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Abstract

There is now strong evidence that myxozoans have evolved from
free-living cnidarians but until recently their higher level relationships
have been the subject of considerable controversy. This chapter reviews the
morphological and molecular evidence that has contributed to problems in
placement and how further collective support has finally resolved their
cnidarian affinity. We then consider the inherently difficult but fascinating
topic of how myxozoans may have evolved as endoparasitic cnidarians.
We first explore how a close association of free-living precursors could
have led to the evolution of myxozoans with simple life cycles and the
nature of the first myxozoan hosts. We propose that either freshwater
bryozoans or fish (or their precursors) were ancestral hosts (in view of the
more derived nature of myxozoans that infect annelids and the fact that fish
are hosts for most members of all major myxozoan clades) and suggest that
the morphological complexity of myxozoans in freshwater bryozoans
renders a scenario of fish as first hosts less likely. We then discuss how new
hosts may have been adopted subsequently, resulting in the complex life
cycles involving invertebrate and vertebrate hosts that now characterise all
myxozoans. Cnidarian traits, including life cycle plasticity and a capacity
to evolve novel propagative stages, ultimately support many different
scenarios regarding the route to endoparasitism.
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2.1 Introduction
The affinities of some metazoans have been
exceedingly difficult to ascertain (Conway Mor-
ris 1991). For extant taxa this is largely because
comparisons of species may have to bridge
enormous time spans of independent evolution
(Jenner and Littlewood 2008). Signs of ancestry
may therefore have vanished because of exten-
sive modification or loss of characters. In addi-
tion, convergent evolution may obscure
phylogenetic signal. Thus, in practice, extensive
morphological modifications may preclude
straightforward comparisons with potential rela-
tives for some problematic metazoan taxa while
high levels of molecular divergence and associ-
ated long branch attraction may artificially infer
close relationships. Prominent examples include
certain sessile taxa (e.g. bryozoans and brachio-
pods), tiny and possibly miniaturised taxa (e.g.
tardigrades and acoels) and parasitic taxa (e.g.
pentastomids and strepsipterans) (Jenner and
Littlewood 2008; McKenna and Farrell 2010).
A combination of features has rendered
placement of the Myxozoa especially challeng-
ing. Apparently rapid molecular evolution has
resulted in accumulation of homoplastic charac-
ters causing long branch attraction that has pro-
ven to be highly problematic for placement
within the Metazoa (e.g. Hanelt et al. 1996;
Zrzavy et al. 1998; Kim et al. 1999; Evans et al.
2010). In addition, myxozoans present the most
extreme case of morphological simplification
associated with parasitism. Thus, not only do
they lack features associated with organs, such as
a digestive tract and a nervous system, but cilia
and centrioles are also absent as are recognisable
gametes, embryonic and larval stages (Lom
1990; Canning et al. 2000; Canning and Okam-
ura 2004). As a counter example, the develop-
ment of cypris larvae enabled the parasite,
Sacculina, to be recognised as a highly modified
barnacle in the nineteenth century, although the
specific affinities with barnacles and other cirri-
pede crustaceans are not fully resolved (Hoeg
1992). In this chapter we review the history of
and difficulties in determining the higher level
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relationships of the enigmatic Myxozoa and how
their status as cnidarians has finally been con-
firmed on the basis of morphological and
molecular data. We then explore the potential
origins of parasitism including the nature of the
first myxozoan hosts and how subsequent hosts
may have been incorporated.

2.2  History of Higher Level
Relationships
2.2.1 Discovery of Myxozoans

and Placement with Protists

Myxozoans were discovered in the first half of
the nineteenth century by Jurine (1825) and were
assigned to the Sporozoa by Biitschli (1882). For
a long time the Sporozoa comprised a diverse
group of organisms regarded as unicellular,
spore-forming parasites of animals including
coccidians, gregarines, haemosporidians, Plas-
modium spp. and piroplasms [today classified as
Apicomplexa (Cavalier-Smith 1998)] along with
the Microsporidia [now associated with Crypto-
mycota in the Kingdom Fungi (Hirt et al. 1999;
James et al. 2013)] and the Myxosporida (now
the Myxozoa). Myxozoan characters such as
absence of centrioles and cryptomitosis and the
presence of tubular (rather than plate-like) mito-
chondrial cristae in some taxa (Marqués 1987;
Lom and Dykova 1997) were suggestive of a
protistan nature. However, it is increasingly
apparent that some of these features are variable
(e.g. mitochondrial cristae, closed vs. open
mitosis; Canning et al. 2000; Redondo et al.
2003).

2.2.2 Recognition as Multicellular
Animals

Recognition of the multicellular nature of my-
xozoan spores led Stolc (1899) to propose that
myxozoans should be included with Metazoa.
This conclusion was echoed by others (e.g.
Emery 1909; Ikeda 1912) and gained additional
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support when Weill (1938) noted the similarity
between the eversible, intracellular organelles
present in both groups—polar capsules in myx-
ozoans and nematocysts in cnidarians. Weill
(1938) suggested that myxozoans are indeed
cnidarians and further alluded to their potential
similarity to the parasitic larval stages of Po-
lypodium hydriforme, a cnidarian affiliated with
the Narcomedusae and now placed by some in its
own group, the Polypodiozoa (Raikova 1988;
Bouillon et al. 2004). These similarities were re-
emphasised by Lom (1990) and Siddall et al.
(1995) (see below).

Myxozoa were accorded the status of a phy-
lum within the Metazoa by Grassé (1970) as
proposed previously by Grell (1956) and Lom
(1969). This status was subsequently indepen-
dently confirmed by molecular sequence data
when Smothers et al. (1994) demonstrated that
myxozoans grouped with bilateral animals on the
basis of SSU rDNA and were possibly a sister
group to the nematodes. This conclusion was
similarly reached by Schlegel et al. (1996) who
also analysed SSU rDNA. However, Siddall
et al. (1995) concluded that myxozoans grouped
within the Cnidaria as sister to Polypodium hy-
driforme on the basis of combined analyses of
SSU rDNA and morphological data. At the time,
morphological features that supported a meta-
zoan nature included septate and adherens-type
cell junctions, structural and functional differen-
tiation of cells and separation of somatic and
germ cells (Siddall et al. 1995; Lom and Dykova
1997). However, the separation of somatic and
germ cells is not a clear-cut metazoan character
as it has evolved several times in different lin-
eages of multicellular organisms (and bacteria:
Oliveiro and Katz 2014), and is also imple-
mented in varying degrees in metazoans (Gros-
berg and Strathmann 2007). Further purported
metazoan features used in phylogenetic analyses
(the presence of collagen and acetyl-choline/
cholinesterase activity; Siddall et al. 1995) were
pointed out to be questionable (Lom and Dykova
1997; Canning and Okamura 2004). The putative
protistan-like features of myxozoans (lack of
centrioles, cryptomitosis and tubular mitochon-
drial cristae) have also been demonstrated more
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broadly. Centrioles have been shown to be absent
in planarians apart from in terminally differenti-
ating ciliated cells (Azimzadeh et al. 2012) while
structures resembling microtubule organising
centres have been observed in Enteromyxum
scophthalmi (Redondo et al. 2003). Furthermore,
it is now evident that mitochondrial cristae can
assume many different shapes (Griparic and van
der Bliek 2001) often reflecting differences in
biochemistry even within the same tissues (Riva
et al. 2005) and tubular cristae are widely dis-
tributed across the eukaryotes (Cavalier-Smith
1993; Seravin 1993) including in free-living
cnidarians (e.g. Gray et al. 2009).

