Off-Line and On-Line Trajectory Planning

Zvi Shiller

Abstract The basic problem of motion planning is to select a path, or trajectory,
from a given initial state to a destination state, while avoiding collisions with known
static and moving obstacles. Ideally, it is desirable that the trajectory to the goal be
computed online, during motion, to allow the robot react to changes in the envi-
ronment, to a moving target, and to errors encountered during motion. However, the
inherent difficulty in solving this problem, which stems from the high dimensionality
of the search space, the geometric and kinematic properties of the obstacles, the cost
function to be optimized, and the robot’s kinematic and dynamic model, may hinder
a sufficiently fast solution to be computed online, given reasonable computational
resources. As a result, existing work on motion planning can be classified into off-
line and on-line planning. Off-line planners compute the entire path or trajectory to
the goal before motion begins, whereas on-line planners generate the trajectory to
the goal incrementally, during motion. This chapter reviews the main approaches to
off-line and on-line planning, and presents one solution for each.

Keywords Motion planning - Trajectrory optimization * Online planning

1 Introduction

One of the basic problems in robotics is that of motion planning, which attempts
to move a robot from a given initial state to a destination state, while avoiding
collisions with known static and moving obstacles. We distinguish between a path
and a trajectory: a path italic represents a sequence of positions, defined in the robot’s
configuration space, which is the space of all positions, or configurations, that the
robot can achieve [1]. A trajectory italic can be viewed as a path with a velocity
profile along it, defined in the higher dimensional state space, where every point
defines a position, or a configuration, and the velocity vector at that point. Thus, path
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planning solves a geometric, or kinematic, problem, whereas trajectory planning
solves a dynamic problem [1]. In this chapter, we will focus on trajectory italic
planning.

Generally, it is desirable that the trajectory to the goal be computed online, during
motion, to allow the robot to react to changes in the environment to a moving target,
and to errors encountered during motion. However, the inherent difficulty in solving
this problem, which stems from the high dimensionality of the search space, the
geometric nature of the obstacles, the cost function to be optimized, and the robot’s
kinematic and dynamic model, prevents it from being solved sufficiently fast to be
done online, given reasonable computational resources. As a result, two branches
of research have emerged in the area of motion planning: off-line planning, where
the trajectory to the goal is computed before motion begins, and on-line planning
where the trajectory to the goal is computed incrementally during motion. We thus
associate off-line with the computation of the entire trajectory to the goal, and on-line
with incremental planning, regardless of the computational resources available for
the planning process.

Another distinction between off-line and on-line planners is that the former may
produce globally optimal solutions if the environment is fully known, whereas the
latter is locally optimal at best. The challenges in off-line planning are therefore: opti-
mality (local and global), completeness (will a solution be found if one exists), and
overall computational complexity. The challenges in online planning are: complete-
ness (is the planner guaranteed to reach the goal if a solution exists), computational
complexity at each step, and optimality (how far is a solution from the optimal and
is it bounded by an upper limit).

Off-line planners are most useful for repeatable tasks in static environments where
optimality is essential, as is the case in many industrial applications. On-line planners
are required in applications where the target states are determined on the fly, obsta-
cles are discovered during motion, the environment is changing during motion, the
computation time required for a global solution delays the task execution, or simply
as an alternative to a computationally expensive off-line search [2].

The different nature of the two types of planners has resulted in distinct strategies
to reaching the goal: the off-line planner takes generally a global view of the envi-
ronment to select the optimal trajectory to the goal, whereas the on-line planner may
select the next move based on a partial view of the environment. Both approaches
were pursued at the early stages of the development of the field of motion planning
in the early 80s [3-6]. The main focus then was on path planning, with the goal
of computing the shortest path from start to goal in the presence of static obstacles
[3, 4, 6].

Focusing on the shortest path resulted in geometric planners that account for the
geometry of the moving object and obstacles. While the computation of an obstacle-
free path may solve many important problems in industrial settings, where the robot
may move slowly, it is insufficient, and almost useless, when the robot needs to
move at reasonably high speeds, such as mobile robots moving through cluttered
environments, and autonomous vehicles negotiating freeway traffic. Furthermore,
the computed geometric path is insufficient to move the robot along the path unless
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some speed profile along the path is specified. Selecting the speed profile that can be
followed without the robot deviating from the path requires knowledge of the robot
dynamic behavior. This brings to focus the problem of trajectory planning, which was
addressed using tools rooted in optimal control theory. The two fields of research,
path planning and trajectory planning, were developed in parallel over the years until
recently when geometric planners were extended to searching for trajectories in the
state space [7, 8]. While the focus in this chapter is off-line and on-line trajectory
planning, we begin the literature review with geometric planners.

1.1 Geometric Planners

The introduction of the configuration space as the basic geometric motion planning
tool [4, 9, 10] reduced the search for an obstacle-free path to computing a continu-
ous path for a point from start to goal that avoids the forbidden regions representing
the physical static obstacles. Being a geometric problem, most off-line planners are
based on a geometric representation of the environment, through which a global
search produces the shortest path to the goal. The geometric representations may
consist of roadmaps or graphs that capture the topology of the free-space, generated
e.g. by a Voronoi diagram, a visibility graph, a tangent graph [11, 12], or by cell
decomposition [13]. Although each representation differs in the way it represents
the free space, they all consist of a connected network of path segments that can be
traversed from start to goal. The main computational effort in these planners is the
representation of the free-space. This includes mapping of obstacles to the config-
uration space and the initial construction of the roadmap. Once the roadmap was
constructed, the search for the shortest path is done using standard graph search
techniques such as Dijkstra’s search [14] or A* [15]. The remaining difficulties
stem from the dimensionality of the search space and the number of edges (seg-
ments) in the roadmap. The main computational effort here is the construction of the
roadmap.

An alternative approach to constructing roadmaps is to overlay a uniform grid over
the search space and represent the entire space by an undirected graph [2]. Assigning
high costs to edges that intersect obstacles, effectively separates between inacces-
sible nodes and nodes in the free space. As a result, this, like all approaches that
are based on a discrete representation of the search space, is resolution complete,
implying that at low grid resolutions one may miss paths that pass through tight
spaces between obstacles. Increasing graph resolution would severely impact the
computational complexity. Compared to the roadmap-based algorithms, the number
of nodes for the uniform grid representation is much greater. However, this rep-
resentation, which is quite general, is applicable to problems where obstacles are
not clearly defined, such as for mobile robots moving over rough terrain [16], as is
demonstrated later in this chapter.

The increased interest in solving high dimensional problems, such as motion
planning for humanoids or multi degrees-of-freedom arms, gave rise to a class of
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sampling-based planners [17]. The most popular version of sampling-based planners
is based on rapidly exploring random trees (RRT) [17-19]. They search the way to
the goal by probing the configuration space (can be also done in the workspace) and
incrementally expanding a collision-free tree from an initial configuration. Because
the entire search is done “in the dark,” the planner attempts to reach unexplored parts
of the search space, resulting eventually in a uniform coverage of the free space.
The efficiency of these planners stems from the incomplete coverage of the free
space and from terminating the search when the goal is first reached. The solution
found is feasible but not optimal in any way. RRT based planners may not produce
optimal solutions even when exploring the entire search space [7, 20]. In addition,
they inherently have difficulties with tight spaces. Nevertheless, the RRT algorithms
were demonstrated for solving very complex problems [21].

