not exist, it is possible to search to transform the nonlinear
system to a linear time-variant system plus an input–output injection for which an
exact Kalman Like Observer can be designed [83].

An Extension of the Kalman Filter (EKF) for the deterministic nonlinear systems
is the high gain observer provided that the system can be transformed into a canonical
representation, for which the observability property is satisfied for any input.

Before introducing the main results of the observability theory for the nonlinear
systems, we introduce some definitions and concepts from the nonlinear control
theory [65].

Let q be a point in En , a n-dimensional Euclidean space, and U a neighborhood
of q.

Let ϕ(q) = (x1(q), . . . , xn(q)) : U → V ⊂ �n be a homeomorphism, that is
bijective, with ϕ and ϕ−1 continuous. (U,ϕ) is called a coordinate neighborhood
or coordinate chart and the real numbers x1(q), . . . , xn(q); which vary continuously
are local coordinates of q ∈ En, xi (q) is called the ith coordinate function.
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If both ϕ and ϕ−1 are smooth maps, ϕ is called a diffeomorphism. If both ϕ and
ϕ−1 are defined in �n and are smooth maps, ϕ is called a global diffeomorphism.

Given two coordinates neighborhoods (U,ϕ) and (W,ψ), withU ∩W �= 0 where
ϕ(q) = (x1(q), . . . , xn(q)), and ψ(q) = (z1(q), . . . , zn(q)). The homeomorphism

ψ ◦ ϕ−1 : �n → �n

is a coordinate transformation in U ∩ W , i.e.,

z(x) = ψ ◦ ϕ−1(x).

If x and z are represented by vectors with n components, namely

x =
⎡
⎢⎣

x1
...

xn

⎤
⎥⎦ , z =

⎡
⎢⎣

z1
...

zn

⎤
⎥⎦ (2.2)

the coordinate transformations are expressed by n real valued continuous functions
defined in �n , i.e.,

x =
⎡
⎢⎣

x1(z1, . . . , zn)
...

xn(z1, . . . , zn)

⎤
⎥⎦ , z =

⎡
⎢⎣

z1(x1, . . . , xn)
...

zn(x1, . . . , xn)

⎤
⎥⎦ . (2.3)

A well-known result from calculus which provides a sufficient condition for a map
to be a diffeomorphism is given next.

Theorem 2.1 (Inverse Function) Let U an open subset of �n and let ϕ = (ϕ1, . . .

ϕn) : U → �n be a smooth map. If the Jacobian matrix

∂ϕ

∂x
=

⎡
⎢⎢⎢⎣

∂ϕ1

∂x1
· · · ∂ϕ1

∂xn· · · · · · · · ·
∂ϕn

∂x1
· · · ∂ϕn

∂xn

⎤
⎥⎥⎥⎦ (2.4)

is nonsingular at some point p ∈ U, then there exists a neighborhood V ⊂ U of q
such that ϕ : V → ϕ(V ) is a diffeomorphism.

Let h : U ⊂ En → � be a real-valued function defined on U . Depending on
the coordinate neighborhoods (U,ϕ) chosen, the function h is expressed in local
coordinates as

hϕ = h ◦ ϕ−1 : �n → �.

The expression hϕ depends on the chosen local coordinates.
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The differential of a smooth function h : U ⊂ En → � is defined in local
coordinates as

dh = ∂h

∂x1
dx1 + · · · + ∂h

∂xn
dxn (2.5)

and may be seen as the product of a row vector with the differential column vector
of the state

dh =
[

∂h

∂x1
, . . . ,

∂h

∂xn

]
dx . (2.6)

Consider the following class of nonlinear systems of the form

{
ẋ(t) = F(x(t), u(t))
y(t) = h(x(t))

(2.7)

where x(t) ∈ �n represents the state, u(t) ∈ �m is the input and y(t) ∈ �p is the
output; F is a smooth vector field and h is C∞ function.

Definition 2.1 ([46]) The Lie derivative of the function hi along the vector field F

is defined as

LFhi (x) = ∂hi

∂x
F.

Furthermore, d L j
F

hi , i = 1, . . . , p; j = 1, . . . , m; are the differentials of the Lie
derivative of function hi along the vector field F, denoted as

d L j
F

hi = ∂L j−1
F

hi

∂x
F.

2.2.2.1 Observability and Classes of Inputs

For a complete study of the observability property,we now introduce somedefinitions
on the observability of nonlinear systems [42].

Definition 2.2 (Indistinguishability) For system (2.7), two points x and x ∈ �n are
indistinguishable if for every applied input

u(t), ∀T > 0

the outputs h(x(t)) and h(x(t)) are identical on [0, T ], where x and x are the
trajectories, issues of x and x at time t = 0.

Note I(xo) the set of all points that are indistinguishable from x0.
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Definition 2.3 (Observability)

System (2.7) is observable at xo, if I(xo) = xo.
System (2.7) is observable, if I(x) = x for all x ∈ �n .

Furthermore, for any pair of distinct points (x, x), there exists an input which
distinguishes them on the interval [0, T ], for T > 0.

Notice that observability is a global concept. A local concept, which is stronger
than the observability, will be defined.

Definition 2.4 Let be x0 ∈ �n and V ⊂ �n a neighborhood of x0. x1 ∈ V is said
V -indistinguishable of x0, if x1 is indistinguishable of x0.

A weaker result is that which consists to distinguish a point from its neighborhood.

Definition 2.5 (Weak Observability) System (2.7) is saidweakly observable if∀x0 ∈
W, there exists a neighborhood V of x0 such that W ⊂ V, IW (x0) = x0.

Definition 2.6 The observation space of a system is defined as the smallest real
vector space, denoted byO(h), of C∞ functions containing the components of h and
closed under Lie derivation along the field F(x, u) for any constant input u.

For linear systems, Definitions 2.3 and 2.5 are equivalent and result in the algebraic
criterion known as the Kalman‘s observability criterion recalled before.

Definition 2.7 (Observability rank condition [45]) System (2.7) is said to satisfy
the observability rank condition in x if

dim{dO(h)} = n.

Furthermore, if the observability rank condition holds ∀x ∈ �n , then system (2.7) is
observable in the rank sense.

Theorem 2.2 If system (2.7) is observable in the rank sense, then it is weakly ob-
servable.

Additional conditions may be used to design an observer for nonlinear systems. For
that, we introduce an important class of inputs for which the observability property
is satisfied to design an observer independently of the input.

Definition 2.8 An input is universal on the interval [0, T ], for T > 0, if it distin-
guishes all pairs of distinct points on the interval [0, T ].
Definition 2.9 A system is uniformly observable if every input is universal.

Now, consider the class of multioutput nonlinear systems

{
ẋ = f (x) x ∈ �n

y = h(x) y ∈ �p (2.8)

where h1, . . . , h p are smooth functions, dh1, . . . , dh p are linearly independent in
�n , f is a smooth vector field.
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Definition 2.10 A system is locally observable if every state xo can be distinguished
from its neighborhoods by using system trajectories remaining close to xo.

