Chapter 2
Fractional Calculus

Abstract A brief exposition of fractional order operators and their properties is
given. After that, we introduce the notion of generalized fractional operators.

Keywords Fractional derivatives and integrals - Generalized fractional derivatives
and integrals - Fractional derivatives and integrals of variable order * Riemann-
Liouville, Hadamard and Caputo operators * Fractional integration by parts - Multi-
dimensional generalized fractional calculus

Fractional calculus was introduced on September 30, 1695. On that day, Leibniz
wrote a letter to L’Hopital, raising the possibility of generalizing the meaning of
derivatives from integer order to noninteger order derivatives. L’Hopital wanted
to know the result for the derivative of order n = 1/2. Leibniz replied that “one
day, useful consequences will be drawn” and, in fact, his vision became a reality.
However, the study of noninteger order derivatives did not appear in the literature
until 1819, when Lacroix presented a definition of fractional derivative based on the
usual expression for the nth derivative of the power function (Lacroix 1819). Within
years the fractional calculus became a very attractive subject to mathematicians,
and many different forms of fractional (i.e., noninteger) differential operators were
introduced: the Grunwald—Letnikow, Riemann—Liouville, Hadamard, Caputo, Riesz
(Hilfer 2000; Kilbas et al. 2006; Podlubny 1999; Samko et al. 1993) and the more
recent notions of Cresson (2007), Katugampola (2011), Klimek (2005), Kilbas and
Saigo (2004) or variable order fractional operators introduced by Samko and Ross
(1993).

In 2010, an interesting perspective to the subject, unifying all mentioned notions
of fractional derivatives and integrals, was introduced in Agrawal (2010) and later
studied in Bourdin et al. (2014), Klimek and Lupa (2013), Odzijewicz et al. (2012a, b,
2013a, b, c). Precisely, authors considered general operators, which by choosing spe-
cial kernels, reduce to the standard fractional operators. However, other nonstandard
kernels can also be considered as particular cases.

This chapter presents preliminary definitions and facts of classical, variable order,
and generalized fractional operators.
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8 2 Fractional Calculus

2.1 One-Dimensional Fractional Calculus

We begin with basic facts on the one-dimensional classical, variable order, and gen-
eralized fractional operators.

2.1.1 Classical Fractional Operators

In this section, we present definitions and properties of the one-dimensional frac-
tional integrals and derivatives under consideration. The reader interested in the
subject is refereed to the books (Kilbas et al. 2006; Klimek 2009; Podlubny 1999;
Samko et al. 1993).

Definition 2.1 (Left and right Riemann—Liouville fractional integrals) We define
the left and the right Riemann-Liouville fractional integrals ,//* and ,I; of order
a € R (a > 0) by

t
1 d
O = s (tf_(TT))lia, t € (a.b], @.1)
and )
1 d
B0 = s / (Tf th))liw € la.b), 2.2)
1

respectively. Here I"(a) denotes Euler’s Gamma function. Note that, , /[ f] and
15[ f] are defined a.e. on (a, b) for f € L(a, b; R).

One can also define fractional integral operators in the frame of Hadamard setting.
In the following, we present definitions of Hadamard fractional integrals.

Definition 2.2 (Left and right Hadamard fractional integrals) Let0 < a < b < o0.
We define the left-sided and right-sided Hadamard integrals of fractional order &« € R

(o > 0) by
1 A\ f(md
o . t T)dTr
oI = —F(a)/(logT) p— t>a
and
. a 1 d
JELAI = / TOT <,

respectively.



2.1 One-Dimensional Fractional Calculus 9

Since it is enough for the purposes of this book, we define Riemann—Liouville
fractional derivatives of order o with 0 < o < 1. A more general definition for any
«a with Re(«) > 0 can be found in Kilbas et al. (2006).

Definition 2.3 (Left and right Riemann—Liouville fractional derivatives) The left
Riemann-Liouville fractional derivative of order « € R (0 < @ < 1) of a function
f, denoted by , D{*[ f1, is defined by

d
Vi € (a,bl, DL = aalﬁ—“[f](r).