Despite the relatively early recognition of
their multicellularity, textbooks largely continued
to classify myxozoans as protists (e.g. Hyman
1940; Kudo 1966; Margulis and Schwartz 1998;
Lom 1990) until very recently (e.g. Ruppert et al.
2004; Brusca and Brusca 2003; Pechenik 2009).
This may, in part, reflect a propensity to adhere
to the prior, entrenched classification, particu-
larly in view of the conflicting evidence over the
specific metazoan affinities of myxozoans. The
extent that misclassification can muddy the tax-
onomic waters is exemplified by the ‘honorary’
inclusion of myxozoan papers in, for instance,
the annual conferences of the British Section of
the Society of Protozoologists (now the British
Society for Protist Biology).

2.2.3 (Clarification of Myxozoan Life
Cycles and Diversity

The complex parasitic life cycles of myxozoans
were not appreciated until the causative agent of
salmonid whirling disease, Myxobolus cerebral-
is, was shown to incorporate tubificid worm
hosts in a common life cycle (Markiw and Wolf
1983; Wolf and Markiw 1984). Only then was it
recognised that actinospores and myxospores
represented two different spore types produced
within a common life cycle, thus uniting Ac-
tinosporea and Myxosporea within a single class
(the Myxosporea). Previous to this work, acti-
nospore- and myxospore-producing taxa were
classified separately. For instance, an -early
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classification placed the Myxozoa (myxozoans
producing myxospores) with Microsporidia and
Actinosporea (myxozoans producing actinosp-
ores) in the class Cnidosporidia Doflein, 1901.
The discovery of life cycle complexity simulta-
neously reduced the diversity of myxozoan spe-
cies and opened the stage for exploring which
actinospores and myxospores are involved in a
common life cycle.

2.2.4 Recognition of the Malacosporea
and Inclusion of Buddenbrockia

The most significant developments in under-
standing the higher level relationships of the
Myxozoa have arisen from the discovery of
myxozoans parasitic in freshwater bryozoans
followed by the inclusion of the bizarre, worm-
like endoparasite of freshwater bryozoans, Bud-
denbrockia plumatellae, as a myxozoan. This
evidence was based on both molecular and
morphological features (see Chap. 4 for further
discussion). Thus, SSU rDNA analyses demon-
strated a close relationship of Buddenbrockia
plumatellae to Tetracapsuloides bryosalmonae
(the causative agent of Proliferative Kidney
Disease) (Monteiro et al. 2002) and hence an
association with the Malacosporea, an early
diverging clade of myxozoans so far associated
with freshwater environments, utilising freshwa-
ter bryozoans and fish as hosts (Anderson et al.
1999; Canning et al. 2000). Meanwhile, an
ultrastructural study simultaneously revealed that
diagnostic polar capsules were present in the
body wall of Buddenbrockia (Okamura et al.
2002). This study confirmed the early light-
microscopy observations by Schréder (1910) that
Buddenbrockia possesses a vermiform body plan
with four sets of longitudinal muscles but lacks a
digestive tract and anterior/posterior differentia-
tion. Okamura et al. (2002) suggested these
muscles were congruent to the four longitudinal
muscles of nematodes and noted the presence of
a basal lamina. These two complementary studies
based on molecular and morphological characters
thus provided the first insights into the body plan
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of a myxozoan that may have retained more in
the way of ancestral features than observed in
any other taxon.

Evaluation of Current
Phylogenetic Evidence
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Myxozoa are generally viewed as a monophy-
letic group in almost all recent studies. However,
due to the paucity of phylogenetically informa-
tive morphological characters, apparently high
rates of sequence evolution, and problems in
resolving basal metazoan relationships (see e.g.
Dohrmann and Wérheide 2013) support for the
position of Myxozoa within the animal kingdom
in most studies has remained moderate. Fur-
thermore, the conflicting hypotheses of Myxozoa
as sister-group to the Bilateria and as ingroup of
the Cnidaria receive support from different sets
of phylogenetic data and analytical approaches.
Other related phylogenetic questions include the
exact position of the Myxozoa within the Cni-
daria and relationships of myxozoans to the
endoparasite Polypodium. In the following sec-
tions we review the hypotheses and problems for
interpreting the phylogenetic relationships of the
Myxozoa that result from various data sets and
show how the collective evidence now strongly
supports their cnidarian nature (Fig. 2.1).

2.3.1 Morphological Evidence

The general body architecture of myxozoans
offers few clues regarding their phylogenetic
affinities. As mentioned earlier the presence of
cell junctions clearly identifies myxozoans as
metazoans. Epithelial characteristics in the stages
of malacosporeans infecting invertebrates further
support inclusion in the Eumetazoa (Ctenophora,
Cnidaria, Bilateria). Other crucial apomorphic
features (e.g. nerve cells) are lacking in myx-
ozoans. The recognition of an independent,
mesodermal-like muscle layer in Buddenbrockia
first appeared to link myxozoans to bilaterians.
However, three dimensional reconstruction of the
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Fig. 2.1 Consensus tree of basal metazoan relationships
and proposed position of Myxozoa as supported by
phylogenomic studies (see text). Further support is gained
from morphological characters: nematocysts (included in
figure), with the inclusion of polar capsules constitute an
apomorphic character of cnidarians; tetraradial body
symmetry (included in figure) is a shared apomorphic
feature of medusozoans and myxozoans

muscle architecture demonstrates a tetraradial
symmetry (Gruhl and Okamura 2012), a unique
trait of Medusozoa, the cnidarian taxon com-
prising Hydrozoa, Cubozoa and Scyphozoa.
Also, contrary to traditional views, mesodermal-
like musculature may occur in cnidarians as well
(Seipel and Schmid 2006; Technau and Scholz
2003; but see Burton 2008), and may therefore
be equally consistent with a cnidarian affinity.
Characters of embryonic development such as
cleavage patterns, modes of gastrulation and cell
lineages, have proven useful to resolve some
metazoan relationships (e.g. Valentine 1997,
Nielsen 2012). However, with no regular pattern
of cleavage, gastrulation or germ layer specifi-
cation, myxozoan development currently does
not offer any clear links with other metazoan
phyla.

The most informative ubiquitous morpholog-
ical character is the polar capsule, an intracellular
organelle found in all myxozoan spores (Weill
1938; Lom 1990; Canning and Okamura 2004).
The concordance to cnidarian nematocysts is
striking and includes ultrastructural features (e.g.
capsule wall and inverted tubule), formation
(Golgi-secretory pathway, tubule invagination),
and molecular architecture (proteins involved in
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capsule walls; see below and Chap. 3 for further
discussion). Homology of the two structures
appears highly likely, but of course this inference
assumes that the nematocyst is a bona fide apo-
morphy of Cnidaria. For instance, nematocyst-
like elements in a small number of unicellular
eukaryotes have led to the hypothesis that ne-
matocysts are a general eukaryote feature and
have been lost repeatedly in various lineages
(Ozbek et al. 2009). Although this cannot be
completely discounted it seems unlikely given
that, in addition to crucial differences in the fine
structure of these various organelles, there is not
a single known case of nematocyst loss in the
entire Cnidaria. It has also been hypothesised that
nematocysts originated as endosymbionts
derived from free-living unicellular organisms
either once or multiple times during eukaryote
evolution (Shostak 1993). This theory is now
mostly refuted by: (a) the fact that, unlike other
endosymbiotic organelles like mitochondria or
plastids, nematocysts and polar capsules lack
genetic material, and; (b) proteins involved in
nematocyst formation appear to be unique,
bearing little relationship with other eukaryote
proteins (Balasubramanian et al. 2012). Hori-
zontal transfer of nematocysts, as seen in the
cleptocnidae of e.g. nudibranch molluscs (Edm-
unds 1966) and some ctenophores (Carré et al.
1989), is also highly unlikely as in all known
cases these have to be acquired anew in each
individual since, due to lack of genetic material,
they do not reproduce.