Theorem 2.3 System (2.8) is locally observable at xo if

rank{dhi , . . . , d L j
f hi , i = 1, . . . , p; j ≥ 0} = n (2.9)

∀x ∈ U0 ⊂ �n.

Observability indices may be defined for locally observable systems satisfying (2.9).

Definition 2.11 (Observability Indices [65]) A set of observability indices {k1, . . . ,
kp} is uniquely associated at x to system (2.8), satisfying (2.9) as follows

ki = card{S j ≥ i, j ≥ 0}, i = 1, . . . , p. (2.10)

where

S0 = rank{dhi , i = 1, . . . , p.} (2.11)

· · ·

Sk = rank{dhi , . . . , d Lk
f hi , i = 1, . . . , p.}

− rank{dhi , . . . , d Lk−1
f hi , i = 1, . . . , p.} (2.12)

· · ·

Sn−1 = rank{dhi , . . . , d Ln−1
f hi , i = 1, . . . , p.}

− rank{dhi , . . . , d Ln−2
f hi , i = 1, . . . , p.} (2.13)

Then, the observability property can be verified as follows:

Definition 2.12 (Locally Weakly Observability) The system (2.8) is locally weakly
observable at x0 if there exists U (x0), and p integers {k1, . . . , kp} that form the
smallest p-tuple with respect to the lexicographic ordering, such that

(i) k1 ≥ k2 ≥ · · · ≥ kp ≥ 0; (2.14)

(ii)
p∑

i=1

ki = n; (2.15)
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(iii) rank

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dh1
d L f h1

...

d Lk1−1
f h1
...

dh p

d L f h p
...

d L
kp−1
f h p

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= n (2.16)

for all x ∈ U (x0).

Nonlinear Transformations

Generally, the design of an observer for nonlinear systems is not an easy task. How-
ever, it turns out that by means of a change in coordinates (a diffeomorphism), the
original nonlinear system can be transformed into another system for which it is
easier to design an observer.

Now, some concepts concerning the transformation of a nonlinear system into a
special class of system are introduced.

Given r smooth real-valued functions {ϕ1, . . . ,ϕr } in U , then

rank{dϕ1, . . . , dϕr } = r

in q ∈ U , is equivalent to

rank

⎡
⎢⎢⎢⎣

∂ϕ1

∂x1
· · · ∂ϕ1

∂xr· · · · · · · · ·
∂ϕr

∂x1
· · · ∂ϕr

∂xr

⎤
⎥⎥⎥⎦ = r (2.17)

for x = q.

Theorem 2.4 (InverseFunctionTheorem) If rank{dϕ1, . . . , dϕn} = n at some point
q ∈ U an open subset of �n, then there exists a neighborhood V ⊂ U of q such that
ϕ : V → ϕ(V ) is a diffeomorphism.

Definition 2.13 Two systems Σ1 and Σ2 are locally diffeomorphic in x0 ∈ �n ,
if and only if there exists a diffeomorphism Ψ , defined on a neighborhood of x0,
transforming Σ1 into Σ2.

Theorem 2.5 There exists a set of functions φ1(x), . . . ,φn(x) of observation space
O(φ) such that Ψ = (φ1(x), . . . ,φn(x))T is a diffeomorphism on �n, then system
(2.7) is observable.
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Consider the following nonlinear system

{
ẋ = f (x) + g(x)u, x ∈ �n, u ∈ �
y = h(x), y ∈ �.

(2.18)

Necessary and sufficient conditions are obtained such that an observable nonlinear
system of the form (2.18) can be transformed into a system of the form

{
ẋ = Ax + φ(y, u)

y = Cx
(2.19)

where the term φ(y, u) is an output–input injection, (see [46] for the SISO case, and
[75] for the MIMO case). For this class of system, an extended Luenberger observer
can be designed.

Furthermore, the system can be transformed into another nonlinear system for
which it is possible to design an observer, for instance, transformed into the state
affine system

{
ẋ = A(u)x + φ(y, u)

y = Cx
(2.20)

or in the general form

{
ẋ = A(u, y)x + φ(y, u)

y = Cx
(2.21)

where the matrices A(u) and A(u, y) have particular forms (see [3] for more details).

2.3 Permanent Magnet Synchronous Motor Observability
Analysis (PMSM)

One of the most important difficulty to control the synchronous motor is when
the speed and the position are not available from measurement. This can affect
the observability properties of the machine. Significant improvements have been
made in the area of the sensorless control of the permanent magnet synchro-
nous motors. However, to implement such a controller, it is necessary to recon-
struct the state of the motor. Then, before designing an observer it is necessary
to investigate the observability property of the permanent magnet synchronous
motor.

It will be shown by the following observability study that an interesting field
of research is related to the high-performance sensorless position control of syn-
chronous machines. It involves zero speed control at a determined rotor posi-
tion. An additional problem is the observer structure is strongly dependent on
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machine parameters. The position estimation is generally difficult due to scalar
speed estimation. Theoretically, the position can be calculated by integrating the
speed, but in practice the result will suffer drift problems and moreover the ini-
tial position is not always known. There are three main methods to estimate the
position: tracking observer based, tracking state filter, and arctangent calculation
based. The position estimation of the arctangent direct calculation has no time
delay. However, it suffers from large position estimation error due to the noise.
The effect of noise can be mitigated by using a state filter but the estimate has
lagging fault.

The first methods used to solve the sensorless position estimation are the ap-
proaches using the back Electromotive Force (EMF) with fundamental excitation,
and spatial salience image, the tracking methods using excitation in addition. The
salience tracking methods are suitable for zero-speed operation, whereas the back
EMF-based methods fail at low speed.

To know the variety of differentmethods for sensorless control, it is very important
to understand the dynamics properties of the electric machines.

2.3.1 IPMSM Observability Analysis

To verify if the Internal Permanent Magnet Synchronous Motor (IPMSM) is ob-
servable, it is assumed that the magnetic flux is not saturated, the magnetic field
is sinusoidal, and the influence of the magnetic hysteresis is negligible on the
IPMSM.

Observation Objective: by using only the measurement of the currents and voltages,
to simultaneously reconstruct (online) the rotor speed, position, load torque, and
stator resistance value of the IPMSM.

Now, we show under which conditions the IPMSM is observable. The observability
analysis is made in two steps:

• From the stator currents and its first time derivatives, the observability of the speed
and the position will be studied in the (α,β) frame.

• Secondly, to analyze the observability of the system including the stator resistance
and the load torque, higher time derivatives of the stator current measurements
will be taken into account.
For simplicity, this second step of the observability analysis is made by using the
IPMSM equations in the (d, q) frame.