An extension called RRT* was developed to asymptotically produce the opti-
mal solution [7]. The asymptotic optimality was achieved by adding a lower bound
estimate to the RRT search. Optimality is achieved iteratively at a great computa-
tional cost by running the algorithm repeatedly while refining the solution until either
exhausting the available computation time or reaching a desired level of optimality
[7]. Despite the great promise, the RRT* algorithm was demonstrated in [7, 20] for
the kinematic avoidance of very few planar and widely spaced obstacles, producing
a smooth near-optimal solution after a large number of iterations (10,000). Solving
a dynamic problem in a higher dimensional state space is expected to be much more
challenging. Recently, a path generated by an RRT search was further optimized
using a genetic algorithm to produce the shortest path for a hybrid manipulator with
six degrees-of-freedom [22]. The idea of further optimizing paths that were gen-
erated by a geometric planner is similar in nature to the off-line planner presented
here, except that the objective of the off-line planner is to produce a global optimal
trajectory, not only the shortest path.

The sampling-based planners represent a paradigm shift in the motion planning
community by (1) accepting probabilistic completeness, which is to say that the goal
may not be reached in a finite time, (2) accepting any solution, not necessarily the
optimal, and (3) abandoning the explicit geometric representation of the free config-
uration space in terms of roadmaps or graphs. This is a significant departure from
the previous practices that evaluated motion planning algorithms for completeness
and optimality.

1.2 Trajectory Planning (Off-Line)

The trajectory planning problem concerns the computation of robot motions that
move the robot between two given states, while avoiding collision with obstacles,
satisfying robot dynamics and actuator constraints, and usually minimizing some
cost function, such as energy or time.

Early work on trajectory planning, from the 1960s to the 1980s, was rooted in the
field of optimal control theory, which provides powerful tools to characterize and
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generate optimal trajectories when high speed motion is desired [23]. The elegant
necessary conditions, stated by the Pontryagin’s maximum principle, lead to the
formulation of the optimal control problem as a two-point boundary value problem,
and the development of algorithms that searched for the optimal control that generates
the optimal trajectories [23]. For time optimization problems, it was shown that the
time-optimal control is bang-bang. This in turn reduces the optimal control problem
to a parameter optimization by iterating on the switching times between the maximal
controls [24, 25].

The first attempt to use these theories for robotics was by Khan and Roth [26],
who computed the multi-axis time optimal trajectory for a linearized model of robot
dynamics. Solving this problem for the full robot’s dynamic model was computa-
tionally very difficult. The typically non-linear and coupled robot dynamics makes
such solutions computationally extensive. Adding obstacles makes the computational
challenge even harder.

One approach to reducing the complexity of the problem and facilitating a practical
realization of time-optimal motion planning is to decouple the problem by represent-
ing robot motions by a path and a velocity profile along the path. This decoupling
allows reducing the trajectory planning problem to two smaller problems: (a) com-
puting the optimal velocity profile along a given path, and (b) searching for the
optimal path in the n-dimensional configuration space.

The time optimal velocity profile along a specified path is computed using an effi-
cient algorithm, originally developed Bobrow, Shin and McCay and Pfeiifer [27-29],
and later improved by Shiller and Lu [30] and Slotine and Yang [31]. Assuming a
second order system, the solution to this problem was found to be bang-bang in
the acceleration, that is, applying the maximum or minimum acceleration so as to
maximize the velocity along the path. The switching times are computed efficiently
to avoid crossing the velocity limit curve, which reflects the actuator constraints and
the robot dynamics. This approach was later extended to computing time optimal
velocity profiles along specified paths for nonlinear third order systems, subject to
general jerk constraints [32].

The optimal path was computed using a nonlinear parameter optimization over
path parameters, such as the control points of a cubic B spline [33, 34]. In each
iteration of the optimization process, the optimal velocity profile along the path is
efficiently computed to produce the minimum time for that iteration. One advantage
of this approach is that each iteration yields a feasible trajectory, albeit not neces-
sarily optimal. The optimization can therefore be terminated at any time to yield an
acceptable solution.

A similar approach, known as direct optimization, differential inclusion [35],
and inverse dynamics optimization [36], was proposed by the aerospace community.
Common to these methods is the direct search for the optimal trajectory as opposed
to a search for the optimal control in the higher dimensional state and co-state spaces
[23]. Attempts to solve the multi-axis problem using graph search techniques in the
state space, solving the so called “kinodynamic” problem, did not yield practical
solutions [37, 38].
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1.3 Online Planning

Early on-line planners were developed to address the lack of apriori information
about the environment. Called “sensor-based” algorithms, they navigate a point robot
equipped with position and touch sensors among unknown obstacles to reach a global
goal. A series of “bug” algorithms were developed, starting with the basic bug that
navigates by circumventing the detected obstacle always clockwise or counterclock-
wise until reaching the straight line to the goal, then continuing along that line until
either reaching the goal or hitting another obstacle [5]. Assuming long range vision
sensors, the bug strategies were extended to the Tangent Bug algorithm, which fol-
lows the tangent line to the next obstacle that obstructs the straight line to the goal
[39, 40]. It was shown that complete online navigation can be achieved with only a
finite amount of memory [5, 41, 42].

Another approach to online motion planning is based on potential functions
[43-45]. Representing the goal with an attractive potential, and the obstacles with
repulsive potentials, the path is generated online by following the negative gradient of
the potential function. While this approach is computationally efficient and is suitable
for on-line feedback control, it suffers from local minima, which may cause the path to
terminate at a point other than the goal. This problem was overcome using harmonic
potentials [43] and navigation functions [45]. These potentials, however, address only
the obstacle avoidance problem with no concern for path optimality. Furthermore,
the generation of the potential function is done off-line and may be time consuming.

A similar approach generates the shortest path by following the direction of steep-
est descent of a discretized distance function [46]. The main computational effort is
in numerically computing the distance function, which is done off-line. The com-
putation complexity increases rapidly with the number of obstacles and with grid
resolution.

The potential functions used to guide the trajectory towards the goal resemble
the value function, which is the solution to the Hamilton- Jacobi-Bellman (HJB)
equation [47—49]. The HJB equation states a sufficient condition of global optimality
(unlike the Pontryagin Maximum Principle, which is only a necessary condition),
and the value function represents the cost-to-go from any feasible state. The globally
optimal trajectory is then generated by selecting the controls that minimize the time
derivative of the value function. For time invariant systems, this amounts to following
the negative gradient of the value function, which drives the system time-optimally
to the goal from any initial state. This is similar to the potential field method, except
that the value function may be regarded as the “optimal” potential function.

Although the theoretical framework exists for deriving optimal feedback con-
trollers, it is impractical to derive a time-optimal control law, using the HJB equation,
for a typical obstacle avoidance problem that accounts for robot’s dynamics.

A recently developed online algorithm navigates towards the goal by optimally
avoiding one obstacle at a time [50, 51]. This transforms the multi-obstacle problem
with m obstacles to m simpler sub-problems with one obstacle each, thus reduc-
ing the size of the problem from exponential to linear in the number of obstacles.
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The incremental generation of the trajectories and the relatively low computational
effort at each step make this algorithm an efficient on-line alternative to the com-
putationally expensive off-line planning, thus trading optimality for efficiency. This
algorithm will be later discussed in this chapter.