In summary, both morphological and molec-
ular and data on polar capsules now provide
convincing support for Myxozoa belonging to
Cnidaria (Fig. 2.1). Chapter 3 describes how
polar capsules may also be phylogenetically
informative with regard to their position within
Cnidaria by pointing out similarities of the lid-
like apical plugs that seal polar capsules and
medusozoan nematocysts. The absence of apical
plugs in nematocysts of anthozoans adds further
support for a myxozoan-medusozoan affinity.
However, the evolution of nematocysts has not
been fully resolved (David et al. 2008; Fautin
2009) and convergence cannot be entirely dis-
counted. The relative simplicity of polar capsules
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may reflect their modified function of host
attachment (see Chap. 13) and whether this is
primary or due to secondary reduction remains
obscure.

2.3.2 Molecular Evidence

2.3.2.1 RDNA Data Sets
The SSU ribosomal RNA gene was the first
molecular marker widely applied to resolve
metazoan relationships (Field et al. 1988).
Myxozoans were firstly included in a metazoan-
wide data set in a study by Smothers et al. (1994)
who found good support for a position within the
Bilateria, as sister-group to nematodes. However,
exclusion of fast-evolving nematode sequences
removed Nematoda from its basal bilaterian
position and demonstrated major changes among
bilaterian relationships (e.g. Aguinaldo et al.
1997). In addition, studies on lower metazoan
groups (e.g. Hanelt et al. 1996; Pawlowski et al.
1996; Winnepenninckx et al. 1998) demonstrated
the importance of long branch attraction in
impeding phylogenetic resolution of the Myxo-
zoa (see Canning and Okamura 2004, for
review). Analyses of SSU rDNA sequences were
also demonstrating variable phylogenetic place-
ment for myxozoans depending, for instance, on
the incorporation of Polypodium hydriforme and
the analyses of partial versus full length
sequences (see Canning and Okamura 2004, for
review). Kim et al. (1999) attempted to control
for long branch attraction by analysing only full
(or near full) length SSU rDNA sequences
obtained for the species with the shortest branch
to the ancestral node in each monophyletic line-
age but their results were relatively inconclusive.
Thus, using distance analyses weak support was
obtained for a sister taxon relationship between
myxozoans and Polypodium hydriforme and they
did not fall within the Cnidaria. However, max-
imum likelihood analyses identified Myxozoa as
sister to the triploblasts while Polypodium hydr-
iforme was unresolved within the diploblasts.
More recently, Evans et al. (2010) examined
the effects of missing data, model choice and
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inference methods in placing highly divergent
taxa and confirmed the two relatively stable
placements that previous researchers had found
for myxozoans, with Cnidaria or Bilateria, based
on various types of analyses of SSU rDNA and
LSU rDNA sequences. The analyses by Evans
et al. (2010) thus exemplified the importance of
careful model selection, taxon and data sampling,
and in-depth data exploration when investigating
the phylogenetic placement of highly divergent
taxa such as the Myxozoa.

2.3.2.2 Protein Coding Genes,

Expressed Sequence

Tags, and Genomic and

Transcriptomic Data Sets
The conflicting conclusions and generally weak
support gained by phylogenetic analyses based
on nuclear rDNA data suggested that information
of another type was required to gain meaningful
insights into myxozoan origins. The identifica-
tion of central class Hox genes in myxozoans
was therefore of great interest since the absence
of these genes in cnidarians implied a bilaterian
affinity for the Myxozoa (Anderson et al. 1998).
However, these genes were later shown to be
host contaminants (Jiménez-Guri et al. 2007).
Success in developing suitable markers for phy-
logenetic studies has clearly been highly prob-
lematic due to the extreme divergence of
myxozoan genes which precludes the use of
universal primers for obtaining sequence data.

More recent technological innovations that

generate data on multiple gene loci, such as large
scale sequencing of expressed sequence tags
(ESTs), transcriptomes or genomes, have over-
come the limitations of earlier phylogenetic
analyses based on only a single or a few genes.
The breakthrough in understanding myxozoan
higher level phylogeny came when Jiménez-Guri
et al. (2007) were able to construct an EST
library for Buddenbrockia. This enabled a phy-
logenomic investigation based on 50 protein
coding genes which provided evidence that
Buddenbrockia groups within the Cnidaria and,
with strongest support, as sister to the Meduso-
zoa (Jiménez-Guri et al. 2007). Subsequent
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genomic and transcriptomic studies have con-
sistently provided further confirmation of the
cnidarian nature of myxozoans. Thus, Nesnidal
et al. (2013) came to similar conclusions based
on phylogenomic analysis of 128 protein-coding
genes identified by whole genome shotgun
sequencing of the myxosporean, Myxobolus
cerebralis (the causative agent of whirling dis-
ease). In addition to confirming the cnidarian
status of the Myxozoa and the sister group rela-
tionship between the Myxozoa and Medusozoa,
they also explicitly tested the effects of missing
data and showed that these cannot explain the
placement of Myxozoa within the Cnidaria as
posited by Evans et al. (2010). Most recently,
Feng et al. (2014) obtained genomic and tran-
scriptomic data from the myxosporean Theloha-
nellus kitauei and gained strong support for
Myxozoa as sister to the Medusozoa by analys-
ing a subset (86 genes) of the 128 genes analysed
by Nesnidal et al. (2013).

2.3.2.3 Taxonomically Restricted Genes
(Minicollagens)

Taxonomically restricted genes (TRGs) represent
another useful and independent source of data
relevant for evaluating myxozoan affinities.
TRGs may be identified in the genomes and
transcriptomes of a wide range of organisms and
will contribute to the high percentage (~20-
50 %) of genes with no detectable homologies to
proteins in public databases and which are thus
referred to as “orphan” or “novel” genes
(Khalturin et al. 2009). In cnidarians certain
genes involved in nematocyst formation are
regarded as TRGs (Milde et al. 2009) since ne-
matocysts are unique to cnidarians and genes
coding for proteins specifically involved in ne-
matocysts (e.g. minicollagens, NOWA) have not
been found in bilaterian, sponge or protist gen-
omes sequenced to date (David et al. 2008;
Khalturin et al. 2009) (although sequence data
are lacking for protists with similar organelles).