2.3.1.1 Observability Analysis of the Speed ω and the Position θe in the
(α,β) Frame

In this section, the IPMSM observability properties will be analyzed in open loop,
assuming that all the parameters are known.
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Consider the IPMSM electric equations, in the stationary (α,β) frame, given as

⎡
⎢⎣

disα

dt
disβ

dt

⎤
⎥⎦ = (Λss)

−1
{
−

(
Rs − 2ωLαβ 2ωL1 cos(2θe)

2ωL1 cos(2θe) Rs + 2ωLαβ

)(
isα

isβ

)

− pΩΨr

(− sin θe

cos θe

)
+

(
vsα

vsβ

)}
(2.22)

where

(Λss)
−1 = 1

Ld Lq

(
Lβ −Lαβ

−Lαβ Lα

)
. (2.23)

The determinant Det (Λss) is given as

Det (Λss) = LαLβ − (
Lαβ

)2 = L2
0 − L2

1 = Ld Lq , (2.24)

where

Lα = L0 + L1 cos(2θe), Lβ = L0 − L1 cos(2θe), Lαβ = L1 sin(2θe). (2.25)

and

L0 = Ld + Lq

2
, L1 = Ld − Lq

2
. (2.26)

Moreover, the mechanical equations of the IPMSM are

⎧⎪⎨
⎪⎩

J
dΩ

dt
= − f Ω + 2pL1isαisβ + p(Ψrαisβ − Ψrβ isα) − Tl

dθm

dt
= Ω.

(2.27)

Then, the complete model is given as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎣

disα

dt
disβ

dt

⎤
⎥⎦ = (Λss)

−1
{
−

[
Rs − 2ωLαβ 2ωL1 cos(2θe)

2ωL1 cos(2θe) Rs + 2ωLαβ

] [
isα

isβ

]

− pΩΨr

[− sin θe

cos θe

]}
+ (Λss)

−1
[

vsα

vsβ

]

dΩ

dt
= − f

J
Ω + 2pL1

J
isαisβ + p

J
(Ψrαisβ − Ψrβ isα) − 1

J
Tl

dθm

dt
= Ω
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which is of the general form

{ d Xαβ

dt
= F(Xαβ, vαβ)

y = h(Xαβ)
(2.28)

where

Xαβ =

⎡
⎢⎢⎣

isα

isβ
Ω

θm

⎤
⎥⎥⎦ , vαβ =

[
vsα

vsβ

]
, h(Xαβ) =

[
h1
h2

]
=

[
isα

isβ

]
,

and Xαβ is the state, vαβ is the input, and h(Xαβ) is the measurable output whose
components are the stator currents isα and isβ .

Theobservation spaceOαβ(Xαβ) containing the components ofh1, h2; and closed
under Lie derivation along the field F, is given by (see [46])

Oαβ(Xαβ) = {h1, h2, LFh1, LFh2}.

Then, the observability analysis of the IPMSM is made by verifying if the matrix

dOαβ(Xαβ) =

⎡
⎢⎢⎣

dh1
dh2
d LFh1
d LFh2

⎤
⎥⎥⎦ (2.29)

satisfies the condition of Theorem 2.3, i.e., the rank of dOαβ(Xαβ) is equal to n = 4.
It is equivalent to determine if matrix dOαβ is nonsingular, which implies to

evaluate the determinant of the matrix dOαβ given by:

Det (dOαβ) = 2L1Ψr (L0 + L1)

Det (Λss)2
(vsα sin θe − vsβ cos θe)

− 2Rs L1Ψr (L0 + L1)

Det (Λss)2
(isα sin θe − isβ cos θe)

+ Ψ 2
r ω(L0 + L1)

2

Det (Λss)2
+ 4L2

1L0

Det (Λss)2
(isβvsα − isαvsβ)

+ 8L1L0Ψrω(L0 + L1)(isα cos θe + isβ sin θe)

Det (Λss)2

+ 4L3
1isβ

Det (Λss)2
(vsα cos 2θe + vsβ sin 2θe)

+ 4L3
1isα

Det (Λss)2
(vsα sin 2θe − vsβ cos 2θe)
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+
[
8L2

1L2
0ω − 4Rs L3

1 sin 2θe + 8L3
1L0ω cos 2θe

Det (Λss)2

]
(i2sα + i2sβ)

+ 2L2
1Ψrω(L0 + L1)

Det (Λss)2
(isα cos θe − isβ sin θe).

Analyzing the expression of Det (dOαβ), it can be remarked that, for ω �= 0,
Det (dOαβ) cannot be null. Thus, we can first conclude that the IPMSM is observable
if ω �= 0.

For ω = 0, a complementary study is now developed. Using the following trans-
formation

vsq = −vsαsinθe + vsβcosθe

isq = −isαsinθe + isβcosθe, (2.30)

it is possible to study the observability condition. Det (dOαβ) can be written at zero
speed as

Det (Pαβ) = 2L1Ψr (L0 + L1)Lq

Det (Λss)2

disq

dt
+

[
4L2

1

Det (Λss)2
(L1 + L0)

]
(vsd isq)

−
[

8L2
1

Ψr Det (Λss)2
(L1 + L0)

]
(vsq i2sq).

Proposition 2.1 The state of the IPMSM is observable at zero speed (Ω = pω = 0)
if

L1[−4L2
1

Ψr
vsq i2sq + (2L1vsd − Ψr Rs)isq + Ψrvsq ] �= 0, (2.31)

or equivalently, if one of the following conditions are not satisfied:

(i) if vsq = 0 and vsd �= Ψr Rs

2L1
, then, isq = 0 and Te = 0.

(ii) if vsq = 0 and vsd = Ψr Rs

2L1
.

(iii) if vsq �= 0 and vsd = Ψr Rs

2L1
, then isq = Φr

2L1
and Te = pΨ 2

r

L1

(iv) if vsq �= 0 and vsd �= Ψr Rs

2L1
, then

isq = −(2L1vsd − Ψr Rs) ± [(2L1vsd − Ψr Rs)
2 + (16L2

1v
2
sq)]1/2

−8L2
1vsq/Ψr

,

and Te �= 0.
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Remark 2.1 The four cases can be checked by using the parameters values for a
given machine. The condition (i) can only be verified at standstill (the currents and
the voltages are zero). This particular case is easily detected by the electrical mea-
surements. The physical meaning of the case (iv) is that a nonzero load torque exists
at zero speed.

On the other hand, taking into account that the parameters of the motor given in
Sect. 1.6.2, the cases (ii), (iii), and (iv) are unrealistic, i.e., these cases cannot occur
in the IPMSM physical operation domain.

2.3.1.2 IPMSM Observability Analysis for the Stator Resistance
Rs and the Load Torque Tl in the (d, q) Frame

Next, a sufficient condition for the observability of the IPMSM, including the stator
resistance and the load torque, is given. For computational simplicity, we analyze this
observability in the (d, q) frame by using higher time derivatives of the measured
output.