This chapter is organized as follows: it starts with a formal problem statement of
the motion planning problem, focusing on trajectory planning rather than on path
planning. It continues with the theoretical solution for the optimization problem
using the Hamilton Jacobi equation. It then describes an efficient off-line planner
and a very efficient online planner. Both algorithms are demonstrated for a point
robot moving at high speeds over rough terrain (the off-line planner) and through
very cluttered environments (the online planner).

2 Problem Statement

In a typical motion planning problem, we wish to solve the following optimization
problem:

ty
min/ L(x,u)dt (1)
uJo
subject to the system dynamics:

X = f(x,u), 2

where x € R” is a point in the robots state space, and u € R™ is a vector of actuator
efforts, subject to the actuator constraints:

Wimin < Ui < Ujmax, 1 € {1,...,m}, 3)

obstacle constraints:
g(x) > 0; g e R¥, 4)

and the boundary conditions:
x(0) = x0; x(tf) = x5, ®)

where £ is the number of obstacles and 7 is the final time. If the objective function
is time, i.e. L(x,u) = 1, then 7 is free. We assume that the obstacles (4) do not
overlap with each other and with the goal xs.

Problem (1) is a two point boundary value (TPBV) problem: of all trajectories that
satisfy the boundary conditions (5), select the one that minimizes the cost function (1)
and satisfies system dynamics (2), control constraints (3) and obstacle constraints (4).
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The global optimal trajectory can be computed using the Hamilton-Jacobi-
Bellman (HJB) equation, which states a sufficient condition for global optimality
[47-49]. Denoting the set of obstacles as O:

0=1{x:g(x) < 0l (6)

The control u* that is the solution to problem (1), satisfies, on R" — {xo} — O, the
HIJB equation:

muin vi(x,t) + < ve(x, 1), f(x,u) >} = —L(x, u) @)

subject to (3) and (4), where v(x, t) is a C? scalar function, satisfying

v(xp, 1) =0 ®)
v(x,t) >0,x ¢ xo )

The subscripts x and ¢ represent partial derivatives with respect to x and 7, respec-
tively, and < -, - > denotes the inner product on R”.

The scalar function v(x, t) is the value function [47, 48, 52], representing the
minimum cost-to-go to the origin (goal) from any given state. For an autonomous
system (time-invariant) and for fixed boundary conditions, v, = 0; assuming in
addition that the cost function to be minimized is time (L (x, u) = 1), reduces (7) to:

min{< vy (x), f(x,u) >} = —1 (10)

To satisfy (10), the projection of X = f(x, u) on v,(x) must equal —1. It follows
that the optimal control u* that minimizes (10) drives the optimal trajectory x* (x, u)
in the direction of the negative gradient, —v, (x), of the value function, as shown
schematically in Fig. 1. This is similar to the trajectory generation by potential field
methods [43—45, 53], except that here the potential function is the value function.
Since the value function has a unique minimum at the goal, trajectories generated
by following the negative gradient of the value function are globally optimal and are
guaranteed to reach the goal from any initial state.

Fig. 1 The optimal Value function Vv
trajectory X *(x, u*) slides X
opposite to the gradient

vy (x) of the value function
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The on-line planner for the multi-obstacle avoidance problem, described later in
this chapter, can be viewed in the context of the value function as following the
negative gradient of an approximate value function for this problem. It generates
near-optimal trajectories by avoiding obstacles one at a time, or equivalently, by
sequentially following the negative gradient of the return function for each obsta-
cle avoidance problem. The trajectory is generated incrementally, permitting robot
motion before the entire trajectory to the goal has been computed.

Obtaining an analytical expression for the value function is practically impossible
for other than for very simple cases. Computing the value function numerically would
require solving the optimization problem from every point in the state space. This is
essentially the approach used in [46] for solving the shortest path problem.

A discrete version of the HIB equation is the basis for the Bellman’s Princi-
ple of Optimality and Dynamic Programming [54]. Dynamic programming is the
optimization method used in most grid based optimizations, including the off-line
optimization discussed next in this chapter.

3 Off-Line Planner

The off-line planner presented here computes the global time optimal trajectory
between given boundary states in the presence of known static obstacles [2]. It com-
bines a grid search in the configuration space with a continuous local optimization.
In lieu of an expensive search in the 2n dimensional state space for one (globally
optimal) trajectory, this planner searches for many paths in the n dimensional con-
figuration space for an n degree of freedom robot. The reduction of the search to the
configuration space yields a significant (exponential) computational gain compared
to a full search in the state space. The complexity of this approach is exponential in the
dimension of the configuration space and linear in the number of nodes in the graph.

3.1 Summary of the Approach

This planner is based on a branch-and-bound search for the global optimal trajectory
between given end states in a static environment. It assumes an efficient mapping
from a curve in the configuration space to the optimal traversal time along that
curve. This mapping allows us to search for the optimal trajectory in the lower
dimensional configuration space. We call the projection of the optimal trajectory on
the configuration space the optimal path.

The branch-and-bound search begins by reducing the infinite set of paths between
given end points to a final set by representing the configuration space by an undirected
graph. The branch-and bound search then reduces this set to a small set of the most
promising paths. The paths in the final set are then pruned to retain the best path in
each path-neighborhood. These paths are then optimized using a nonlinear parameter
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optimization to further reduce motion time. This last step significantly relaxes the
grid resolution required for the initial search to ensure global optimality.

This process was proven to generate the global optimal trajectory in addition to
producing a set of local minima [2]. The optimality of the solution depends on the
number of paths selected in the first step, grid resolution with respect to the distance
between obstacles, and the fidelity of the local optimization. This optimization was
demonstrated for a six DOF manipulator moving in a cluttered environment [2] and
for a mobile robot moving on general terrain [16].

3.2 The Graph Search

The purpose of the graph search is to efficiently produce a set of paths that explore all
regions in the configuration space and that may contain the optimal path. Obstacles
are accounted for by setting high costs to edges that penetrate obstacles. For motion
over rough terrain, obstacles are accounted for by considering their geometric shape
and determining if the robot can safely traverse these obstacles, similarly to traversing
other terrain features [16].

In the context of this algorithm, the optimal path is the one that can be traversed
at the minimum time between given end points, subject to robot dynamics, and
to control and obstacles constraints. Since metrics measured in the configuration
space are not good predictors for path optimality, it is necessary to consider a large
number of paths to ensure that they contain at least one path in the neighborhood of
the optimal path. By representing the configuration space with a uniform grid, we
reduce the infinite number of obstacle-free paths to a finite set.

One approach to generating a large set of paths, using a graph search, is to use
the k-best search by Dreyfus [55] to produce a set of shortest paths. It is similar
to a shortest path search except that it effectively excludes the k — 1 best paths
from the searched space while searching for the next kth best path. This allows
us to sequentially generate the paths until some upper bound on the cost function,
determined by the branch and bound search, is reached. The cost function may be path
length, or some other function that produces a lower bound estimate of the optimal
motion time along the path [2]. While this approach guarantees that the global and
a few local minima (within grid resolution) are found, it has the drawback that it
first generates a large number of paths in the neighborhood of the best path (k = 1),
usually in one homotopy class, before exploring other homotopy classes, as shown
schematically in Fig. 2. A homotopy class contains all paths that can be continuously
deformed into one another [1], as shown schematically in Fig. 3. Depending on grid
resolution, using the k-best search may require a very large number of paths in order
to cover the entire space. In addition, identifying a local minimum (that is not global
optimal) is quite tedious. The difficulty arises from the regions of optimality not
being easily quantified, and hence requiring that each new path be tested if it is in
the neighborhood of any path generated so far. The large number of paths required
by this approach thus imposes a high computational cost, first with the k-best search,
which is linear in &, and then in the pruning process, which is O (k log k).
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Fig. 2 Near shortest paths
found by the K shortest path
algorithm tend to group
around the shortest path

Fig. 3 Paths in one
homotopy class
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The pruning process consists of selecting the best (shortest in time or distance)
of all paths in the initial set of paths, then discarding all paths that are within some
tube of a predefined diameter around the best path. The paths within a tube around
the next best path are similarly discarded, and the process repeats until all paths in
the initial set are either discarded or retained as the best path in their neighborhood.
The pruning process thus reduces an initially large set of paths to a smaller set of
promising paths, each is then locally optimized, as discussed later.