Holland et al. (2011) sequenced and charac-
terised a minicollagen in the malacosporean,
Tetracapsuloides bryosalmonae, demonstrating
the presence of a gene homologous to those
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encoding for nematocyst proteins in the Myxo-
zoa. This minicollagen protein has now been
localised to polar capsules (Gruhl et al. in prep.).
Feng et al. (2014) have identified two further
minicollagens in the myxosporean, Thelohanel-
lus kitauei, which were distinct from that iden-
tified in Tetracapsuloides bryosalmonae. The
three myxozoan minicollagens identified so far
cluster with minicollagens of medusozoans but
because taxon sampling is very poor these results
should be viewed with caution. Further mini-
collagens have been detected in original EST and
in new transcriptomic libraries for both mala-
cosporeans and myxosporeans (Holland et al.
unpub. data; Gruhl et al. unpub. data) and Shpirer
and Chang (2014) report three minicollagens and
three nematogalectins in genomic and transcrip-
tomic libraries of Kudoa iwatai, Enteromyxum
leei and Sphaeromyxa zaharoni. Nematogalac-
tins represent a further family of cnidarian-spe-
cific genes (Hwang et al. 2010).

TRGs offer a promising alternative to support
relationships where conflicting evidence or low
support obscures resolution of problematic taxa.
The power of TRGs is limited by the compre-
hensiveness of the reference data used for iden-
tification, but as the number of sequences
deposited in public databases increases, precision
is likely to increase as well.

2.3.2.4 Mitochondrial Genes
and Genomes

Mitochondrial gene sequences and especially the
arrangement of genes in the mitochondrial DNA
molecule are important data that are largely
independent of nuclear DNA evolution. In addi-
tion, the aberrant evolution of mitochondrial
genomes within the Cnidaria is now coming to
light. The Medusozoa in particular do not retain
the archetypal circular mitochondrial chromo-
some typical of animals, but possess linear
chromosomes and in some groups these are
fragmented into more than one chromosome (see
Kayal et al. 2012 for review). Further unique
features of at least some medusozoan mitoge-
nomes include the telomeres forming inverted
repeats and duplicate genes and pseudogenes in
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the subtelomeric regions as revealed in some
species of Hydra. Comparative mitogenome
architecture, gene arrangements and telomere
sequences may therefore be relevant for under-
standing the cnidarian affinities of the Myxozoa.
However, until recently difficulties imposed by
extreme molecular divergence precluded the
development of mitochondrial markers by a
number of groups including our own. Indeed,
consistent lack of success in amplifying mito-
chondrial sequence data from myxozoans despite
persistent efforts led authors of a conference
abstract to claim that myxozoans are amitoc-
hondriate (Wood et al. 2002)! This claim is of
course countered by the numerous mitochondria
evident in ultrastructural studies.

Data on myxozoan mitochondrial sequences
have now been obtained by several groups. In a
recent poster abstract Fiala et al. (2013) reported
sequences of the 12S, NADH and COX1 genes
from six myxosporean species and additionally
retrieved a partial mitochondrial genome
sequence for Polypodium. Preliminary analyses
support a medusozoan affinity for Myxozoa and
suggest that Polypodium is distinct and closely
related to the Narcomedusae. In another recent
poster abstract Yahalomi et al. (2013) present
mitochondrial sequences from genomic data for
three myxosporeans and found that myxozoans,
like some medusozoans, are characterised by
fragmented mitogenomes that have unusually
high rates of sequence evolution and are com-
prised of several linear chromosomes. Pre-
liminary data suggest that malacosporean
mitogenomes may be similarly comprised of
fragmented, linear molecules (Hartikainen and
Okamura, unpub. data).

24  Myxozoans and Polypodium:
Close Relatives or
Independently-Evolved

Lineages?

It is of interest to further explore the possibility
that Polypodium and myxozoans are indeed sister
taxa with a common origin supporting assign-
ment to the clade Endocnidozoa (Zrzavy and
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Hypsa 2003). Molecular phylogenetic analyses
based on SSU data have often concluded that
both Polypodium and myxozoans are sister to
bilaterians (e.g. Cavalier-Smith et al. 1996;
Pawlowski et al. 1996; Winnipenninckx et al.
1998; Kim et al. 1999). However, as discussed
above, myxozoans are now confirmed as cni-
darians. For Polypodium there is now also ten-
tative support based on broad SSU sampling of
the Cnidaria that Polypodium is a cnidarian
(Evans et al. 2009). However, if myxozoans are
included in these comprehensive analyses, cni-
darian affinities of both Polypodium hydriforme
and myxozoans disappear (Evans et al. 2008,
2009), highlighting the generic problem of long
branch attraction based on SSU data. New evi-
dence based on analyses of 128 genes presented
by Rubinstein et al. (2013) indicates Polypodium
and myxozoans cluster together and form the
sister clade to the Medusozoa. However, because
the study is ongoing and results may be altered
with further cnidarian sampling it is relevant to
undertake comparison of other features.
Polypodium is an intracellular parasite
infecting the eggs of primitive freshwater bony
fish (sturgeon and paddlefish). It undergoes an
extraordinary although simple life cycle with a
larval stage infecting fish eggs as intracellular
parasites and an adult, free-living stage that
produces gametophores which infect fish upon
contact (Raikova 1994). The life cycle entails
development as a so-called planuliform larva
with the gastrodermis located externally within a
fish egg. The larva is enclosed by a cell called the
trophamnion which is likely to have a protective
and nutritive role (Raikova 1994). The larval
form inverts prior to host spawning to produce a
free-living stolon comprised of a chain of tenta-
culate units with the gastrodermis situated inter-
nally. At spawning the fish egg membranes are
disrupted to release the stolon which subse-
quently fragments into tentaculate individuals
that actively feed, walk on their tentacles and
produce infectious gametophores as a result of
sexual reproduction. Gametophores containing
binucleate cells have been observed to infect
larval fish. Nothing is known about how fish
eggs eventually become infected. Infection of
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larval fish implies that prolonged periods of
arrested development may be required since the
time of first spawning may be up to 16 years (see
Raikova 1994 for review).

Some basic features present in Polypodium
that are absent in myxozoans include centrioles,
flagellated gastrodermal cells, a cnidocil (a cil-
ium-derived structure associated with nemat-
ocysts), gonads and a network of nerve fibres
underlying the epidermis (see Raikova 2008 for
review). Features shared by Polypodium and
myxozoans include parasitism of fish, infection
via nematocysts, a similar type of nematocyst
(putatively atrichous isorhiza), longitudinally
arranged and mesodermal-like muscle cells, cell-
within-cell stages (see Chap. 8 for review of
endogeny processes in myxozoans) and mito-
chondria with tubular cristae (Raikova 2008).
Many of these shared features are, however, also
found in other cnidarians. For instance, atrichous
isorhizas are broadly distributed and mesoder-
mal-like muscle arrangements characterise many
cnidarians (reviewed in Seipel and Schmidt
2006). Furthermore, cell-within-cell stages have
been observed during development of the trac-
hylinid Pegantha smaragdina which Bigelow
(1909) described as parasitizing the parent
(which lacks gonads) by developing within the
gelatinous matrix close to the gastric cavity.
During this development a nurse cell surrounds
an embryonic cell that then subsequently divides
while continuing to be enclosed within the nurse
cell (Bigelow 1909). We have already reviewed
how the shape of mitochondrial cristae is highly
variable and should no longer be considered a
character of phylogenetic significance.