Consider the extended model of (1.70), where the rotor resistance Rs and the load
torque Tl are the components of the extended state vector, and described by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

disd

dt
= − Rs

Ld
isd − pΩ

Lq

Ld
isq + vq

Ld

disq

dt
= − Rs

Lq
isq + pΩ

Ld

Lq
isd + vd

Lq
− pΩ

Ψr

Lq

dΩ

dt
= − f

J
Ω + 1

J
p(Ld − Lq)isd isq + pΨr isq − 1

J
Tl

dTl

dt
= 0

d Rs

dt
= 0

(2.32)

which is of the general form

{ d Xdq

dt
= F(Xdq , vdq)

y = h(Xdq)
(2.33)

where Xdq is an extended state vector and y = h(Xdq) is the measurable output,
that are given by

Xdq =

⎡
⎢⎢⎢⎢⎣

isd

isq

Ω

Rs

Tl

⎤
⎥⎥⎥⎥⎦ , h(Xdq) =

[
h1
h2

]
=

[
isd

isq

]
.

http://dx.doi.org/10.1007/978-3-319-14586-0_1
http://dx.doi.org/10.1007/978-3-319-14586-0_1
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The observation spaceOdq defined by the vector space of the functions constituted
by themeasurements of the stator currents isd and isq and closed under Lie derivatives

along the field F, is given by {h1, h2, LFh1, LFh2, L(2)
F

h2}.
Following the same procedure as before, the observability analysis is made by

verifying the condition of Theorems 2.3 and 2.5, i.e., by analyzing the rank of the
matrix

dOdq(Xdq) =

⎡
⎢⎢⎢⎢⎣

dh1
dh2

d LFh1
d LFh2

d L(2)
F

h2

⎤
⎥⎥⎥⎥⎦ .

This is equivalent to determine if the determinant

Det (dOdq) = ai6sq + bi4sq + ci2sq ,

is different to zero where

a = − p2(Ld − Lq )3

J L2
qφ2f

, b = − p2(Ld − Lq )

J Lqφ f
and c = − p2(Ld − Lq )

J Lqφ f
+ p2φ f (Ld − Lq )

J L2
q L2

d

.

From Det (dOdq), it is clear that the rank condition is not satisfied when isq = 0.
Then, we can establish the following result.

Proposition 2.2 Consider the IPMSM model (2.32) and assume that the stator cur-
rents are measurable. Then, the rotor speed Ω , the stator resistance Rs and the load
torque Tl are observable if and only if

isq �= 0.

Remark 2.2 In this case, the motor does not produce any torque, i.e., it does not play
a role with respect to the load.

2.3.2 SPMSM Observability Analysis

Now, the observability property of the SPMSM will be studied.
Consider model (2.28) and remark that the inductances are such that:

Ls := Ld = Lq = L0, and L1 = 0.



2.3 Permanent Magnet Synchronous Motor Observability Analysis (PMSM) 61

It follows that the model of the SPMSM, in the (α,β) frame, is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

disα

dt
= − Rs

Ls
isα + pΩΨr sin(pθm) + 1

Ls
vsα

disβ

dt
= − Rs

Ls
isβ − pΩΨr cos(pθm) + 1

Ls
vsβ

dΩ
dt = − f

J
Ω + p

J

√
2

3
Ψr (isβ cos(pθ − m) − isα sin(pθm)) − 1

J
Tl

dθm

dt
= Ω

(2.34)

which is of the general form

d Xαβ

dt
= F(Xαβ, vαβ) (2.35)

y = h(Xαβ) (2.36)

where

Xαβ =

⎛
⎜⎜⎝

isα

isβ
Ω

θm

⎞
⎟⎟⎠ , vαβ =

(
vsα

vsβ

)
, h(Xαβ) =

(
h1
h2

)
=

(
isα

isβ

)
,

with Xαβ is the state, vαβ is the stator voltages vector and is the system input; h(Xαβ)

components are the measurable outputs: the stator currents isα and isβ .

2.3.2.1 Observation Objective

Consider that in the (α,β) frame, the stator currents isα and isβ are the measurable
outputs, the stator voltages vsα and vsβ are the control inputs of the motor.

The objective is to reconstruct the rotor speed Ω and the position θm assuming
that they are not available by measurement and moreover under the fact that the
stator-winding resistance Rs and the stator-winding inductance Ls are inaccurately
known.

The property of observability of the SPMSM is determined by using first Defi-
nition 2.6, where the observation space O1 is constituted of measured outputs and
their Lie derivatives along the vector field F, i.e., O1 = {h1, h2, LFh1, LFh2} and
the measured output is

h(x) =
[

h1
h2

]
=

[
x1
x2

]
.

From Theorem 2.3, it follows that

dO1(x) =

⎡
⎢⎢⎣

dh1
dh2
d LFh1
d LFh2

⎤
⎥⎥⎦ . (2.37)
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Then, by evaluating the determinant of matrix dO1(x), we obtain

Det (dO1) = Ψ 2
r ω

L2
s

.

Proposition 2.3 Consider that the magnet flux Ψr and the inductance L0 are
different from zero. The SPMSM is observable if and only if its electrical speed
is not null, i.e., if ω �= 0.

Remark 2.3 Notice that even by using higher order derivatives of the measured
outputs to study the observability property, no additional information for the observ-
ability analysis is obtained.

2.4 Induction Motor Observability Analysis

The purpose of this section is to analyze the observability of the induction motor in
order to reconstruct the nonmeasurable components of the state vector, i.e., the rotor
flux, the rotor speed, and also unknown parameters: the load torque and the rotor
resistance.

2.4.1 Mathematical Model in the (d, q) Rotor Flux Frame

Consider the mathematical model of the induction motor, in a state-space representa-
tion (1.108) and (1.128) written in the (d, q) frame depending on the stator pulsation
ωs , where

φrq = φ̇rq = 0. (2.38)

From (1.108) and (2.38), the flux angle ρ is given by

ρ̇ = ωs = pΩ + aMsr

φrd
isq . (2.39)

Furthermore, the Electromagnetic Torque equation is given by

Te = pMsr

Lr
φrd isq . (2.40)

Replacing the stator pulsation ωs and the differential equation of φrq , by those of
the flux angle ρ obtained from (2.39) in the nonlinear model of the induction motor
(1.108), it follows that

http://dx.doi.org/10.1007/978-3-319-14586-0_1
http://dx.doi.org/10.1007/978-3-319-14586-0_1
http://dx.doi.org/10.1007/978-3-319-14586-0_1
http://dx.doi.org/10.1007/978-3-319-14586-0_1
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⎡
⎢⎢⎢⎢⎣

i̇sd

i̇sq˙φrd

ρ̇
Ω̇

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−γisd + abφrd + pΩisq + a
Msr

φrd
i2sq

−γisq − bpΩφrd − pΩisd − a
Msr

φrd
isd isq

−aφrd + aMsr isd

pΩ + a
Msr

φrd
isq

mφrd isq − cΩ − 1
J Tl

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎣

m1 0
0 m1
0 0
0 0
0 0

⎤
⎥⎥⎥⎥⎦
[
vsd

vsq

]
.