An alternative approach efficiently generates a large number of paths that cover
the entire search space [56, 57] and can be easily reduced to the most promising
path in each homotopy class, as shown schematically in Fig.4. In two steps, each
consisting of a shortest path search, it generates all shortest paths that pass through

Fig. 4 Paths of various
homotopy classes
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each node in the graph. This allows an efficient coverage of the entire free-space and
the identification of a few promising local minima in addition to the global optimal
path .

This is essentially a single-pair search for n constrained paths through a graph with
n nodes. It starts with a single-source search, such as Dijkstra’s [14], that generates
the shortest path from the source s to the goal g (Fig.5). The cost ay; stored at
each node i is the cost from s to that node. Repeating this search from the goal
g to s stores the cost b, ; at each node i (Fig.6). Summing the two costs ¢;,4; =
as,i+byg ; yields the optimal cost ¢y, ¢ ; for the path between s and g that passes through
node i (Fig.7).

If each local minimum represents a homotopy class, the computational cost of
this approach is O (2) for the initial search, and on average O (m/p logm/ p) for the
pruning process, where m is the number of nodes and p is the number of homotopy
classes generated by this search [57]. Compare to the k-best search, O (m) for the
initial search and O (m logm) for pruning. This efficiency is achieved at the cost of
generating only a subset of all possible local minima, but at a computational cost far
smaller than the alternative.

Figure 8 shows a topographic surface that is to be traveresed from Start to Goal.
The surface was first tesselated by a unofrm grid, then the shortest paths through all
nodes were computed using the algorithm discussed earlier [56, 57]. Color marking

Fig. 5 Shortest paths from Goal
start to all nodes

Start
Fig. 6 Shortest paths from Goal
goal to all nodes

Start
Fig.7 Shortest paths Goal

through via points

Start
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Fig. 8 A surface map Goal

Fig. 9 A color coded surface
map. The color at each node
represents the optimal cost
for passing through that node

the nodes according to the cost of passing through each node produced the cost
map shown in Fig.9. The cost function for this case was a traversability measure,
calculated by dividing distance by the maximum safe velocity along each segment
along the graph [16]. Here, blue represents the lowest cost (global minimum), then
yellow, green and red represent gradually increasing costs. The cost map clearly
shows the traversability of each region, thus offering sub-optimal alternatives to the
global optimal path, which is colored blue. The blue “river”, whose nodes all have
the same (optimal) cost, might be wider in regions where the neigboring edges have
identical costs. In such cases, the global optimal grid path may not be unique, which
is a common artifact of the uniform discretization of the search space.

3.3 Branch and Bound Search

The goal of the branch-and-bound search is to efficiently reduce the initially large
set of paths in each homotopy class to a smaller set that contains the local optimal
path. This is done by dividing the initial set of paths into two smaller subsets: one
that contains all paths having a lower bound estimate on their cost that is higher
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than the lower bound estimate of all paths in the second subset. The second subset is
discarded, and the process repeats by subdividing the remaining subset using a more
accurate lower bound estimate. Repeating this process, using a series of gradually
increasing lower bounds, thus reduces the initial large set of paths to a much smaller
set of promising paths. The search is terminated when the last subset has been shown
to contain no better solution than the one already at hand. The best solution found
during this search is the optimal path [15]. The fastest among the local minima found
in this process is the global optimal path.

In this search, the objective function is the minimum traveling time between the
two end points, whereas the initial set consists of all feasible (collision-free) paths
between the given end points. It remains to determine appropriate approximations of
the cost function that are guaranteed to produce lower bounds on the traveling time
along a given set of paths. The computational efficiency of this approach depends on
the proper selection of the lower bound estimates at each step. The most conservative
but efficient approximations are used first, when the number of path candidates is
large, and the more accurate but computationally expensive are used last. The last
test is the exact solution, which is the optimal traveling time along the path.

We use three lower bound estimates on the optimal motion time along a given
path, each represented by a different velocity profile: (1) maximum constant speed,
(2) velocity limit, and (3) optimal velocity along the path. The cost estimate is
computed by integrating the respective velocity profile along the path.

Maximum Speed: The first lower bound estimate, ¢{, assumes motion everywhere
at the maximum speed the robot can reach. It can be the tip velocity reached by
assuming no load speeds at all joints at the most stretched configuration, or the
maximum speed a mobile robot can reach on flat terrain. Dividing the distance along
each edge of the graph by the maximum speed produces a lower bound estimate,
obtained by the summation:

n=y 28 (an

Vimax

where Ax; is the Euclidean distance of the ith segment along the path, and v, is
the maximum speed.

Having assigned a fixed cost to all edges, the paths produced by the graph search
are rated by a lower bound estimate on the optimal motion time along each path.
Paths with lower bound estimates higher than the optimal motion time along some
arbitrary path can be discarded early in the search process.

Velocity Limit: Once a path has been selected from the grid search, it is smoothed
by cubic B splines, using the nodes of the graph along the path as control points.
This eliminates the sharp corners produced by the grid segments. If the smoothed
path penetrates an obstacle because of the rounded corners, it can be either discarded
or kept for the next lower bound test. Eventually, the local optimization, discussed
later, will divert the path away from the obstacle.
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Here we assume that the speed along the path follows the velocity limit curve
Smax(8), s being the distance parameter along the path, that accounts for robot
dynamics, actuator constraints, and path curvature, at every point along the path
[27-29, 32].

The lower bound 7, is obtained by the integral

sf o d
0= / i (12)
0 Smax

The computation of the velocity limit and the optimal velocity profile are briefly
discussed later.

The value #; is a true lower bound and greater than #; since the velocity limit
curve represents the true upper limit for the velocity profile along the path. This
evaluation is computationally more demanding than the previous one but is less
expensive than computing the time optimal velocity profile. This lower bound takes
into account the combined effects of robot dynamics, actuator constraints, and path
geometry.

Optimal Velocity: This is the exact solution for the optimal motion time and an
upper bound to the previous lower bounds. The optimal velocity profile is always
below the limit curve and at most tangent to the limit curve at a finite number of
points [30]. The computation of the optimal velocity profile is briefly discussed next.

3.4 Time Optimal Motions Along Specified Paths

The optimal motion time along the path represents the exact cost function for the
global search. It is computed using a well established algorithm [27-31, 58], which
accounts for robot dynamics, actuator constraints, and path geometry. It is applicable
to any fully actuated system such as industrial and mobile robots [16]. The algorithm
will not be repeated here, referring the reader to the respective literature [27-31, 58].