At present, both molecules and other traits
provide conflicting evidence. Myxozoans and
Polypodium may represent independently-derived
endoparasitic lineages or they may represent sister
cnidarian taxa that have undergone extensive
divergence following their separation. If they are
sister taxa this could imply that primitive bony
fish (Order Acipenseriformes) were ancestral
hosts to myxozoans in freshwater environments
since both Polypodium and malacosporeans
(which retain primitive morphologies) both
exploit freshwater hosts. Ancestral marine fish
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hosts are less likely in view of the combination of
primitive and simple features demonstrated in
malacosporeans (see later discussion), the appar-
ent restriction of malacosporeans to freshwater
environments (see later discussion) and phyloge-
netic analyses of character evolution that identify
freshwater fish as primitive hosts (Fiala and Bar-
toSova 2010). In turn, myxozoans may have
diverged to exploit a diversity of fish and to sub-
sequently evolve a complex parasitic life cycle
with adult stages exploiting invertebrate hosts.
The alternative possibility, that a complex para-
sitic life cycle was ancestral to both myxozoans
and Polypodium, would imply the unlikely event
of Polypodium regaining free-living adult stages.
The possibility that myxozoans and Polypodium
may represent two independent transitions to
endoparasitism within the Cnidaria is supported
by the independent evolution of anthozoan and
narcomedusan species with larval stages that
develop parasitically in the gastrovascular cavities
of other cnidarians (Spaulding 1972; Pages et al.
2007) or in the stomach of a ctenophore (Bumann
and Puls 1996).

2.5 New Markers, New Methods
As outlined above for myxozoans and as is also
the case for several other problematic taxa in the
tree of life, there are still numerous sources of
error that prevent us from deciphering true phy-
logenetic relationships. General strategies to
improve support include firstly an increase of
both the number of taxa and the number of
characters used (Philippe and Telford 2006).
However, this is not always easily achievable, for
example when the organisms are rare, difficult to
sample, or highly divergent. Also, an uncritical
use of more characters does not necessarily lead
to higher support values, but can instead intro-
duce further new sources of error (e.g. Nosenko
et al. 2013). Systemic errors can only be reduced
by optimising the algorithms and models used for
phylogenetic analysis (e.g. Philippe and Roure
2011; Struck 2013).

A different approach is to use more complex
characters as these are less likely to be
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homoplastic. Such characters can be morpho-
logical as well as non-sequence genomic char-
acters. Examples of the latter that have been used
to resolve phylogenies include rare genomic
changes (Rokas and Holland 2000), near-intron-
pairs (Lehmann et al. 2013; Hill et al. 2013),
microRNAs (Wheeler et al. 2009), retroposons
(Suh et al. 2011), and protein indels (Gupta
2001). Mitochondrial genome structure data such
as linearity versus circularity are also very
informative in cnidarians (Bridge et al. 1992) and
are now promising to add further resolution to
the position of myxozoans (see earlier section).

Finally, in myxozoans as well as in many
other understudied taxa, morphological and
developmental studies are extremely valuable,
because many traits may be unrecognised or have
been characterised for only a few representatives.
Such poor cover may potentially bias inferences
of body plan evolution and development.

Evolution of Parasitism: From
Free-Living Cnidarians
to Endoparasites

2.6

After a long period of controversy, the cnidarian
affinity of myxozoans appears at last to be clear.
We are therefore now able to interpret the
Myxozoa within the context of their cnidarian
nature and the evolution of endoparasitism from
free-living ancestors. In this section we explore
the evolution of their complex parasitic life
cycles, the nature of the first myxozoan hosts and
the incorporation of new hosts. Chapter 3 con-
siders the extent that ancestral cnidarian features
may be reflected in their subsequent evolution
and life histories as well as unique traits that may
have enabled their radiation as endoparasites, the
latter is also considered further in Chap. 4.

2.6.1 Evolution of a Complex Parasitic

Life Cycle

Present knowledge indicates that all myxozoans
incorporate invertebrate and vertebrate hosts in a

B. Okamura and A. Gruhl

complex life cycle. A marine origin was inferred
by Shul’'man (1990) who suggested that the
common ancestor was a coelozoic parasite of the
gall bladder and urinary bladder of actinoptery-
gian teleosts (ray fins) but this was proposed
before invertebrate hosts and the malacosporeans
were recognised. On the basis of current evi-
dence a freshwater origin is also conceivable.
This is implied by phylogenetic analyses of
character evolution based on stages in fish (Fiala
and BartoSova 2010) and the primitive characters
of malacosporeans along with their simple spores
(see below). It would also be supported if Po-
lypodium is confirmed as sister to the Myxozoa.
The evolution of the complex myxozoan life
cycle would have first involved a transition from
a free-living lifestyle to a parasitic form that
exploited a single host. Such a transition would
be preceded by the two organisms coming into
contact for some time. Pre-adaptations of parasite
precursors will then have enabled initial stages of
host exploitation when greater fitness was
attained by maintaining the association (Poulin
2007). Routes to parasitism may involve parasite
precursors feeding on hosts, utilising hosts for
dispersal (via phoresy) or to reduce environ-
mental variability, and survival following pre-
dation (see Poulin 2007; Schmid-Hempel 2011
for further review and examples).

We note that the number of species observed in
the present day is not informative about how old
lineages may be and thus cannot provide potential
insights about original hosts or habitats. For
instance, relatively depauperate clades may once
have been more speciose. In addition, speciose
clades may have arisen by adaptive radiation
enabled by the evolution of a key trait. Chapter 4
explores how such adaptive radiation may have
resulted in the highly speciose myxosporeans.
Other parasitic taxa are similarly characterised by
depauperate clades sister to highly speciose clades
with derived characters. For instance, the Aspi-
dogastrea comprises four families and some
80 species and is sister to the Digenea which is
composed of 100 families and >10,000 species)
(Cribb et al. 2003). Another example is the Cy-
clophyllidea, which is the most highly derived
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Fig. 2.2 The main hypothetical scenarios for the origin
and evolution of myxozoan life cycles (see text for further
details, including use of precursors to host groups, as well
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bryozoans as first host with subsequent acquisition of
fish as secondary host. Switch to annelids, initially as
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Fig. 2.3 Hydra sp. (double arrowhead) on the phylac-
tolaemate bryozoan Fredericella sp. Several tentacular
crowns (lophophores) of the bryozoan are extended for
suspension feeding (arrowheads)

Eucestode order and contains 380—400 genera,
while the other, less derived orders of eucestodes
contain 1-66 genera (Brabec 2012).

The current topology of myxozoan phylogeny
with a basal split into the subtaxa Malacosporea
and Myxosporea enables us to identify characters
that are shared by both groups as ancestral for
Myxozoa. However, this is not possible for traits
that show different character states between the
two groups and are also absent in any potential
myxozoan outgroup. Since the ancestral myxo-
zoan was a free-living cnidarian we cannot
determine whether the malacosporean condition
(bryozoan host) or the myxosporean condition
(annelid host) is plesiomorphic. One way to
approach this dilemma is therefore to develop
scenarios (Fig. 2.2) that can be examined for
plausibility based on the evolution of other
characters or on ecological or functional con-
siderations. Below we use this approach to con-
sider how endoparasitism and life cycle
complexity may have arisen in the Myxozoa. The
main scenarios for patterns of host acquisition are
outlined in Fig. 2.2. The relationship between
myxozoan life cycles and the complex life cycles
of free-living cnidarians is explored in Chap. 3.