(2.41)

Remark 2.4 From (2.39), the slip pulsation is given by ωr = ωs − pΩ , where

ωr = aMsr

φrd
isq. (2.42)

2.4.2 Introduction to the Sensorless IM Observability

Several works have studied the observability of the inductionmotor (see [11, 32, 44]).
In [32], sufficient conditions under which the induction motor loses the observability
property have been presented. This study has been realized using model (1.121). In
this subsection, we present a similar study using the model (1.115). To analyze the
observability of the induction motor, the criteria of the observability rank will be
applied (see [30]).

2.4.3 Induction Motor Observability with Speed Measurement

Consider the induction motor model (1.114). For the analysis of the observability of
the induction motor, firstly assume that the rotor speed is measured.

The induction motor model is:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

disd

dt
disq

dt
dφrd

dt
dφrq

dt
dΩ

dt
dTl

dt

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−γisd + ωs isq + baφrd + bpΩφrq + m1vsd

−ωs isd − γisq − bpΩφrd + baφrq + m1vsq

aMsr isd − aφrd + (ωs − pΩ)φrq

aMsr isq − (ωs − pΩ)φrd − aφrq

m(φrd isq − φrq isd) − cΩ − 1

J
Tl

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.43)

http://dx.doi.org/10.1007/978-3-319-14586-0_1
http://dx.doi.org/10.1007/978-3-319-14586-0_1
http://dx.doi.org/10.1007/978-3-319-14586-0_1
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where the state, the input and the measurable output are given by

x =

⎡
⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3
x4
x5
x6

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

isd

isq

φrd

φrq

Ω

Tl

⎤
⎥⎥⎥⎥⎥⎥⎦

∈ �6, u =
[
vsd

vsq

]
∈ �2,

h(x) =
⎡
⎣h1

h2
h5

⎤
⎦ =

⎡
⎣x1

x2
x5

⎤
⎦ =

⎡
⎣isd

isq

Ω

⎤
⎦ ∈ �3,

and the vector field is given by

F(x, u) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−γx1 + ωs x2 + bax3 + bpx5x4 + m1vsd

−γx2 − ωs x1 + bax4 − bpx5x3 + m1vsq

−ax3 + (ωs − px5)x4 + aMsr x1
−ax4 − (ωs − px5)x3 + aMsr x2

m(x3x2 − x4x1) − cx5 − 1

J
x6

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Notice that the rotor speed is considered as an output as well as the stator currents.
Consider the observation spaceOI M,0(x) of functions containing the components

of h and closed under Lie derivation along the vector field F, i.e., OI M0(x) =
{h1, h2, h5, LFh1, LFh2, LFh5}.

To verify the observability rank condition, it is sufficient to check that the rank of
matrix

dOI M,0(x) =

⎡
⎢⎢⎢⎢⎢⎢⎣

dh1
dh2
dh5

d LFh1
d LFh2
d LFh5

⎤
⎥⎥⎥⎥⎥⎥⎦

is equal to n = 6.
The matrix dOI M,0(x) characterizing the observability of the system (2.43) in

the rank sense, is given by

dOI M0(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0

−γ ωs ba bpx5 bpx4 0
−ωs −γ −bpx5 ba −bpx3 0

−mx4 mx3 mx2 mx1 −c − 1

J

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.
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Next, computing the determinant dOI M,0(x), it follows that

Det (dOI M,0(x)) = −b2

J
(a2 + (px5)

2).

Notice that the determinant Det (dOI M,0(x)) is different from zero for any value of
the rotor speed. Then, the matrix dOI M,0(x) is full rank. As a consequence, using
the rotor speed and the stator currents measurements, we can conclude that the IM
is observable.

Remark 2.5 The determinant Det (dOI M0(x)) is independent of the stator pulsation
ωs . An identical result is obtained in [32] from the model (1.121).

2.4.4 Observability of the Induction Motor: Sensorless Case

In the sequel, the observability study will be determined assuming that the rotor
speed Ω is not available from measurement.

In the (mechanical) sensorless case, only the stator currents are measured. From
(1.115), the model of the IM, for the sensorless case, is

{
ẋ = F(x, u)

y = h(x)
(2.44)

where

x =

⎡
⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3
x4
x5
x6

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

isd

isq

φrd

φrq

Ω

Tl

⎤
⎥⎥⎥⎥⎥⎥⎦

∈ �6, u =
[
vsd

vsq

]
∈ �2,

h(x) =
[

h1
h2

]
=

[
x1
x2

]
=

[
isd

isq

]
∈ �2

and the vector field F is given by

F(x, u) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−γx1 + ωs x2 + bax3 + bpx5x4 + m1vsd

−γx2 − ωs x1 + bax4 − bpx5x3 + m1vsq

−ax3 + (ωs − px5)x4 + aMsr x1
−ax4 − (ωs − px5)x3 + aMsr x2

m(x3x2 − x4x1) − cx5 − 1

J
x6

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

http://dx.doi.org/10.1007/978-3-319-14586-0_1
http://dx.doi.org/10.1007/978-3-319-14586-0_1
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From Definition 2.6, the observation spaceOI M,1(x) constituted by the components
of the output and closed under Lie derivation is given by:

{h1, h2, LFh1, LFh2, L2
F

h1, L2
F

h2}.

Then, from Theorems 2.3 and 2.5, and to verify the observability rank condition,
it can be checked that the matrix dOI M,1(x)

dOI M,1(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

dh1

dh2

d LFh1

d LFh2

d L2
F

h1

d L2
F

h2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

satisfies the observability rank condition if the determinant of

dOI M,1(x) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0

−γ ωs ba bpx5 bpx4 0
−ωs −γ −bpx5 ba −bpx3 0
a1 a2 a3 a4 a5 a6
b1 b2 b3 b4 b5 b6

⎤
⎥⎥⎥⎥⎥⎥⎦

is different from zero, where

a1 = γ2 − bMsr a2 − bpmx24 − ω2
s

a2 = bpmx3x4 + bpaMsr x5 + ω̇s − 2γωs

a3 = −ba2 + bpmx2x4 + bp2x25 − γba − 2bpx5ωs

a4 = −2bapx5 + bp(mx2x3 − mx4x1 − cx5 − x6
J

) − γbpx5 − bpmx4x1 − 2baωs

a5 = −bapx4 − bpcx4 + bp(−ax4 + px5x3 + aMsr x2)

− γbpx4 + bp2x5x3 − 2bpx3ωs,

a6 = −bp

J
x4

and

b1 = bpmx3x4 − bpaMsr x5 − ω̇s + 2γωs

b2 = γ2 + bMsr a2 − bpmx23 − ω2
s

b3 = 2bapx5 − bp(mx2x3 − mx4x1 − cx5 − x6
J

) + γbpx5 − bpmx2x3 − 2baωs

b4 = −ba2 + bpmx1x3 + bp2x25 − γba − 2bpx5ωs
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b5 = bapx3 + bpcx3 − bp(−ax3 − px5x3 + aMsr x1)

− γbpx3 + bp2x5x3 − 2bpx4ωs,

b6 = bp

J
x3.