Key to this algorithm is the mapping of system dynamics to path coordinates.
This reduces the multi dimensional configuration space, in which the robot oper-
ates, to a single degree-of-freedom system, where the distance and speed along the
path, s, s, are its two states, and the tangential acceleration § is its control input.
The actuator constraints, coupled with path geometry, are mapped to constraints
on § and §, as shown schematically in Fig. 10 at some point s along the path. The
boundary of the range of speeds and accelerations, FSA, represents states where at
least one actuator reaches its limit. States outside of FSA are therefore dynamically
infeasible.

Ata given speed, the acceleration is bounded between its maximum and minimum
values, as shown in Fig. 10. The speed s,,, where the range of feasible accelerations
reduces to a point, represents the highest speed at which the robot can still move
along the prescribed path. Plotting s, along the path produces the velocity limit
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Fig. 10 The range of P
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curve, as shown schematically in Fig. 11. It serves as the upper limit for any velocity
profile along the path, optimal or not. Crossing the velocity limit curve implies that
the robot is moving at speeds that are not sustainable by the robot’s actuators or that
it does not follow to prescribed path.

The time optimal velocity profile is computed using “bang-bang” control, switch-
ing between maximum acceleration and maximum deceleration along the path. The
switching times are selected so that the optimal velocity profile avoids crossing the
velocity limit curve [30], as shown schematically in Fig. 11. In the schematic exam-
ple shown in Fig. 11, the time optimal velocity profile is integrated from the initial
point at zero speed, using the maximum acceleration. At some point s; along the
path, the acceleration is switched to the maximum deceleration until point s,, where
the optimal velocity profile is tangent to the velocity limit curve. From s,, the maxi-
mum acceleration is again integrated until some point s3, from where the maximum
deceleration is used to reach the final point at zero speed. The number of switches
is usually odd for a 2nd order system, and it depends on the shape of the velocity
limit curve, and the robot’s dynamic properties. This algorithm is computationally
very fast and can be used to efficiently assign the optimal motion time to every path
in the last set of paths of the branch and bound search.
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3.5 Local Optimization

The paths generated over the graph are forced to pass through the nodes of the graph
defined by the grid used to represent the search space. To relax the demands on the
grid resolution, a local optimization is used to locally alter the path to further reduce
motion time [33, 34]. The optimization problem is formulated as an unconstrained
parameter optimization, using the control points of cubic B splines as the optimization
variables, and the optimal motion time along the path as the cost function. Obstacles
are represented by penalty functions that account for the distance between the robot
and the obstacles. At each iteration of the local optimization, the optimal motion time
along the current path is computed using the method discussed earlier in Sect. 3.4,
and the control points are modified by the optimization algorithm so as to produce
paths with gradually decreasing optimal motion times. This process repeats until the
optimal motion time reaches a local minimum. This optimization is obviously local
since the path cannot “jump” over obstacles.

To reduce computation time and improve the convergence of the local optimiza-
tion, the number of control points is reduced by retaining only a few points for each
straight line segment along the grid path. It is important to note that a small num-
ber of control points may not adequately represent the true optimal path, however, a
large number of parameters may be computationally costly. The true optimum can be
approached asymptotically by successively increasing the number of control points
and repeating the local optimization.

The local optimization is used to optimize only a small number of promising
paths, selected from the paths remaining after the branch and bound search. These
paths are selected as the best in each homotopy class [57] or as the best in some
defined neighborhood of radius D,,,,. The classification of the paths into homotopy
classes is discussed in [57] and will not be repeated here. The selection of the best
path in each neighborhood is done by first discarding all paths that are contained in
a tube around the best path, each satisfying the inequality:

D = max|(pi(w) — po(w)| < Dpax, w=1[0,1];i =1... N, 13)

where po(w) is a point along the best path in the neighborhood, with w being a
normalized path distance, and p;(w) is a point along any path in the remaining set
of N — 1 paths. This process is repeated for the next best path among the remaining
paths until only a few paths, representing distinct regions, remain.

3.6 Summary of the Off-Line Planner

The off-line planner that uses the K-best search, is summarized in the following
pseudo code. In the following, “best path” refers to the path along which the optimal
motion time or a lower bound estimate is the smallest of all paths in the given set.
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Algorithm 1: Off-line planning

Step 0: Initialize.

Receive the geometric description of the workspace, robot dynamics, actuator
constraints, dynamic and state constraints, current state x, target state x s;
Determine the robot maximum speed v, for Eq.(11);

Set an upper bound #,, to be used to terminate the first search;

Set diameter R for path filtering.

Step 1: Generate a graph over the workspace

Assign cost, usually Euclidean distance, to all edges on the graph.

Assign high cost to edges that connect unreachable nodes.

Step 2: Use the K-best search to generate the set Py of shortest paths between the
end points (the projections into the configuration space of the current and target
states). Stop the search when #1(K) > 1.

Step 3: Smoothing.

Smooth all paths in Py by B-splines, using the nodes along each path as control
points. Pj is the set of K smoothed paths.

Step 4: For all paths in Pj, compute a lower bound estimate 7, (i),i =1, ..., K,
using (12).

Step 5: Select the best path j: ©(j) = min{t2(i),i = 1, ..., K}. Compute the
optimal motion time 73(j); #3(j) serves as the next upper bound in the branch and
bound search.

Step 6: Move all paths in Pj that satisfy 1, (i) < 13(j),i = 1,..., K, to Pa.

Step 7: Compute the optimal motion time #3 (i) for all paths in P».

Step 8: Pruning.

Select the best path in P, and discard all paths that are inside a tube of radius R
around that path, using (13); Move the best path to P3; Repeat for the next best
path in P, until P, is empty. P3 now contains a small set of “good” paths.

Step 9: Local optimization.

Submit all paths in P53 to a local optimization. The resulting paths form the set of
local minima Py.

Step 9: Global optimum.

The best path in P53 is the global optimal path, along which the optimal motion
time is globally optimal.

STOP.

3.7 Example 1

Figure 12 shows the near-global time optimal trajectory, computed using the global
optimization discussed here, for a vehicle moving over general terrain. For this exam-
ple, the k-best search was used to generate the initial set of 500 paths, all shown in
Fig. 13. The grid resolution was set low at 1 m between nodes for a 10 x 10 m terrain
segment. The branch and bound search retained 22 best paths, each was smoothed by
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Fig. 12 A (near) global time
optimal path over general
terrain, generated by the
global planner

Fig. 13 500 shortest paths
generated over the uniform
grid overlayed over the

terrain j A

Fig. 14 22 best smoothed
paths retained by the branch
and bound search

a cubic B spline, as shown in Fig. 14. All 22 paths were locally optimized to further
reduce motion time, and the best path, shown in Fig. 12, was selected as the global
optimal solution. The time optimal velocity profile along the best path is shown in
Fig.15. Also shown in Fig. 15 is the velocity limit curve. Note that the vehicle slows
down before accelerating again to prevent it from reaching high speeds that would
cause it to airborne over the bump in the upper part of the terrain segment. The effect
of the bump on the vehicle speed is reflected in the drop of the velocity limit curve.
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The solution obtained is near global optimal due to the choices of the grid resolution
and the termination condition of the local optimization.

Computation time depends on the number of paths generated in the graph search,
the number of promising paths left for the local optimization, and the number of
control points used to represent each path. The global planner was implemented in
C and run on an Intel core-i7 3:4 GHz desktop computer. For examplel, the global
optimal path was computed in 20 s, most of which was spent on the local optimization
of 22 paths.