Similarly, the right Riemann-Liouville fractional derivative of order v of a function
f, denoted by ; Di[ f1, is defined by

d
Vi €la,b), Dyf11) = —Ezlbl_a[f](t)-

As we can see below, Riemann-Liouville fractional integral and differential oper-

ators of power functions return power functions.

Property 2.4 (Property 2.1 (Kilbas et al. 2006)) Let o, 8 > 0. Then the following
identities hold:

F 2
alta[(’r — a)ﬂ_l](t) — #f_)a)(t _ a),d—i-a—l’
6 r
uDla[(T — a)sj_]]([) = %([ _ a)ﬂ—a—l,
( r
IICES T)“d_l]([) = #f—)a)(b _ t)ﬂ““‘l,
and
r
DRI — ) (0) = %U, _ a1,

Definition 2.5 (Left and right Caputo fractional derivatives) The left and the right
Caputo fractional derivatives of order « € R (0 < o < 1) are given by

d
Vit € (a,bl, SDLFIG) = o0 [Ef} ()
and
C na 11—« d
vVt €la,b), ;D,LfI@) = —, [Ef} (),

respectively.
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Let0 < a < land f € AC([a, b]; R), where AC denotes the class of absolutely
continuous functions. Then the Riemann—Liouville and Caputo fractional derivatives
satisfy relations

f(a)

C na _ a _

a Dt [f](t)_aDt [f](t) (t—a)“F(l—oz)’ (23)
b

EDLAI) = = DYLFI0) + &) (2.4)

b-—0nrd—a)’

that can be found in Kilbas et al. (2006). Moreover, for Riemann—Liouville fractional
integrals and derivatives, the following composition rules hold:

(aI 0 DY) [£10) = f(1), (2.5)
(15 0 : DY) [F1() = £ (1), (2.6)

provided that f € L'(a, b; R), AP IS f] € AC([a, bI; R) and I f(a) =0,
1 f(b) = 0. Note that, if f(a) = 0, then (2.3) and (2.5) give

(t 0 SDF) LA = (ulf 0 uDP) LAV = F(0), @)
and if f(b) = 0, then (2.4) and (2.6) imply that

(152 0 £ D5) 1110 = (1 0. DF) LA10) = £ (0. 2.8)

The following assertion shows that Riemann-Liouville fractional integrals satisfy
semigroup property.

Property 2.6 (Lemma 2.3 (Kilbas et al. 20006)) Let o, 5 > 0 and f € L" (a, b; R)
(1 <r < 00). Then, equations

(ot o at?) 10 = B 1 1100)
and
(150 o)) U110 = 11110

are satisfied a.e. in (a, b).

Next results show that, for certain classes of functions, Riemann—Liouville frac-
tional derivatives and Caputo fractional derivatives are left inverse operators of
Riemann-Liouville fractional integrals.
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Property 2.7 (cf. Lemma 2.4 (Kilbas et al. 2006)) If 0 < a < 1 and f €
L (a,b; R) (1 <r < 00), then the following is true:

(D% 0 JI8) [£1(0) = f (1),
(:Df o L) [F1(0) = f (D),

a.e. in (a, b).

Property 2.8 (cf.Lemma?2.21 (Kilbasetal.2006)) Let0 < o < 1. If f is continuous
on the interval [a, b), then

(Sofout?) 1110 = f a0,

(€D o 1) 110 = F 0.

For r-Lebesgue integrable functions, Riemann-Liouville fractional integrals and
derivatives satisfy the following composition properties:

Property 2.9 (cf. Property 2.2 (Kilbas et al. 20060)) Let0 < f < a < land f € L”
(a,b; R) (1 <r < o0). Then, relations

(D 0 ut?) 1110 = a1 1110

and

(:07 0115 1110 = o1 1110

are satisfied a.e. in (a, b).

In classical calculus, integration by parts formula relates the integral of a product
of functions to the integral of their derivative and antiderivative. As we can see below,
this formula works also for fractional derivatives, however, it changes the type of
differentiation: left Riemann—Lioville fractional derivatives are transformed to right
Caputo fractional derivatives.