More precisely, the determinant of matrix dOI M,1(x) is given by

Det (dOI M,1(x)) = −b3 p2

J
[−(px5x3 + ax4)(x3a3 + x4b3)

+ (ax3 − px4x5)(x3a4 + x4b4) + (
a

p2
− px25 )(x3a5 + x4b5)].

From the complexity of a3, a4, a5, b3, b4 and b5, the determinant of the matrix
dOI M,1(x) is difficult to directly analyze.

Consequently, to study the observability of the induction motor without mechan-
ical speed sensor, the following subcases will be analyzed.

(i) Case 1: Ω̇ = 0, i.e., constant rotor speed.
(ii) Case 2: ωs = 0.
(iii) Case 3: φ̇rd = φ̇rq = ωs = 0.
(iv) Case 4: φ̇rd = φ̇rq = ωs = 0 and Ω̇ = 0.

2.4.4.1 Case 1: Ω̇ = 0, i.e., Constant Rotor Speed

Consider the case where the IM rotor speed is constant, then the resulting model
(1.114) is simplified:

{
ẋ = F(x, u)

y = h(x)
(2.45)

x =

⎡
⎢⎢⎢⎢⎣

x1
x2
x3
x4
x5

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

isd

isq

φrd

φrq

Ω

⎤
⎥⎥⎥⎥⎦ ∈ �5, u =

[
vsd

vsq

]
, h(x) =

[
h1
h2

]
=

[
x1
x2

]
=

[
isd

isq

]

and the vector field is given by

F(x, u) =

⎡
⎢⎢⎢⎢⎣

bax3 + bpx5x4 − γx1 + ωs x2 + m1vsd

bax4 − bpx5x3 − γx2 − ωs x1 + m1vsq

−ax3 + (ωs − px5)x4 + aMsr x1
−ax4 − (ωs − px5)x3 + aMsr x2

0

⎤
⎥⎥⎥⎥⎦ .

http://dx.doi.org/10.1007/978-3-319-14586-0_1
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Consider the following two observation spaces OI M S,1,Ω̇ (x) and OI M S,2,Ω̇ (x) of
functions containing the components of h and closed under Lie derivation given by
OI M S,1,Ω̇ (x) = {h1, LFh1, L2

F
h1, h2, LFh2} and OI M S,2,Ω̇ (x) = {h1, L f h1, h2,

LFh2, L2
F

h2}, respectively.
From Theorems 2.3 and 2.5, and to verify the observability rank condition, the

matrices dOI M S,1,Ω̇=0(x) and dOI M S,2,Ω̇=0(x) are computed

dOI M S,1,Ω̇=0(x) =

⎡
⎢⎢⎢⎢⎣

dh1
d LFh1

d L2
F

h1
dh2

d LFh2

⎤
⎥⎥⎥⎥⎦ , dOI M S,2,Ω̇=0(x) =

⎡
⎢⎢⎢⎢⎣

dh1
d LFh1

dh2
d LFh2

d L2
F

h2

⎤
⎥⎥⎥⎥⎦ .

The matrices dOI M S,1,Ω̇=0(x) and dOI M S,2,Ω̇=0(x) are expressed in terms of the
induction motor dynamics and then,

dOI M S,1,Ω̇=0(x) =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
−γ ωs ba bpx5 bpx4

γ2 + ba2Msr − ωs bMsr apx5 − 2ωsγ b7 b8 b9
0 1 0 0 0

−ωs −γ −bpx5 ba −bpx3

⎤
⎥⎥⎥⎥⎦

dOI M S,2,Ω̇=0(x) =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
−γ ωs ba bpx5 bpx4
0 1 0 0 0

−ωs −γ −bpx5 ba −bpx3
−bMsr apx5 + 2ωsγ γ2 + ba2Msr − ω2

s b10 b11 b12

⎤
⎥⎥⎥⎥⎦

where

b7 = −ba2 + bp2x25 − γba − 2bpωs x5
b8 = −2bapx5 − bpγx5 + 2baωs

b9 = −bpax4 + bpẋ4 + bp2x5x3 − γbpx4 − bpωs x3
b10 = 2bapx5 + bpγx5 − 2baωs

b11 = −ba2 + bp2x25 − γba − 2bpωs x5

b12 = bpax3 − bpẋ3 + bp2x5x4 + γbpx3 − bpωs x4

must be of dimension equal to 5, respectively.
It can be directly verified that the determinants are

Det (dOI M S,1,Ω̇=0(x)) = −b3 p3(ẋ4 + ωs x3)(
a2

p2
+ x25 ),
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Det (dOI M S,2,Ω̇=0(x)) = b3 p3(ẋ3 − ωs x4)(
a2

p2
+ x25 ).

From the determinants Det (dOI M S,2,Ω̇=0(x)) and Det (dOI M S,2,Ω̇=0(x)) it can
be remarked that ẋ4 = −ωs x3, ẋ3 = ωs x4 or ẋ4 = ẋ3 = ωs = 0, represent the
observability singularities for the case 1. Then, for these particular dynamics, the
observability rank condition is not satisfied.

2.4.4.2 Case 2: ωs = 0.

Consider that the synchronous speed ωs = 0, the load torque Tl and the rotor speed
Ω are not available by measurement. The resulting model of the Induction Motor
(1.114) used to analyze the observability properties is then defined in terms of the
state, input and measurable output as follows:

x =

⎡
⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3
x4
x5
x6

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

isd

isq

φrd

φrq

Ω

Tl

⎤
⎥⎥⎥⎥⎥⎥⎦

∈ �6, u =
[
vsd

vsq

]
, h(x) =

[
h1
h2

]
=

[
x1
x2

]
=

[
isd

isq

]

and

F(x, u) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

bax3 + bpx5x4 − γx1 + m1vsd

bax4 − bpx5x3 − γx2 + m1vsq

−ax3 − px5x4 + aMsr x1
−ax4 + px5x3 + aMsr x2

m(x3x2 − x4x1) − cx5 − 1

J
x6

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

The observation spaceOI M S,3,ωs=0(x) of functions containing the components of h
and closed under Lie derivation, is given by

OI M S,3,ωs=0(x) = {h1, h2, LFh1, LFh2, L2
F

h1, L2
F

h2}.

From Definition 2.11, and to verify the observability rank condition, the rank of
matrix

http://dx.doi.org/10.1007/978-3-319-14586-0_1
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dOI M S,3,ωs=0(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

dh1

dh2

d LFh1

d LFh2

d L2
F

h1

d L2
F

h2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

has to be full rank (see Theorems 2.3 and 2.5). This is equivalent verifying if the
determinant

Det (dOI M S,3,ωs=0(x)) = Det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0

−γ 0 ba bpx5 bpx4 0
0 −γ −bpx5 ba −bpx3 0

a7 b1 a8 a9 a10
−bpx4

J

b2 a11 a12 a13 a14
bpx3

J

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

is different from zero, where

b1 = bp(mx3x4 + Msr ax5)

b2 = bp(mx3x4 − Msr ax5)

a7 = −bpmx24 + γ2 + bMsr a2

a8 = bpmx4x2 − γba − ba2 + bp2x25

a9 = bpẋ5 + bpmx4x1 − γbpx5 − 2bpax5

a10 = −bpcx4 − bpγx4 − 2bpax4 + bp2x5x3 + bpaMsr x2

a11 = −bpmx23 + γ2 + bMsr a2

a12 = −bpẋ5 + bpmx3x2 + γbpx5 + 2bapx5

a13 = bpmx3x1 + γba + bp2x25 − ba2

a14 = bpcx3 + γbpx3 + 2bpax3 − bpMsr ax1 + 2bp2x4x5.

