
Chapter 1
Gas of Point Particles

Abstract In this chapter we study the problem of viscous friction in the framework
of microscopic models of classical point particles. The system body/medium is
modeled by the dynamics of a heavy particle (the body), subjected to a constant
force and interacting with infinitely many identical particles (the medium). We
discuss conditions on the body/medium interaction that are necessary for the body
to reach a finite limiting velocity. Rigorous results are given in the case of quasi-
one-dimensional and one-dimensional systems.

1.1 General Equations and Results

A reasonable microscopic model of viscous friction can be detailed as follows.
A heavy particle of mass M and position r 2 R

d freely moves under the action of
an external constant force F and interacts via a two-body potential � with N point
particles of equal mass m and positions ri 2 R

d . These particles, hereafter denoted
as the background (particles), mutually interact by means of a two-body potential ˚ .
We are interested in the long time behavior of the heavy particle when the number
N is huge and the background particles are initially distributed to describe a real
gas.

From a mathematical point of view, it is natural to consider the limiting problem
when N ! 1 and the density remains bounded (a sort of thermodynamic limit).
Otherwise stated, the heavy particle interacts with a background of infinitely many
particles and the equations of motion read,

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

M Rr.t/ D F �
X

j

r�.r.t/ � rj .t// ;

mRri .t/ D �r�.ri .t/ � r.t// �
X

j ¤i

r˚.ri .t/ � rj .t// ; i 2 N :

(1.1)

We have to explain the precise meaning of this limit N ! 1, i.e., of the time
evolution defined by (1.1) and hereafter called infinite dynamics. We fix an initial
datum,

.r.0/; Pr.0// ; f.ri .0/; Pri .0//gi2N ; (1.2)
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2 1 Gas of Point Particles

such that the particles distribution in space is locally finite, i.e., the number of
particles inside any bounded region of Rd is finite. Without loss of generality we
also assume r.0/ D 0. For each n 2 N we introduce the so called n-partial
dynamics, obtained by neglecting those particles initially outside the sphere of
radius n and center the origin. More precisely, setting In WD fi 2 NW jri .0/j � ng,
the n-partial dynamics is the solution to

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

M Rr.t/ D F �
X

j 2In

r�.r.t/ � rj .t// ;

mRri .t/ D �r�.ri .t/ � r.t// �
X

j 2InWj ¤i

r˚.ri .t/ � rj .t// ; i 2 In ;

(1.3)

with the same initial conditions (1.2) but restricted to i 2 In (we tacitly assume that
such a global solution exists for any n 2 N). Of course, such a solution depends on
n and is denoted by r.n/.t/, fr.n/

i .t/gi2In . A natural candidate solution to the Cauchy
problem (1.1)–(1.2) is given by

r.t/ D lim
n!1 r.n/.t/ ; ri .t/ D lim

n!1 r.n/
i .t/ ; i 2 N ; (1.4)

provided that the above limits exist. It is quite obvious that we cannot expect the
convergence in (1.4) to be uniform with respect to i 2 In. Instead, we must fix a
single index i and then perform the limit n ! 1. Clearly, the existence of this limit
means that the motion of the i th particle is not very much influenced by the presence
of particles very far away from it.

The question is now under which conditions the infinite dynamics exists. We
observe that the limiting procedure described above suggests that such a question
is essentially equivalent to another one: whether or not the time evolution via the
partial dynamics remains local.

The answer is nontrivial because the evolution could bring in a finite time
infinitely many particles in a bounded region of the space, as we can see in this
simple example in dimension d D 1. Consider a system of free particles of unitary
mass moving on the real line with the initial condition ri .0/ D i , Pri .0/ D �i , i 2 N.
It is evident that at time t D 1 all the particles are in the origin. Of course, in this
example of free motion it is easy to extend the evolution to times t > 1, but in
presence of mutual interactions the forces become infinite at time t D 1 and the
Newton’s law looses meaning.

To avoid this kind of “collapses” we must restrict the allowed initial conditions,
but we cannot be too drastic. In fact, for the model to be meaningful, the class of
admissible initial conditions must contain all the data compatible with the physical
experiment we want to describe, which can be summarized as follows. At time t D 0

the heavy particle is located at the origin and is surrounded by a gas at thermal
equilibrium (or in some non-equilibrium status very close to equilibrium); we then



1.1 General Equations and Results 3

switch on a constant force F acting on the heavy particle and look at its asymptotic
motion.

Our goal is to show the following conjecture: a necessary condition for the
heavy particle to reach a bounded asymptotic velocity is that its interaction with
the background be singular. It would be nice to prove such a result for a generic
system of infinitely many particles in R

3, but, as we shall see, it is too difficult at the
present stage of knowledge.