The global optimization presented here is inherently off-line as it produces the
complete solution to the goal. It combines a search for a set of the best paths in
a grid in the configuration space with a local path optimization. This combination
allows to reduce the search to the lower dimensional configuration space without
compromising optimality. There are only few global planners that we can compare
to, especially those computing time optimal trajectories [7, 37].

The solution produced by this planner is a global optimum if the grid is suffi-
ciently small. The requirement on grid resolution is relaxed by assuming that the
region of convergence around the optimal path is large compared to the grid size.
Despite this approach being presented long ago, it is still computationally efficient
compared to more recent global optimizations [7, 37]. Lacking information on the
use of RRT* to solving dynamic problems, it is difficult to compare this popular
approach to ours.

4 Online Planner

We now address the online time-optimal obstacle avoidance problem for robots
moving in cluttered environments. Motivated by the observation that the effect of
an obstacle on the value function (the global cost-to-go function) in (10) is local
[51], we solve the multi-obstacle problem by avoiding obstacles one at a time. This
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is equivalent to approximating the value function of the multi-obstacle problem by
switching between the value functions of the individual problems, each avoiding a
single obstacle. Computationally, this transforms the multi-obstacle problem with m
obstacles to m simpler sub-problems with one obstacle each, thus reducing the size
of the problem from exponential to linear in the number of obstacles. As a result, this
approach produces an on-line planner, i.e. the trajectory is generated incrementally,
one step at a time, requiring a low computational effort at each step relative to the
original, inherently off-line, problem.

While the approach of avoiding obstacles optimally one at a time applies to any
robot dynamics, and convergence can be guaranteed for any obstacle shapes, we treat
here a point mass robot in the plane and convex obstacles.

We begin with the optimal avoidance of one obstacle.

4.1 Optimal Avoidance of a Single Obstacle

The time optimal avoidance of a single obstacle in the plane is relatively simple. It
can be computed using a global optimization [2], or by running a local optimization
[34] twice (one for each side of the obstacle for a planar problem).

Consider the following point mass model:

1
1 (14)

X=ur ; |uil

=
Vy=uz ; |uz| <
where (x, y)T € R? and (u1, u2)” € R? represent the configuration space variables
and actuator efforts, respectively.
We first derive the unconstrained trajectory, for states not affected by the presence
of the obstacle.

4.1.1 The Unconstrained Trajectory

The unconstrained trajectory for the decoupled system (14) is determined by the
minimum motion time of the slowest axis.
Consider first a single axis, represented by the double integrator

)'Cl = X2
X2 = u; ful <L (15)

Using optimal control theory [23], it is easy to show that the time-optimal control for
system (15) is bang-bang with at most one switch [50]. In the following, we denote
x = (x1,x2)and x5 = (x17, X27).
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The minimum time-to-go from any state x to x can be computed analytically
[59, 60]:

tr(x,xp) = (16)

x22 x22f .
—xp—xf+2y—xi+xir+ 5+ 5 ifxeR

2 2
X2 +x2f +2\/+x1 —Xx1f + );—2 + )%,otherwise

where
R = {(x)|Si1(x) >0, $2(x) < 0}, (17)

and the switching curves S1(x), S2(x), shown in Fig. 16, are:

X3
S1(x) = x% —2(x1 —x15+ Tf) =0,
X3
Sz(x)zx%—i—Z(xl—xlf—Tf):O. (18)
The switching time ¢, is [60]:
ty(x,xp) = (19)

2 2
—xz+\/—x1+x1f+x72+%,ifxeR

x2 ng .
X2+ +x1 — x15 + 5 + 5, otherwise

Fig. 16 Switching curves in Xs A
the state space of a single
axis
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Equation (16) computes the optimal time-to-go from any given state. It is used to
determine the slowest axis of a multi axis system and set the motion time for the
slowest axis, as discussed later.

The time-optimal trajectory thus first follows a parabola from the initial state to
the switching curve, then follows the switching curve to the target state, as shown
schematically in Fig. 16. Trajectories starting from initial states left of the switching
curves (region R in Fig. 16) begin with u = 1, and right of the switching curves
with u = —1. Trajectories starting from states on the switching curve follow the
switching curve to the target with no switch. The switching time is determined by
the initial and final states.

Since the minimum time trajectory has only one switch (excluding trajectories
that emanate from initial states on the switching curves), reaching the target at a time
greater than the minimum time, 7 ¢, using bang-bang control, requires more than one
switch [50].

For the two axis system (15), each axis may reach the target at a different optimal
time. Obviously, the optimal time ¢ to reach the target is determined by the slow-
est axis. Assuming, without loss of generality, that the faster axis from any initial
state xo = (x10, X20, Y10, y20) to the target state x s is the y-axis, the time-optimal
trajectory is obtained by driving the x-axis optimally, and driving the y-axis so that
it reaches the target at the same final time, 7.

The trajectory of the x-axis is unique since it is optimal and hence has only one
switch, whereas the trajectory of the y-axis is not optimal and hence has at least two
switches.! It follows that the time-optimal path between the end points is not unique.
The set of all time-optimal paths is bounded by two extremal paths, generated by the
extremal trajectories, which are in turn generated by the extremal controls, u,,,, and
Upmin [50]:

1 if r €0, 1]
Umax(t) = 1 —1 if t € [y, 152] (20)
1 if t €t T]

—1 if ¢t € [0, t,3]

Umin(t) = 11 if t € [t3, t54] 2D
—1 if t € [ty4, T]

where T > 1 is specified, and

! +2aT T L
2o 1f — X10 o X20 > o
o =11 + «

T —
o= L Fx0=x7) +x2§ x2r). (22)

S*
=
Il

IThe switching time of the slowest axis occurs when its trajectory reaches one of the switching
curves given in (18).
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1 T2
I3 = 2% <X1f —x10 = 2BT — x20T + 5 T ﬂz)
teq = 13 + :3

(T — x20 + x274)

> (23)

We call the two-switch trajectories the extremal trajectories. Note that if the optimal
motion times of both axes are identical, then the time-optimal trajectory is unique.

The unconstrained trajectory of system (14) from any state x = (x1, x2, y1, ¥2) to
the target state x y = (x17, X2, Y17, Y25) is thus determined by the optimal motion
time of the slowest axis. It can be used to drive the system as long as at least one
extremal trajectory avoids the obstacle. Otherwise, the obstacle must be avoided
using the constrained trajectory discussed next.

4.2 The Constrained Trajectory

The constrained trajectory is needed for points in the state-space from which all
unconstrained time-optimal trajectories to the target intersect the obstacle. We refer
to the set of such points as the Obstacle Shadow. In the kinematic case [51], the shadow
corresponds to the shadow created behind the obstacle by a point light source at the
target. The physical analogy for the dynamic problem is not as obvious.

The intersection of all the extremal time-optimal paths with the obstacle implies
the intersection of all unconstrained optimal paths. It is therefore sufficient to check
if both extremal trajectories intersect the obstacle to conclude that an avoiding tra-
jectory, with optimal motion time greater than the optimal motion time of each axis,
should be computed. Since the motion times of both axes are non-optimal, and hence
greater than the unconstrained time ¢, it follows that both axes have at least two
switches.