2.6.1.1 Invertebrates as First Hosts
The retention of primitive features (tissues, mus-
cle blocks, tetraradial symmetry) in freshwater
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bryozoan hosts suggests that myxozoans may
have evolved from a cnidarian ancestor in fresh-
water environments with bryozoans or their pre-
cursors acting as ancestral hosts of adult stages
(since meiosis occurs in invertebrate hosts)
(Fig. 2.2a). An alternate scenario is that mxy-
ozoans evolved to become parasites of marine
precursors that subsequently invaded freshwater
environments to diversify as freshwater bryozo-
ans. The relatively simple, soft-walled spores
produced by malacosporeans in both bryozoan
and fish hosts are similar to the simple spores
identified as present in the common ancestor
identified by phylogenetic analyses of character
evolution based on stages in vertebrate hosts and
which was inferred to have exploited freshwater
hosts (Fiala and BartoSova 2010).

Relatively few cnidarians occur in freshwaters
and current evidence suggests that all (except
possibly Polypodium) are hydrozoans. Hydro-
zoans exhibit several instances of independent
evolution to inhabit freshwaters (Jankowski et al.
2008), and Hydra is often found attached to
bryozoan colony surfaces (Fig. 2.3) perhaps
reflecting an association with future hosts by an
ancestral hydrozoan form which preceded a
transition to parasitism (Poulin 2007). Notably,
the suspension feeding activity of bryozoans may
predispose them to ingest a wide range of
potential food items, including propagative
stages of hydrozoans such as eggs, planulae, or
small regressed stages (see Chap. 3 for review of
the latter) that could potentially invade bryozoan
tissues. Furthermore, the ability of cnidarians to
absorb dissolved organic compounds through the
integument (e.g. Ferguson 1982; Grover et al.
2008) and the incomplete digestion and even
survival of organisms consumed by freshwater
bryozoans (Hyman 1959; Raddum and Johnsen
1983; Okamura pers. obs.) may both be signifi-
cant processes that enabled the invasion and
development within the tissues of bryozoans (or
their precursors) by ingested stages. Acantho-
cephalans provide evidence for such a postulated
transition to parasitism with the stem species
inferred to have lived epizootically on a marine
arthropod ancestor prior to invading the host
body cavity to establish an endoparasitic life
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cycle. The present-day close association of the
free-living Seison nebaliae (the sister taxon to
acanthocephalans) with marine arthropods, may
reflect such a situation (Herlyn et al. 2003).

It is also possible that myxozoans evolved
from a cnidarian ancestor that became an endo-
parasite of annelid worms (Kent et al. 2001).
Thus, myxozoans may have originated in the
marine environment where annelids are a diverse
and old group. Alternatively, freshwater oligo-
chaetes could have been first hosts. However, we
view either scenario of annelids as first hosts
(Fig. 2.2b) as less likely than that of ancestral
bryozoan hosts (Fig. 2.2a) since myxosporeans
are highly derived. Furthermore, myxozoans
infecting freshwater worms appear to have arisen
via re-invasion of freshwater environments from
marine myxosporean lineages (Kent et al. 2001;
Fiala and BartoSova 2010). This suggests that if
freshwater oligochaetes were first hosts these
lineages have vanished without trace whilst
malacosporeans have remained in freshwater
environments exploiting a host group of low
diversity (freshwater bryozoans) relative to the
diversity of freshwater oligochaetes. Finally, it
should be mentioned that myxozoans could have
originated in other invertebrate hosts that remain
undetected either because of extinction or lack of
sampling.

2.6.1.2 Fish as First Hosts

An alternative scenario (Fig. 2.2c) is that fish (or
early fish-like vertebrates, see below) were ori-
ginal hosts for stages of myxozoans that are
likely to have developed in renal tissues (Kent
et al. 2001; Fiala and BartoSova 2010). The
absence of meiosis in myxozoans in fish hosts
suggests that fish may have supported the
development of larval myxozoans. The adoption
of fish as hosts may have occurred in freshwater
or marine environments. Invertebrates would
subsequently have been incorporated as hosts for
adult stages in a two-host life cycle. Support for
this scenario is that fish are hosts for most
members of all major clades of myxozoans
(malacosporeans and the freshwater and marine
clades of myxosporeans) (Kent et al. 2001; see
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also Chap. 4) and the propensity of other cni-
darians to evolve parasitic larval stages (Spaul-
ding 1972; Bumann and Puls 1996; Pagés et al.
2007). Additional support would be gained if
Polypodium (which exploits fish hosts as larval
stages) and myxozoans were determined to be
sister taxa. The free-living adult stage may then,
by association, have evolved endoparasitism
using invertebrates as definitive hosts.

At present it is unclear whether myxozoans
are sister to or were derived within the Me-
dusozoa. This has implications for interpreting
the nature of myxozoans under a scenario of
utilising fish as first hosts. Analyses of mito-
chondrial protein-coding genes and the fossil
record suggest that medusozoans diverged prior
to the Cambrian (Park et al. 2012). The first
cartilaginous and bony fish appear in the Devo-
nian and Silurian, respectively. A sister-group
relationship of myxozoans and medusozoans
would therefore imply that myxozoans either
must have been free-living for many millions of
years prior to the utilisation of such fish as first
hosts, or have used other hosts before switching
to such fish. If, however, myxozoans were
derived within Medusozoa then the period of
time that myxozoan precursors were free-living
prior to parasitising fish may have been greatly
reduced, and the postulation of an additional
host-switch becomes unnecessary. Similarly, the
period of time may have been reduced if pre-
cursors to cartilaginous or bony fish served as
first hosts. This would be supported if agnathans
(hagfish and lampreys) turned out to be regular
hosts of myxozoans, because the origin of ver-
tebrates dates well back into the Ediacaran and
agnathans diverged from gnathostomes in the
Cambrian (Donoghue and Keating 2014). Thus
far, only isolated findings of myxozoans in
lampreys have been reported (Mori et al. 2000).

Larval stages of myxozoans may originally
have been transmitted to fish by direct contact
with the adult form, perhaps via a stage analo-
gous or homologous to the gametophores of
Polypodium. Alternatively, spores may have
evolved as larval stages adapted to attach to fish
hosts to enable phoresy (like glochidium larvae
of some freshwater bivalves). This may have
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been particularly advantageous in freshwater
environments, providing a means of colonising
habitats otherwise precluded or retention within
favourable adult habitats rather than being swept
downstream to unsuitable sites. It is difficult to
envision how tiny larval stages released into a
three-dimensional watery world would have
achieved the close association with fish hosts
required for spores to evolve in the first place
unless release was somehow triggered by prox-
imity of fish. The firing of polar filaments from
polar capsules by exposure to fish mucous or
mechanical contact of spores (see Chap. 13 for
further discussion) may illustrate how such
transmission may have been achieved.

The other possibility, that myxozoans first
exploited fish hosts as adult stages, would entail
a subsequent transition to using invertebrates as
definitive hosts. The apparent flexibility of cni-
darian life cycles (see Chap. 3) suggests a prec-
edent for this, but as developed below, this
scenario implies unlikely evolutionary events
associated with the incorporation of secondary
invertebrate hosts.