Property 2.10 (cf. Lemma 2.19 (Klimek 2009)) Assume that 0 < « < 1, f €
AC([a,b];R) and g € L"(a, b; R) (1 < r < o0). Then, the following integration
by parts formula holds:

b

b
=b
/ f®)aD;g)(r) dr = / 9@OF DRLAIO) dr + f(0)al /™ [g1(0) : (2.9)

a

Let us recall the following property yielding boundedness of Riemann—Liouville
fractional integral in the space L" (a, b; R) (cf. Lemma 2.1, formula 2.1.23, from the
monograph by Kilbas et al. (2000)).
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Property 2.11 The fractional integral ;1 is bounded in the space L' (a, b; R) for
ae0,)andr > 1:

(b—a)

11 < K o Ko=——.

(2.10)

2.1.2 Variable Order Fractional Operators

In 1993, Samko and Ross (1993) proposed an interesting generalization of fractional
operators. They introduced the study of fractional integration and differentiation
when the order is not a constant but a function. Afterwards, several works were
dedicated to variable order fractional operators, their applications and interpretations
(Almeida and Samko 2009; Coimbra 2003; Lorenzo and Hartley 2002). In particular,
Samko’s variable order fractional calculus turns out to be very useful in mechanics
and in the theory of viscous flows (Coimbra 2003; Diaz and Coimbra 2009; Lorenzo
and Hartley 2002; Pedro et al. 2008; Ramirez and Coimbra 2010, 2011). Indeed,
many physical processes exhibit fractional order behavior that may vary with time or
space (Lorenzo and Hartley 2002). The paper (Coimbra 2003) is devoted to the study
of a variable order fractional differential equation that characterizes some problems
in the theory of viscoelasticity. In Diaz and Coimbra (2009) the authors analyze
the dynamics and control of a nonlinear variable viscoelasticity oscillator, and two
controllers are proposed for the variable order differential equations that track an
arbitrary reference function. The work (Pedro et al. 2008) investigates the drag force
acting on a particle due to the oscillatory flow of a viscous fluid. The drag force is
determined using the variable order fractional calculus, where the order of derivative
vary according to the dynamics of the flow. In Ramirez and Coimbra (2011) a variable
order differential equation for a particle in a quiescent viscous liquid is developed.
For more on the application of variable order fractional operators to the modeling
of dynamic systems, we refer the reader to the review article (Ramirez and Coimbra
2010).
Let us introduce the following triangle:

AI:{(I,T)GRZZ a§7'<t§b},

and let a(t,7) : A — [0, 1] be such that @ € c! (A_; IR), where A denotes the
closure of the set A.

Definition 2.12 (Left and right Riemann—Liouville integrals of variable order)
Operator

t

U0 = [ =D iy dr (> @)
o ) @, )

a
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is the left Riemann—Liouville integral of variable fractional order (-, -), while

b

L) = / O f(rydr (< b)
b ' I'(a(T, 1))

t
is the right Riemann—Liouville integral of variable fractional order a(-, -).

The following example gives a variable order fractional integral for the power
function (¢ — a)”.

Example 2.13 (cf. Equation4 of (Samko and Ross 1993)) Let a(z, 7) = «(t) be a
function depending only on variable 7, 0 < a(¢) < 1 for almost all ¢ € (a, b) and
v > —1. Then,

_ g)rta®
0O — gy = T D MR @2.11)
I'y+a@)+1)

Next we define two types of variable order fractional derivatives.

Definition 2.14 (Left and right Riemann—Liouville derivatives of variable order)
The left Riemann—Liouville derivative of variable fractional order (-, -) of a function
f is defined by

alen d o
Vi € (a,bl, «DMIfIG) = Ealf 10,

while the right Riemann-Liouville derivative of variable fractional order a(-, -) is
defined by

Vi € [a,b), DECVF14) = 4 L0 10
) 5 ty . - dlt b .