This is equivalent analyzing
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Det (dOI M S,3,ωs=0(x)) = b4 p3a

J

φ2
rd+φ2

rq︷ ︸︸ ︷
(x23 + x24 )(ẋ5 + a

bp
x5 + p

ba
x35)

+ b3 pMsr a2

m

Te︷ ︸︸ ︷
m(x3x2 − x4x1) . (2.46)

Remark 2.6 Notice that the analysis of the determinant dOI M S,3,ωs=0(x) is not an
easy task. However, we can see that the points Te = 0 and φ2

rd + φ2
rq = 0, appears

as an observability singularity of the system. These conditions are not of practical
interest, because these conditions are satisfied only if the machine has a flux equal
to zero and then the electromechanical torque is obviously zero. The motor does not
play any role with respect to the load.

2.4.4.3 Case 3: φ̇rd = φ̇rq = ωs = 0

This case represents the operating condition when the fluxes are constant and the
synchronous speed is equal to zero. Under these conditions, the induction motor
(1.114) is described by the following state, input and measurable output as

x =

⎡
⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3
x4
x5
x6

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

isd

isq

φrd

φrq

Ω

Tl

⎤
⎥⎥⎥⎥⎥⎥⎦

∈ �6, u =
[

usd

usq

]
, h(x) =

[
h1
h2

]
=

[
x1
x2

]
=

[
isd

isq

]

and

F(x, u) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

bax3 + bpx5x4 − γx1 + m1vsd

bax4 − bpx5x3 − γx2 + m1vsq

0
0

m(x3x2 − x4x1) − cx5 − 1

J
x6

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

The observation space OI M S,4(x) generated by h, and closed under Lie derivation
along of field F, is given by

OI M S,4(x) = {h1, h2, LFh1, LFh2, L2
F

h1, L2
F

h2}.

From Definition 2.11, and by verifying the observability rank condition, it follows
that the matrix

http://dx.doi.org/10.1007/978-3-319-14586-0_1
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dOI M S,4(x) =

⎡
⎢⎢⎢⎢⎢⎢⎣

dh1
dh2

d LFh1
d LFh2

d L2
F

h1

d L2
F

h2

⎤
⎥⎥⎥⎥⎥⎥⎦

must be of full rank (see Theorems 2.3 and 2.5). It follows that matrix

dOI M S,4(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0

−γ 0 ba bpx5 bpx4 0
0 −γ −bpx5 ba −bpx3 0

a′
7 bpmx3x4 a′

8 a′
9 a′

10
−bpx4

J

bpmx3x4 a′
11 a′

12 a′
13 a′

14
bpx3

J

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where

a′
7 = −bpmx24 + γ2

a′
8 = bpmx4x2 − γba

a′
9 = bpẋ5 + bpmx4x1 − γbpx5

a′
10 = −bpcx4 − bpγx4

a′
11 = −bpmx23 + γ2

a′
12 = −bpẋ5 + bpmx3x2 + γbpx5

a′
13 = bpmx3x1 + γba

a′
14 = bpcx3 + γbpx3

has its determinant Det (dOI M S,4(x)) given by

Det (dOI M S,4(x)) = b4 p3a

J

φ2
rd+φ2

rq︷ ︸︸ ︷
(x23 + x24 ) ẋ5.

must be different to zero. Notice that the determinant Det (dOI M S,4(x)) is equal to
zero for

φ2
rd + φ2

rq = 0

or
Ω̇ = ẋ5 = 0.



2.4 Induction Motor Observability Analysis 73

Remark 2.7

• Case φ2
rd + φ2

rq = 0 has no practical interest because the IM cannot operate
without flux. The case ẋ5 = 0 implies that the rotor speed is constant. Then
we can conclude that the determinant is zero if the speed is constant. Thus the
observability of the IM cannot be establish under constant speed, with zero stator
pulsation ωs , the components of the rotor flux φrd and φrq are constants.

• Case 3 is important as the field-oriented control (a classical control strategy) im-
poses the flux φrd to be constant (i.e., φ̇rd = 0) and the flux φrq to be equal zero.
Then the observability of the IM is no longer satisfied when the speed is constant
(steady state) and the stator pulsation ωs is zero.

• From Case 1 and Case 3, we can conclude that it is not possible to verify the
observability of the induction motor by using only the stator current measurement
and their derivatives up to order 2.

To analyze the observability property of the induction motor from the measurements
(the stator currents) and their derivatives up to order 2 in the case where the machine
speed is constant (Ω̇ = 0), the component of the flux are constant (φ̇rd = φ̇rq = 0)
and the stator pulsation is zero (ωs = 0), is described in the following subsection.

2.4.4.4 Case 4: φ̇rd = φ̇rq = ωs = 0 and Ω̇ = 0

For φ̇rd = φ̇rq = ωs = 0 and Ω̇ = 0, the model of induction motor (1.115) is
described by

x =

⎡
⎢⎢⎢⎢⎣

x1
x2
x3
x4
x5

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

isd

isq

φrd

φrq

Ω

⎤
⎥⎥⎥⎥⎦ ∈ �5, u =

[
usd

usq

]
, h(x) =

[
h1
h2

]
=

[
x1
x2

]
=

[
isd

isq

]

and

F(x, u) =

⎡
⎢⎢⎢⎢⎣

bax3 + bpx5x4 − γx1 + m1vsd

bax4 − bpx5x3 − γx2 + m1vsq

0
0
0

⎤
⎥⎥⎥⎥⎦ .

The observation space OI M S,5(x) generated by the components of h and closed
under Lie derivation along the field F is given by

OI M S,5(x) = {h1, h2, LFh1, LFh2, L2
F

h1, L2
f h2, L3

F
h1, L3

F
h2, L4

F
h1, L4

F
h2}.

The observability rank condition can be verified if matrix

http://dx.doi.org/10.1007/978-3-319-14586-0_1
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dOI M S,5(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dh1
dh2

d LFh1

d LFh2

d L2
F

h1

d L2
F

h2

d L3
F

h1

d L3
F

h2

d L4
F

h1

d L4
F

h2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0

0 1 0 0 0 0

−γ 0 ba bpx5 bpx4 0

0 −γ −bpx5 ba −bpx3 0

γ2 0 −γba −γbpx5 −γbpx4 0

0 γ2 γbpx5 −γba γbpx3 0

−γ3 0 γ2ba γ2bpx5 γ2bpx4 0

0 −γ3 −γ2bpx5 γ2ba −γ2bpx3 0

γ4 0 −γ3ba −γ3bpx5 −γ3bpx4 0

0 γ4 γ3bpx5 −γ3ba γ3bpx3 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

is of full rank (see Theorems 2.3 and 2.5).
Thus the observability of the IM can be established under the following operation

conditions of the machine: the (d, q)-components of rotor flux φrd and φrq are
constant, zero stator pulsation, and constant speed even using the derivatives of high
order of the measurements.