2.6.2 Incorporation of New Hosts

Complex life cycles have evolved independently
in several groups of parasites with the drivers of
host expansion likely to reflect historical events
that affected parasite transmission or survival of
the host (Poulin 2007). An increase in life cycle
complexity may be explained, for instance, if
parasites evolve to exploit predators or prey of
the first host thereby enabling higher growth and
fecundity or higher transmission rates (e.g.
Choisy et al. 2003; Parker et al. 2003). This
could be achieved by upward incorporation—
when original hosts are frequently ingested and
become intermediate hosts (Parker et al. 2003).
Such upward incorporation could be driven by
increased parasite fecundity in larger predator
hosts with selection for delayed maturity and
enhanced reproduction in this larger host. For
example, upward incorporation appears to have
occurred when the ancestor of acanthocephalans,
an endoparasite of a marine arthropod,
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incorporated a vertebrate predator as a second
host (Near et al. 1998; Herlyn et al. 2003).
Complex parasitic life cycles may also be
achieved by downward incorporation—when
prey of the original host frequently ingest para-
site propagules and become intermediate hosts.
This may enhance transmission to the original
host which then becomes the definitive host
(Parker et al. 2003). Platyhelminthes appear to
present an example of downward incorporation
with the lineage ancestral to digeneans and ces-
todes becoming parasitic in vertebrates (Little-
wood et al. 1999) and the subsequent addition of
invertebrate hosts in each group (see Poulin
2007; Schmid-Hempel 2011 for review).

Additional hosts may also be incorporated in
parasite life cycles if there is an increased prob-
ability of finding a sexual partner (Brown et al.
2001). Note that this assumes there are selective
benefits of cross-fertilization which may not be
the case for myxosporeans (see Chap. 3) but
could apply to malacosporeans (see below).
Finally, additional hosts may serve to transfer
infectious stages from one host to the next.
However, such paratenic hosts have no effect on
completion of the parasite’s life cycle. Below we
consider how the complex myxozoan life cycles
observed today may have evolved by expansion
from various potential hosts. When this occurred
is obscure—myxozoans may have remained en-
doparasites with a simple life cycle for millions
of years. Our discussion focuses on how complex
myxozoan life cycles may have arisen via
expansion from precursors that exploited either
invertebrate or vertebrate hosts. The subsequent
adoption of a new host via host switching by
myxozoans demonstrates a capacity for host
substitution. For instance, myxosporeans have
replaced fish with amphibian hosts on at least
three times independently (see Chaps. 4 and 7 for
further discussion).

2.6.2.1 Expansion from Bryozoans?

If freshwater bryozoans or their precursors were
first hosts (Fig. 2.2a), fish may have been
incorporated as secondary hosts by direct inges-
tion of infected bryozoans or of myxozoan
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spores. So far there is no evidence for trophic
transmission from invertebrate hosts to fish but
the presence of bryozoan dormant stages (stato-
blasts) in fish guts in the present day (e.g. Dendy
1963; Applegate 1966) and demonstration that
statoblasts carry myxozoan infections (Hill and
Okamura 2007; Abd-Elfattah et al. 2014) sug-
gests that trophic transmission may have been
possible. On the other hand, ingestion of myxo-
zoan spores might easily occur during predation
and browsing of invertebrates commonly asso-
ciated with and concentrated in dense stands of
freshwater bryozoans (Bushnell and Rao 1979;
Okamura pers. obs.). Utilisation of fish hosts may
have enabled persistence during adverse condi-
tions or amplifying transmission as a result of the
greater biomass and longevity of fish. However,
if the invertebrate hosts were highly clonal, as in
present-day bryozoans, these advantages may not
have pertained. For instance, malacosporeans
infect dormant asexual bryozoan propagules
(statoblasts) that enable survival during adverse
conditions (Hill and Okamura 2007; Abd-Elfat-
tah et al. 2014). In addition, extensive clonal
growth in freshwater bryozoans combined with
vertical transmission of infection in clonal frag-
ments and propagules (see Chap. 11) could
amplify parasite biomass and transmission to
levels equal to if not greater than those achieved
by exploiting fish. Alternatively or additionally,
infection of fish may have enabled retention of
larval stages within suitable habitats rather than
being swept downstream or it may have
enhanced outcrossing (Rauch et al. 2005) if
infectious spores released by fish are more likely
to be genetically distinct than those produced by
parasites in highly clonal local bryozoan popu-
lations. For instance, fish movements may result
in exposure to infection from multiple sources
while extensive vertical transmission of parasites
in bryozoans may amplify the biomass of only a
single or a few parasite genotypes in local
bryozoan populations.

An alternative or perhaps additional possibil-
ity is that annelid worms were incorporated as
alternate hosts via ingestion of spores released
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from bryozoans or direct consumption of infec-
ted bryozoans. This may have been facilitated by
an association of oligochaetes with freshwater
bryozoans—something commonly observed for a
variety of species in the present-day (Okamura,
pers. obs.). Indeed, oligochaetes are occasionally
encountered that have ingested statoblasts
(Okamura, pers. obs.) perhaps exemplifying the
potential consumption of infected statoblasts by
annelids that eventually were incorporated as
hosts. This scenario would imply that life cycles
subsequently evolved along different trajectories
leading to the divergent Malacosporea and
Myxosporea along with the capacity for adult
development to be transferred from bryozoan to
annelid hosts. The most parsimonious interpre-
tation is that fish hosts were incorporated prior to
the malacosporean/myxosporean split.

2.6.2.2 Expansion from Annelids?

Fish may have been incorporated as secondary
hosts of myxozoans developing in annelid
worms (Fig. 2.2b) by trophic transmission, with
predation of infected annelids selecting for par-
asites with the ability to survive passage through
fish and use of the gut as the primordial entry
portal. This is supported by the common inclu-
sion of annelids in fish diets. However, as out-
lined earlier, the derived nature of myxosporeans
suggests this is unlikely to have involved
expansion to fish hosts from basal myxozoans
that infected annelids. A recent molecular phy-
logenetic analysis has identified Bipteria sp. to
comprise the earliest diverging myxosporean
branch of the derived marine lineage (Kodad-
kova et al. 2014). Exploitation of the holoceph-
alan fish, Chimaera monstrosa, as the vertebrate
host by Bipteria sp. suggests that fish may have
been incorporated as hosts as early as the Silurian
when the oldest living group of jawed vertebrates
(the cartilaginous fishes comprising the chima-
eras, sharks, skates and rays) diverged from a
common ancestor of bony vertebrates. It is pos-
sible that holocephalans were incorporated by
myxozoans that infected annelids or even marine
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precursors to freshwater bryozoans. It is, how-
ever, also possible that holocephalans were
adopted as hosts more recently. In this respect it
may be significant that the early branching mal-
acosporeans in the present day do not infect
particularly ancient fish.

Finally, if annelids were incorporated as
alternate hosts to bryozoans (see above), it is
possible that fish may already have acted as hosts
in myxozoan life cycles prior to the addition of
annelid hosts. Another scenario, in parallel with
that outlined in the previous section, is that
freshwater bryozoans were incorporated as
alternate hosts via ingestion of spores released
from annelid hosts. This would then entail sub-
sequent evolution leading to the divergence of
Malacosporea and Myxosporea and adult devel-
opment transferred from annelid to bryozoan
hosts. As argued previously, it is more likely that
fish hosts were incorporated prior to the mala-
cosporean/myxosporean split.