Definition 2.15 (Left and right Caputo derivatives of variable fractional order) The
left Caputo derivative of variable fractional order (-, -) is defined by

i, —aty | d
Vie (bl (DM = ol T [af} o,
while the right Caputo derivative of variable fractional order a(-, -) is given by

a-,- —a(,- d
vt € la,b), EDYCA1@) == 1)) [af] o).
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2.1.3 Generalized Fractional Operators

This section presents definitions of one-dimensional generalized fractional opera-
tors. In special cases, these operators simplify to the classical Riemann-Liouville
fractional integrals, and Riemann-Liouville and Caputo fractional derivatives. As
before,

AZZ{(t,T)ERzi a§T<t§b}.

Definition 2.16 (Generalized fractional integrals of Riemann—Liouville type) Let
us consider a function k defined almost everywhere on A with values in R. For any
function f defined almost everywhere on (a, b) with value in R, the generalized
fractional integral operator K p is defined for almost all ¢ € (a, b) by:

' b
Kplf1() = /\/k(t,T)f(T)dTJru/k(T, N f(r)dr, (2.12)
a 1
with P = (a,t,b, \, ), \, p € R.

In particular, for suitably chosen kernels k (¢, 7) and sets P, kernel operators K p
reduce to the classical or variable order fractional integrals of Riemann-Liouville
type, and classical fractional integrals of Hadamard type.

Example 2.17 (a) Let k*(t — 7) = ﬁ(t -7 land0 < o < ILIfP =
(a,t,b,1,0), then

t
1
Kplfl) = %/(I — 7 @) dr =T

is the left Riemann-Liouville fractional integral of order o; if P = (a, ¢, b, 0, 1),
then

b
1
KrLFI0) = s / (r =0 f(P) dr = IELF10)
t

is the right Riemann—Liouville fractional integral of order «.
(b) For k(t, 7) = m(z — 7)1 and P = (a, 1, b, 1,0),

t

KplF10) = [ ————(t = 90D f(rydr = o1 F100)
N T frmdr=:al 7 Lf

a

is the left Riemann—Liouville fractional integral of order a(:, -) and for P =
(a,t,b,0,1)
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b

KplLf1() =/

t

— (r—potn-l . o)
F(a(r,t))(T 1) fydr =0, [f10)

is the right Riemann-Liouville fractional integral of order a(-, -).
(c) Forany0 < a < I,kemel k®(1,7) = 7= (log £)* ™' Land P = (a, 1, b, 1,0),

(@) 7
the general operator K p reduces to the left Hadamard fractional integral:

T

t
1 a=l d
KpLAI0) = 5o / (log 3) JOAT . rera:

and for P = (a, t, b, 0, 1) operator K p reduces to the right Hadamard fractional
integral:

a1 f(r)dr

b
1
Kol 10 = 1 [ (102 ) = L1,
t

(d) Generalized fractional integrals can be also reduced to, e.g., Riesz, Katugampola
or Kilbas fractional operators. Their definitions can be found in Katugampola
(2011), Kilbas and Saigo (2004), Kilbas et al. (2006).

The generalized differential operators A p and Bp are defined with the help of the
operator K p.

Definition 2.18 (Generalized fractional derivative of Riemann—Liouville type) The
generalized fractional derivative of Riemann-Liouville type, denoted by Ap, is
defined by
d
Ap=—oKp.
P=a°nr

The next differential operator is obtained by interchanging the order of the oper-
ators in the composition that defines Ap.

Definition 2.19 (Generalized fractional derivative of Caputo type) The general ker-
nel differential operator of Caputo type, denoted by Bp, is given by

B K d
P=RPO G
Example 2.20 The standard Riemann-Liouville and Caputo fractional derivatives
(see, e.g., (Kilbas et al. 2006; Klimek 2009; Podlubny 1999; Samko et al. 1993))
are easily obtained from the general kernel operators A p and Bp, respectively. Let
kKt —71) = ﬁ(r -1 ae(0,1).If P=a,rtb,1,0),then
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t

1 d
APLAIO) = s 57 [ €= D) FO T = D)

is the standard left Riemann—Liouville fractional derivative of order «, while

Bplf1(1) = /(t—T) “f'(rydr =: E DY)

is the standard left Caputo fractional derivative of order «; if P = (a,t, b, 0, 1),
then

—APLFI0) = — (—)dt/< — 0 f(r) dr =, DRLFI)

is the standard right Riemann-Liouville fractional derivative of order «, while

1
Bl A0 =~ [ =07 0 dr = £}
t

is the standard right Caputo fractional derivative of order a.