2.4.5 Unobservability Line

From (2.40), the stator pulsation (2.39) can be expressed as follows:

Fig. 2.1 Unobservability line in the plane (Tl ,Ω)
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ωs = pΩ + Rr Te

pφ2
rd

. (2.47)

For ωs = 0 and φrd constant, we obtain that the electromagnetic torque is given by

Te = −KΩ (2.48)

where K = P2φ2
rd

Rr
. If the machine speed is constant (Ω̇ = 0), the dynamical

equation (1.105) becomes
Te = fvΩ + Tl . (2.49)

From (2.48) and (2.49) a line can be drawn in the load torque-mechanical speed plane
(Tl ,Ω) (see Fig. 2.1):

Tl = −MΩ (2.50)

with M = P2φ2
rd

Rr
+ fv .

This unobservability line is located in the second and fourth quadrants of the
plane (Tl ,Ω), when the machine operates in generator mode (the load torque and the
mechanical speed are of the opposite sign) as shown in Fig. 2.1. This line is used to
check industrial drives in order to characterize their sensorless behavior at slow speed.

2.5 Normal Forms for Observer Design

As seen in the above sections, there are different structures used to represent a
nonlinear system, in particular to represent the AC machines. Normal forms are ob-
tained based on the information available from measurement and from the observa-
tion objectives. Furthermore, there are a large number of observers which have been
developed for linear and nonlinear systems. Several efforts have been made to con-
struct an observer for a general class of nonlinear system.Extensions of the linear case
have been proposed which are adaptations of linear observers to nonlinear systems.

They have been derived using different techniques or methodologies:

Extended observers: general Luenberger observer, Kalman filter, state affine sys-
tems observer, linear plus an output injection, high gain observer, adaptive observers
mainly. These observers have an estimation error that converges exponentially or
asymptotically to zero.
Sliding mode observers: classical sliding mode, super-twisting, high-order sliding
mode, adaptive sliding mode for instance. One the most important characteristics of
these observers is their finite-time convergence to zero and their robustness under
uncertainties.

http://dx.doi.org/10.1007/978-3-319-14586-0_1


76 2 Observability Property of AC Machines

However, when considering nonlinear systems, the construction of an observer is not
easy (see [4, 30, 42]). We can distinguish two classes of systems: those of which are
observable for any input and those that have singular inputs.

For those which are observable for any input, i.e., uniformly observable, the first
results have been obtained in the case when the nonlinear system can be transformed,
by means of a diffeomorphism, into a linear system plus an output–input injection.

Consider the class of nonlinear system described by a state-space representation
of the form (2.18). System (2.18) can be transformed into one of the following state-
space representations:

(1) Linear system plus an output–input injection

{
ξ̇ = Aξ + φ(u, y)

y = Cξ
(2.51)

which is observable for any input, if and only if the pair (C, A) is observable.
(2) Triangular form

The generalization of the above class of nonlinear systems is of the form
{

ξ̇ = Aξ + φ(u, ξ)
y = Cξ

(2.52)

where the term φ(u, ξ) is in the triangular form, i.e.,

φ(u, ξ) = (φ(u, ξ1),φ(u, ξ1, ξ2), . . . ,φ(u, ξ1, . . . , ξn))T ,

which has been introduced in [28].
Notice that these classes of nonlinear systems are observable for any input,

so the observer design is possible.
An interesting class of systems which will be studied in the book is:

(3) State affine system plus an input–output injection
This class of systems is represented as

{
ξ̇ = A(u)ξ + φ(u, y)

y = Cξ
(2.53)

where the components of the matrix A depends on the input u.
Notice that this system has inputs rendering the system unobservable. These

inputs are called bad inputs [87]. Despite this fact, stronger notions like persis-
tency is used to design observers, i.e., there exists an observer working for the
class of persistent inputs.

(4) State affine system plus a nonlinear term
A general class of state affine systems is given by the class of systems of the
form {

ξ̇ = A(u, y, s)ξ + φ(u, ξ)
y = Cξ

(2.54)
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for which it is possible to design an observer. Notice that the matrix A(u, y, s)
depends on the input u, the output y, and a known signal s [83].

Regarding these above classes of systems, several authors are interested to
characterize them, where necessary and sufficient conditions are given to trans-
form a general nonlinear system into state affine systems plus an output–input
injection or plus a nonlinear term.

(5) Interconnected state affine system plus nonlinear terms
Finally, we can find systems that can be partitioned in a set of interconnected
subsystem, represented in subsystems of the following form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ̇1 = A1(u)ξ1 + φ1(u, ξ2, . . . , ξr )

ξ̇2 = A2(u)ξ2 + φ1(u, ξ1, . . . , ξr )

. . .

ξ̇r = Ar (u)ξr + φr (u, ξ2, . . . , ξr−1)

y1 = Cξ1
y2 = Cξ2
. . .

yr = Cξr .

(2.55)

In Chap.3, two main classes of observers for nonlinear systems will be considered
to reconstruct the components of the state vector which are not measurable.

(1) Extended observers: high gain observer, observer for state affine system, and
nonlinear interconnected observers.

(2) Sliding mode observers: for nonlinear systems: Super-twisting and high order
sliding mode observers.

2.6 Conclusions

One of the most important structural properties of dynamical systems has been
studied in this chapter: the observability of nonlinear systems. As it has been seen in
this chapter, the nonlinear observability property can depend on the input (explicitly
or implicitly), and some definitions have been introduced to classify the inputs (uni-
versal and persistent inputs). Then, the observability of the AC machines has been
analyzed, and the conditions under which the PMSM and the IM are observable have
been determined along with their physical interpretation. This will be useful in the
subsequent chapters to guarantee the convergence of the designed observers.

http://dx.doi.org/10.1007/978-3-319-14586-0_3
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2.7 Bibliographical Notes

The observability study of nonlinear systems and next, the design of an observer
is generally not a trivial task. Concerning the observability of nonlinear systems,
the main definitions, used in this book, can be found in [42, 46, 65]. A classical
observability criterion can be defined by using an observation space closed under
Lie derivation as introduced in [46]. The key role of the input for the observability
of the nonlinear systems is described in [3].

From these definitions, some authors have studied the observability of the AC
machines.Nevertheless, the studies on the synchronousmotor observability are rather
uncommon, even if some results can be found in [20, 40, 92, 93]. Similarly, for the
induction motor observability analysis, some results are available in [11, 32, 44]. In
[32], sufficient conditions under which the induction motor loses the observability
property have been presented.
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