We compute the time optimal trajectory from xo to x s that avoids the obstacle,
numerically, using a line search over the traveling time, 7. = t¢ + 6. The search ter-
minates when the first trajectory that reaches the goal without intersecting the obsta-
cle is found. The computation of the constrained trajectory for one obstacle is, thus,
obtained by solving the following minimization problem over the single parameter, §:

te(x0, xf, OB) = rnéin tr(xp, xf) +46 24)
such that there exists j = 1, ..., 4 that satisfies:
Xex,j(t) & OB, (25)

where 77 (xo, x 7) is the unconstrained optimal time (16), and x,,, ;(?),t € [0,y +
d] represents the jth extremal trajectory. The four extremal trajectories Xy, j(f)
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correspond to the four combinations of the initial controls of both axes: (1, 1),
(—1,-D), (1, —1), (-1, 1). Although only two of these four trajectories are true
extremals, it is simpler to test all four. It is sufficient that only one extremal satisfies
(25).

4.3 Multi-obstacle Avoidance

The optimal avoidance of one obstacle is relatively simple, and is hence suitable
for on-line computation. We use it to solve the multi-obstacle problem by avoiding
obstacles one at a time. Key to this approach is the selection of the current obstacle
to be avoided at any given time, as discussed next.

4.4 The Current Obstacle

We select the current obstacle as the maximum cost obstacle, which takes the longest
time to avoid from the current state x to the goal x . Denoting f.(x, x s, OB(j)),
J = [1, m] as the minimum time it takes to avoid obstacle OB(j) from x to x 7, the
current obstacle, k, maximizes ¢:

te(x, x 7, OB(k)) > to(x, xs, OB(j)) forall j=1,...,m. (26)

The current obstacle is thus selected by first determining all obstacles with shadows to
the goal x ; containing the current state x, then computing the constrained trajectories
avoiding each obstacle to x s, and selecting the one with the longest motion time. If x
does not lie in the shadow of any obstacle, then the cost of all obstacles equals to the
unconstrained trajectory to the goal and none is selected to be avoided. One of the
extremals of the set of unconstrained trajectories is then selected for navigation. The
algorithm may switch between the extremals in case they collide with any obstacle,
until either reaching the goal or entering the shadow of any obstacle, in which case
the current obstacle is selected by (26).

Selecting at each step the obstacle with the highest cost to the goal produces a tra-
jectory that is close to optimal, since the other obstacles have a smaller impact on the
motion time to the goal, as is shown schematically in Fig. 17. In Fig. 17, the state x
is in the shadows of obstacles 1 and 4. Of those, the trajectory avoiding OB(4),
denoted X (x, xr, OB(4)), takes longer time than X (x,xy, OB(1)) (not shown).
Hence OB(4) is selected as the current obstacle. Obviously, any solution to the goal
must avoid obstacle 4. Hence, recognizing it early in the avoidance process increases
the likelihood that the resulting trajectory will be close to optimal. The intersection
of X (x, xy, OB(4)) with OB(1) will prompt a recursive process, discussed next.

While selecting the maximum cost obstacle is likely to result in near optimal
trajectories, other selection criteria, such as the nearest obstacle (obstacle 1 in Fig. 17)
may suffice for convergence.
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Fig. 17 Selecting the — X(x,xf,0B(4))
current obstacle from x to x ¢

Unconstrained extremals

Current obstacle

4.5 The Avoidance Algorithm

The avoidance algorithm assumes convex and non-overlapping obstacles (in the
configuration space). It selects the current obstacle to be avoided, computes the time
optimal trajectory that avoids that obstacle, selects an intermediate goal along that
trajectory on the boundary of that obstacle, and attempts to reach that goal. It repeats
the process recursively until reaching the closest intermediate goal.

Algorithm 2: Online Avoidance

Step 0: Initialize. Receive current state x, target state x ;

Seti =0, g(i) = xy;

Step 1: Determine the current obstacle, OB(k), from x to g(i).

If k = 0 (x not in the shadow of any obstacle), go to Step 3.

Compute the optimal trajectory avoiding OB (k) to g(i).

Step 2: i =i + 1; Select an intermediate goal g (i) on the boundary of OBy along
the trajectory that avoids OB(k) to g(i — 1).

Check that the velocity at g (i) is not in the obstacle hole? of any obstacle, consisting
of infeasible states from which the obstacle is unavoidable. If it is, reduce speed
at g(i) as needed.

Go to Step 1.

Step 3: Follow the optimal trajectory to g(i). Set x = g(i).

Ifi =0, STOP.

i=i—1

Go to Step 1.

Algorithm 2 generates a series of intermediate goals until one is reachable by a
time optimal trajectory without colliding with any obstacle. Each intermediate goal
g(@) (i = 1) is selected along the constrained trajectory x.(#) from the current state
x to the current goal g(i — 1) at a point where x.(¢) is tangent to the current obstacle
OB4.. Usually, there is just one such point. In case x.(¢) follows the obstacle for some

2The obstacle hole is a subset of the obstacle shadow.
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distance, the point closest to the goal g(i — 1) is selected. When an intermediate
goal is reached, a new avoidance problem is attempted from that intermediate goal
to the next goal in the queue. Note that once an intermediate goal was reached, it is
removed from the queue and a new goal may be assigned the same index i. The goals
are added and removed from the queue while the trajectory gradually progresses to
the final goal x y = g(0). Remembering the intermediate goals generated during the
process is key to the convergence of this algorithm, as discussed later.

Step 2 of Algorithm 2 selects the speed at the intermediate goal g (i) that is both
safe and feasible. A safe velocity is one that does not penetrate any obstacle hole,
from which the obstacle is unavoidable. To simplify the search for the safe velocity,
we choose to reduce it to the maximum velocity at which the robot can circle the
current obstacle at its maximum lateral acceleration (the acceleration normal to its
direction of motion). Denoting this velocity as the curvature velocity, it is easily
proven that the curvature velocity does not lie in the obstacle hole of any obstacle.

Definition 4.1 Curvature Velocity. The curvature velocity, v., is defined as:

Ve =V Umax R 27

where u,;4, 1s the maximum lateral acceleration, and R is the radius of the obstacle.

It remains to verify that the velocity at g (i) is reachable from the current state x.
This is done by checking that a direct time optimal trajectory exists from x to g(i). A
direct trajectory is one that does not include loops. In case the velocity at g(i) is too
high, we scale it down until it is reachable from x; if the velocity at g(7) is too low,
the current speed, which was set to the curvature velocity, can be reduced by circling
the nearby obstacle at a decreasing speed. The curvature velocity (27) ensures that
the obstacle can be circled to allow a safe reduction in speed when necessary. While
this feature is necessary to ensure safety, it was not needed in any of the many cases
tested by this algorithm.

The adjustment of speeds at the intermediate goals would ensure that any con-
secutive intermediate goals are connected by a feasible trajectory. This implies that
a too high final velocity may be compromised for the sake of safety. Similarly, not
every initial velocity is feasible for the obstacle avoidance case, even if it does not
penetrate any individual obstacle hole. The speed reduction at the intermediate goals
to the curvature velocity is a conservative measure to ensure safety.

4.6 Convergence

Convergence implies that the algorithm can reach the target state from an arbitrary
feasible state, in a finite time. Since we cannot a priory determine the feasibility of
arbitrary initial and target velocities, convergence of Algorithm 2 can be proven under
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the assumption of zero terminal speeds (the speeds at the initial and final points), for
convex obstacles that do not overlap with each other [50].