2.2 Multidimensional Fractional Calculus

In this section, we introduce notions of classical, variable order, and generalized par-
tial fractional integrals and derivatives in a multidimensional finite domain. They are
natural generalizations of the corresponding fractional operators of Sect.2.1.1. Fur-
thermore, similarly as in the integer order case, computation of partial
fractional derivatives and integrals is reduced to the computation of one-variable
fractional operators. Along the work, fori = 1,...,n, let a;, b; and «; be num-
bers in R and r = (¢1,...,1,) be such that ¢t € £2,, where 2, = (aj, b)) X

- X (ay, by) is a subset of R”. Moreover, let us define the following sets:
A = {(l‘,‘,T) ceR?: ai < T <t Sb,‘},i =1,...,n.

2.2.1 Classical Partial Fractional Integrals and Derivatives

In this section we present definitions of classical partial fractional integrals and
derivatives. Interested reader can find more details in Sect.24.1 of the book (Samko
et al. 1993).
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Definition 2.21 (Left and right Riemann—Liouville partial fractional integrals) Let
t € §2,,. The left and the right partial Riemann—Liouville fractional integrals of order
a; € R (o > 0) with respect to the ith variable ¢#; are defined by

...,t,'_l,T,t,'_;,_l,...,tn)dT
(1 —T)l—

1
a 1 ,
W I LA10) = F(a,)/f(“ , G>a,  (213)

and

b;
i 1 f(tlv"'stl'fly’r’th“l’""t)’l)dT
I 1) = .t <bi, (2.14
w1y, LF1(0) F(Ozi)/ = i-o i <bi, (2.14)

respectively.

Definition 2.22 (Left and right Riemann—Liouville partial fractional derivatives)
Let t € £2,,. The left partial Riemann—Liouville fractional derivative of order «;,
0 < a; < 1, of a function f with respect to the ith variable #;, is defined by
a D f10) = a%_a,. It}*‘”[ f1() for all t; € (a;, b;]. Similarly, the right partial
Riemann-Liouville fractional derivative of order «; of a function f, with respect to
the ith variable #;, is defined by ,, DZ‘: [F1() == —a%,i Ibli_a" [f1(¢) foralls; € [a;, b;).

Definition 2.23 (Left and right Caputo partial fractional derivatives) Let t € $2,.
The left and right partial Caputo fractional derivatives of order c;, 0 < o < 1, 0f a
function f with respect to the ith variable ¢#;, are given by

o —Q 8
CDYLAI) = g 1 [54 (1), Vi € (ai, by,

and

a; —a [ O
ngl.‘ [f1() = _tiIb]l- ' [_tf] (t), Vi €la;, by),

0

respectively.

2.2.2 Variable Order Partial Fractional Integrals
and Derivatives

In this section, we introduce the notions of partial fractional operators of variable
order. In the following let us assume that o; : A; — [0,1], s € C!'(A;R),
i=1,...,n,te2,and f: 2, > R.
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Definition 2.24 The left Riemann—Liouville partial integral of variable fractional
order o; (-, -) with respect to the ith variable #;, is given by

1

1 o T)—
VA 0) :=/—(r,-—r>af<’“” VA, e timt, Tt ) d T

I (ai(t, 7))
a;
t; > a;, while
b;
oIy 10 :=/m(f—n)“"‘“”)‘lf(n, b T i 1) AT

i

t; < b, is the right Riemann-Liouville partial integral of variable fractional order
«; (-, -) with respect to variable ;.