2.6.2.3 Expansion from Fish?

If fish were acquired as hosts of larval stages
(Fig. 2.2¢) trophic transmission of adult stages
released from fish would seem difficult to achieve
given the suspension-feeding and scavenging
activities of bryozoans and annelids. However,
the propensity of cnidarians to release small
propagative stages by budding processes (see
Chap. 3) may have enabled such transmission.
Alternatively, if fish were acquired as hosts of
adult stages (see above) trophic transmission via
the ingestion (either of spores or of stages in
which spores were present; see Chap. 3 for fur-
ther discussion of myxozoan life cycle stages) by
bryozoans and worms would be feasible. This
scenario would require a switch to using inver-
tebrates as definitive hosts. Since cnidarian life
cycles demonstrate considerable plasticity, for
instance with transition of sexual reproduction
from medusa to polyp stages (e.g. in Hydra), the
scenario is not entirely unfeasible (see Chap. 3
for further discussion). Nevertheless, the scenario
does not readily explain why morphological
complexity would subsequently characterise the
adult malacosporean stages in bryozoans. Such
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complexity is rather suggestive of atavism, with
complex worm-like stages re-evolving in mala-
cosporeans, unless of course early fish hosts
harboured morphologically complex myxozoan
parasites. Finally, cnidarians [e.g. Polypodium,
anthozoans and narcomedusae (Bumann and Puls
1996; Spaulding 1972; Pages et al. 2007)] dem-
onstrate a proclivity to evolve parasitic larval
rather than adult stages.

2.6.3 Undiscovered Diversity
and Hosts

The diversity of myxosporeans described in fish
and the discovery of new hosts for malacospo-
reans (see Chap. 4) provide evidence that my-
xozoan host ranges in these two invertebrate
groups will continue to expand as further life
cycles are resolved and new material encoun-
tered. Several other groups of invertebrates may
have also been incorporated in myxozoan life
cycles, such as octopus (Yokoyama and Masuda
2001) (see also Lom and Dykova 2006). How-
ever, because myxozoan infections are generally
innocuous many are probably very often over-
looked. The demonstration of extensive covert
infections by malacosporeans in freshwater bry-
ozoans (see Chap. 11) also suggests that many
myxozoans may be unrecognised if they occur
for prolonged periods of time as single cells
associated with host tissues. The recent aston-
ishing expansion in the diversity of Haplospo-
ridia and Mikrocytida via both environmental
DNA detection and sampling of invertebrate
hosts (Hartikainen et al. 2014a, b) provides evi-
dence that the diversities of innocuous, endo-
parasitic microbial taxa, such as Myxozoa, are
likely to be greatly underestimated. Thus, it is
possible that myxozoans have evolved to exploit
a much broader range of invertebrate host groups
than is currently evident.

Marine counterparts of freshwater bryozoans
could be considered as likely candidate hosts for
malacosporeans. However, we are unaware of
any convincing observations in the literature of
malacosporeans in marine bryozoans (Classes
Gymnolaemata and Stenolaemata) nor have any
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been found by specifically sampling marine
bryozoans (Okamura, unpub. data on gymno-
laemates). A number of early bryozoan
researchers noted ‘vermiform’ and other appar-
ently parasitic bodies in marine bryozoans. Some
of these were likely to have been bryozoan organ
systems (e.g. paired vestibular glands) including
various specifically-located vermiform bodies
described by Hastings (1943). Others apparently
occurred collectively within a common matrix
(e.g. Waters 1912). However, myxozoan stages
are directly exposed to the host body cavity flu-
ids. The description of cilia on one such stage is
also inconsistent (Waters 1912). Some of the
vermiform bodies observed by Hastings (1943)
were examined by authorities who could not
confirm their identity without fresh, properly
fixed material although one authority suggested
they could be Protozoa. The recent discovery of
orthonectids endoparasitic in marine bryozoans
suggests a possible identity for some of the ver-
miform bodies that have been observed in bry-
ozoans (Hochberg and Kruse 2009).

The apparent absence of malacosporeans in
marine bryozoans could of course reflect low or
patchy infection prevalence, and relatively little
research focusing on what are regarded as ‘minor
phyla’ such as the Bryozoa. Nevertheless, we
believe that marine bryozoans are unlikely hosts
because the presence of walls between constitu-
ent zooids in colonies results in a very small
space in which sacs or worms could develop—
the body cavity of a single zooid. In phylacto-
laemates (freshwater bryozoans) the lack of walls
between constituent zooids in colonies produces
a voluminous, colony-wide, fluid-filled body
cavity that supports the proliferation of numerous
sacs and worms whose maximum dimensions
range from 0.3 (for sacs) to 3 mm (for worms).
Even at maturity these malacosporean stages are
bathed by host fluids and undergo active move-
ments (worms) or are passively circulated (sacs)
within the common, colony-wide body cavity. In
contrast, a single Buddenbrockia worm or a
couple of sacs would completely pack the vol-
ume of a single zooid of a marine bryozoan,
entailing difficulty in spore release and probably
in nutrient uptake. We further suggest that the
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size constraints associated with developing in
marine bryozoan zooids would drastically reduce
transmission due to extremely low concentrations
of spores released in marine environments from
small stages. More plausible candidates for
marine invertebrate malacosporean hosts might
therefore be found among groups that exhibit
similar features, i.e. deposit or suspension feed-
ing life styles allowing contact with infectious
spores in combination with large body cavities
providing space and nutrients for parasite trophic
stages. These would include potential relatives of
bryozoans such as phoronids or brachiopods, but
also invertebrates such as echinoderms, hemi-
chordates or molluscs.

2.7  Conclusions

The cnidarian nature of myxozoans is increas-
ingly supported by evidence from multiple
independent sources. However, both morpho-
logical and molecular markers appear to be
highly divergent in myxozoans and thus cur-
rently do not provide confidence in a more pre-
cise phylogenetic hypothesis regarding their
closest cnidarian relatives. This picture is likely
to be resolved in the near future as many studies
are now focussing on these questions by
searching for new phylogenetically informative
characters.

The evolution of the complex myxozoan life
cycle is a fascinating but inherently difficult topic
to evaluate. The close association of a free-living
precursor with what would become the first
myxozoan hosts would have led to myxozoans
with simple life cycles. The occurrence of mei-
osis in invertebrate hosts, the more derived nat-
ure of myxozoans that infect annelids and the
fact that fish are hosts for most members of all
major myxozoan clades suggest that either
freshwater bryozoans or fish (or their precursors)
acted as such ancestral hosts. The morphological
complexity of malacosporeans in freshwater
bryozoans renders a scenario of fish as first hosts
perhaps less probable. However, cnidarian char-
acters that likely pre-adapted them to endopara-
sitism, including life cycle plasticity and a
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capacity to evolve novel propagative stages, can
also be invoked to explain many alternative
scenarios for the evolution of complex parasitic
life cycles.

The diversity of myxozoans as currently
recognised is no doubt underestimated due to the
biased focus on a narrow range of economically-
important hosts. Further research on myxozoan
diversity and life cycles will enable greater
insights into the phylogeny and evolution of this

group.

2.8 Key Questions for Future Study

e Which (cnidarian) group is sister to myxozoans?

e Are there other invertebrate taxa that act as
primary hosts?

e Have Polypodium and Myxozoa indepen-
dently evolved endoparasitism?

e How might we gain insights into when endo-
parasitism evolved and what hosts were first
acquired?
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