Algorithm 2 progresses incrementally towards the goal by moving through a
sequence of intermediate goals. Every intermediate goal subdivides the trajectory to
the goal into two smaller segments, and in fact breaks the avoidance problem into two
smaller problems. Repeating this process recursively further reduces the avoidance
problem until two consecutive intermediate goals are connected by an unconstrained
trajectory. The motion time along each segment is finite since it is traversed at the
minimum time. The number of such segments is bounded by the number of obstacles,
which is assumed finite. It follows that the total travel time from start to goal is also
finite, which proves convergence.

4.7 Optimality

The trajectory generated by Algorithm 2 is not necessarily optimal, since each step is
only locally optimal. While the paths (the projection of the trajectory to the configu-
ration space) generated by Algorithm 2 are generally close to the time optimal paths
computed by a global planner [16], as demonstrated next, the motion time along the
on-line trajectory is higher than the global optimal motion time due to the curvature
velocity (27) imposed at the intermediate goals.

4.8 Numerical Examples and Experiments

Algorithm 2 is demonstrated for a planar environment, consisting of 70 tightly spaced
circular obstacles.

4.8.1 Example 2

This example shows an on-line trajectory that avoids 70 obstacles, from the initial
state (xp, x2, ¥1, y2) = (10.46m, 0.001 m/s, 58.26 m, 0.001 m/s) to the goal state
(x17, %27, Y17, y25) = (52.55m,0m/s, 7.33m, 0m/s), as shown in Fig.18. The
spacing between the dots represents the speed along the path.

The motion time along this trajectory is 35.2 s, with a top speed of 3.4 m/s and an
average speed of 2.1 m/s. There were 12 intermediate goals generated for this case,
shown as empty circles along the trajectory. The total computation time was 4.3s,
with a time step Af of 0.1's, and an average computation time of 11 ms per-step. The
speed along the trajectory, as a function of distance traveled, is shown in Fig. 19.
The oscillations in the speed profile are due to the curvature velocity imposed at the
intermediate goals.
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4.8.2 Experiment-Global Optimality

This experiment compares the online planner with the global planner [16] for the
obstacle setup shown in Fig. 20 (48 obstacles).

Shown in Fig.20 are the trajectories generated by the online planner and the
global planner. The online and globally optimal paths have similar topologies as
they pass between the same obstacles. The velocity profiles along both trajectories
are shown in Fig.21. The motion time along the online trajectory was 28.9s over a
total distance of 93.8 m, with an average speed of 3.2m/s, compared to the global
optimal motion time of 20.7 s over a total distance traveled of 99 m, and an average
speed of 4.8 m/s. This difference is caused primarily by the reduction in speeds to
the curvature velocities (27) at the intermediate goals.
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Repeating this test for 50 randomly selected end points yielded similar results,
with the average motion time of the online trajectories being 30.52s, compared to
the average optimal time of 22.63 s. The average path length of the online trajectories
was 111.51 m, compared with 115.26m for the optimal trajectories. Here too, the
increase in the motion time despite the comparable path lengths is due to the imposed
curvature velocity at the intermediate goals, which is determined by the obstacle size.

4.9 Computational Issues

The consideration of the obstacles one at a time reduces the original problem with
m obstacles to m simpler sub-problems with one obstacle each.

The cost for this reduction is the loss of optimality, and the need to check at
each time step if all obstacles intersect the unconstrained optimal path from the
current state, and for those that do, solve the single obstacle problem. This may
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seem excessive, but the alternative (solving the original exponential problem) is
much worse. Our approach generates the trajectory incrementally, unlike the original
problem that requires a complete solution before making the first move. In fact, for
problems with many obstacles, such as in example 2 with 70 obstacles presented
earlier, the on-line (heuristic) solution may be the only viable alternative.

Practically, it may not be necessary to consider all obstacles at all times, but instead
consider only the obstacles within some radius of visibility around the robot. It would
be then necessary to limit robot’s speed to the stopping speed at the boundary of its
visibility range to ensure that it does not collide with an unforeseen obstacle.

To appreciate the computational advantage of this approach, we attempted to
compare it to the performance of efficient state-of-the-art algorithms. Currently, the
most popular approach is the RRT planner, which rapidly explores a random tree
to produce the first feasible solution to the goal [17-19]. The solution found is not
optimal in any way, and this class of algorithms is known to have inherent difficulties
with tight spaces. Yet, RRT is currently considered as the fastest algorithm to connect
between two points through cluttered environments.

We compared a kinematic version of our online algorithm to the RRT and RRT*
planners for avoiding 70 tightly space obstacles, all running on similar computers
[50]. Testing the algorithms for 100 randomly generated end points, the run time of
the online algorithm was on average 0.5 ms, compared to 3.5 ms of the RRT planner,
7times faster. However, the path lengths produced by the RRT planner were twice
as long as those produced by the online planner, which were near global optimum.
Attempting to optimize the paths using the RRT* planner took 0.5s to reach the
optimality levels of the online planner; this is 1,000times slower than the online
algorithm. These results demonstrate the sound efficiency, in both computation time
and optimality, of the online planner presented here. This is not surprising as the
online planner consistently executes locally optimal paths at each incremental step,
as opposed to the sampling-based planners which essentially search for a solution in
the dark.

5 Summary

Motion planning is one of the basic problems in robotics as very few robotic tasks do
not involve motion. The main challenge in motion planning is to produce a trajectory
that safely and efficiently moves the robot from one state to another while accounting
for its dynamic behavior. It is also desirable that the motion plan reflects the changing
nature of the task or of the environment. While this is obviously the ultimate goal,
early works on motion planning in the 80s settled for much less by focusing on geo-
metric path planning with no account for robot dynamics. The resulting algorithms
were useful for determining the shortest path from start to goal, but were useless for
moving the robot at other than very low speeds. To account for robot dynamics, opti-
mal control theory, developed in the late 60s, was applied then to robotics but failed
because of insufficient computation power and the high sensitivity of the numerical
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solutions to the initial guess. Like in many other endeavors, the solution emerged by
solving a simpler problem.

The failure of the geometric algorithms to solve high dimensional problems gave
rise to a class of sampling-based planners, with the goal of producing any feasible
path in lieu of the shortest path expected by earlier work. The multi-dimensional
optimal trajectory planning problem was eventually solved by first computing the
optimal velocity profile along a given path. This lead to a local optimization of the
path and eventually to a global planner that computes “good” initial guesses for the
local optimization.

In this chapter, we reviewed the main approaches to off-line and on-line motion
planning, and presented one solution for each with a focus on trajectory planning.
It was shown that any motion planning problem can be theoretically solved using
the Hamilton Jacobi Bellman (HJB) equation. If the return function is known or
approximated, this approach offers an online solution. In its discrete form, the HIB
equation leads to dynamic programming, which is the basis for the combinatorial
optimizations used in off-line planning.

We presented an off-line planner that takes advantage of the efficient computation
of the optimal motion time along any path. The on-line planner presented converts the
original problem of optimally avoiding many obstacles to many simpler problems,
each avoiding optimally only one obstacle. The high correlation between the solutions
of the on-line and off-line planners is not surprising since both planners are based
on sound optimal control theories.

As the basic problem of trajectory planning is considered solved, and as computers
are becoming more powerful, the remaining challenge rests with online planning that
adapts or reacts to the changing nature of real life scenarios in the industry, in the
home, and on the road.
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