Definition 2.25 The left Riemann—Liouville partial derivative of variable fractional
order «; (-, -), with respect to the ith variable #;, is given by

o 0 .
Vi, € (ai. bi). aiD,,.'“)[f](r):ga,»lli CIF10)
1

while the right Riemann-Liouville partial derivative of variable fractional order
a; (-, -), with respect to the ith variable #;, is defined by

o (o 0 i (e
Vi € lai. b, Dy LA10) = =5 1,7 L),

Definition 2.26 The left Caputo partial derivative of variable fractional order ¢; (-, -),
with respect to the ith variable #;, is defined by

e PN
Vi € (i, bil, SDYCOLA1@) = 6 1) [gf] (),

while the right Caputo partial derivative of variable fractional order «; (-, -), with
respect to the ith variable #;, is given by

; (-, —a; (o, 0
Vi € lai, bi), § D CULF10) = =0y [54 ().

Note that, if o; (-, -) is a constant function, then the partial operators of variable
fractional order are reduced to corresponding partial integrals and derivatives of
constant order introduced in Sect.2.2.1.
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2.2.3 Generalized Partial Fractional Operators

Let us assume that A = (\f, ..., \y) and p = (1, ..., uy) are in R”. We shall
present definitions of generalized partial fractional integrals and derivatives. Let
ki: A —>R,i=1,...,nandt € £2,.

Definition 2.27 (Generalized partial fractional integral) For any function f defined
almost everywhere on £2, with value in R, the generalized partial integral K p, is
defined for almost all ; € (a;, b;) by:

]

Kalf1() : = Ai/ki<r,~,7)f(n,...,t,»_m ets ..o ) dr
ai

b;
+Ml/kl(7—a ll)f(t1$ "-1ti—ls7—7 tl+11 "'7tll)dT1

t
where P; = (a;, t;, b;, \i, ;).

Definition 2.28 (Generalized partial fractional derivative of Riemann—Liouville
type) The generalized partial fractional derivative of Riemann-Liouville type with
respect to the ith variable #; is given by Ap, = % oKp,.

Definition 2.29 (Generalized partial fractional derivative of Caputo type) The gen-
eralized partial fractional derivative of Caputo type with respect to the ith variable
t; is given by Bp, :== Kp, o d%

Example 2.30 Similarly, as in the one-dimensional case, partial operators K, A and
B reduce to the standard partial fractional integrals and derivatives. The left- or right-
sided Riemann-Liouville partial fractional integral with respect to the ith variable #;
is obtained by choosing the kernel k*(#;, 7) = %a,) (ti — 7)1, That is,

ti
1 o
KPt[f](t) Zm/(tl_T)a,_lf(tlv sy tl—l’ T5 tl-‘r]? R ] tn) dT = a[I[il[.f](t)a

for P, = (a;, ti, b;, 1,0), and

1

Kp[f1() =m

b;
/(T—li)ai_lf(tl, ce L, T b, - ) AT = tilgi [f1@),
14

for P; = (a;, t;, b;, 0, 1). The standard left- and right-sided Riemann—Liouville and
Caputo partial fractional derivatives with respect to ith variable #; are received by
choosing the kernel k{*(t;, 7) = m(ti — 1)~ If P, = (a;, t;, b;, 1, 0), then
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t
1 0 .
Ap[f1(t) = ma/(li — 7)Yt i T i, . 1) AT
= o DI LF100),
1
1 o O
Bp[f1() = m/(h’ —7) ’Ef(flv--qli—lﬂ"fiﬂﬁ~--Jn)d7

=: & D IF10).

i

If P, = {a;, t;, b;, 0, 1), then

b;
-1 0 )
—Ap[f1@) = ma/@'—lﬂ_a’f@l,~-.,li—1,T, tigl, ..., ) dr
t

=, Dy LF1(0).

b;
-1 0
—Bp,[f1() = m/(T—fi)_a’Ef(ll,---,l‘ifl,T,tiJrl,--.,fn)dT
1

= DL f100).

Moreover, one can easily check that also variable order partial fractional integrals
and derivatievs are particular cases of operators K p,, Ap, and Bp,.
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