Instead, we rigorously prove the conjecture in two specific models. In the first
one, we consider the particles posed in an infinitely extended tube of R3 and the
external force F is parallel to the symmetry axis of the tube. We then show that
a bounded interaction cannot give rise to a finite limit velocity if the intensity of
F is sufficiently large. As a corollary, we obtain that if the medium is initially at
thermal equilibrium then the average velocity of the heavy particle diverges as time
goes to infinite. To extend the result to the case of F with any intensity, we need
to give up this more realistic geometry and consider, as second model, the genuine
one-dimensional case. These results are the content of Sect. 1.3.

Let us goes back to the choice of the initial conditions. By the above discussion,
our first requirement on the model is that the infinite time evolution (1.1) has to
be defined for all the initial microscopic configurations of the gas (i.e., positions
and velocities of the particles) which are compatible with any reasonable thermody-
namic (equilibrium or non-equilibrium) state. For the convenience of the reader, we
first summarize in the next subsection some basic results from rigorous equilibrium
statistical mechanics.

1.1.1 Infinite Volume Gibbs States

The microscopic explanation of the thermodynamic properties of matter is the
content of the equilibrium statistical mechanics, a very well established branch of
theoretical and mathematical physics. In this theory, the macroscopic behavior of a
system composed by a large number of particles (atoms/molecules) is described by
means of probability distributions on the phase space of the microscopic configura-
tions of the system. More precisely, the basic postulate is that the equilibrium values
of macroscopic observables are obtained as averages (respect to these probabilities)
of appropriate functions of the microscopic configurations. If the system is confined
in a bounded region, these probabilities are given by the so called Gibbs ensembles
(or finite volume Gibbs states). These probability distributions are stationary with
respect to the time evolution of the underlying mechanical system, but this is
only a necessary condition for a dynamical justification for their use to calculate
equilibrium quantities. This is a central question of statistical mechanics, which is
discussed in any classic textbook or review on the subject, see, e.g., [11, 14].

Three different type of ensembles are introduced, the microcanonical, the canon-
ical, and the grand canonical ensemble. The microcanonical ensemble describes
the thermal equilibrium of an isolated system with a large number N of degree
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of freedom, and it is defined by the uniform probability distribution on the iso-
energetic surface in the phase space of the system (this choice is also known as the
principle of equal a priori probabilities). The other ensembles are derived from the
microcanonical one to describe the equilibrium of not isolated systems. To be more
concrete, we consider a classical system composed by N identical particles with
Hamiltonian,

HN .x/ D
NX

iD1

p2
i

2m
C

X

1�j <i�N

˚.ri � rj / ;

where x D .r1; : : : ; rN ; p1; : : : ; pN / denotes the point in the phase space of
positions and momenta of the particles, and ˚ is a two-body potential. If the system
is in thermal contact with a reservoir at temperature T , then its equilibrium is
described by the canonical ensemble, defined as the probability distribution with
density in phase space proportional to exp.�HN .x/=kT/, where k is the Boltzmann
constant. Finally, if the system can also exchange particles with the reservoir, then
the equilibrium is described by the grand canonical ensemble, which for later
purposes we describe in more detail. Denoting by �N;V the phase space for N

particles confined in the region V , the grand canonical ensemble is defined by the
rule,

hGiV D
1 CP1

N D1.1=N Š/
R

�N;V
dx exp.�ˇHN .x/ C �N / GN .x/

ZV .ˇ; �/
; (1.5)

where ˇ D .kT/�1 and �, named chemical potential, is a positive parameter; GN .x/

is the function representing the observable G in a system of N particles, and the
normalization constant

ZV .ˇ; �/ D 1 C
1X

N D1

1

N Š

Z

�N;V

dx exp.�ˇHN .x/ C �N / (1.6)

is called the (grand canonical) partition function.
According to the theory, the partition function contains all the information on

the thermodynamic properties of the system. More precisely, these are obtained by
identifying pV .ˇ; �/ D .ˇjV j/�1 log ZV .ˇ; �/ with the thermodynamic pressure,
as a function of inverse temperature and chemical potential. Since the pressure
should be an intensive function (independent of V ), this identification is not
satisfactory. The reason of this apparent discrepancy depends on the macroscopic
size of a real system, which is much larger than the microscopic scale. Therefore,
to have a good thermodynamic behavior it is sufficient the existence of the limit
p.ˇ; �/ D limV !Rd pV .ˇ; �/, where V ! R

d means that V invades the whole
space in a reasonable way (e.g., if fV g is a sequence of cubes). Accordingly, it is
such limit p.ˇ; �/ that has to be identified with the thermodynamic pressure.
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The existence of the limiting pressure can be proved under quite soft conditions
on the pair potential ˚ . For example, this is the case if the pair potential is finite
range and stable, where ˚ stable means that there exists a constant B � 0 such that
for all N the potential energy of N particles is bounded below by �BN, i.e.,

X

1�j <i�N

˚.ri � rj / � �BN 8 N 2 N :

In other part of physics this property is called saturation of the force. This means
that N particles cannot produce an energy larger than N (this fact forbids negative
interaction in the origin). We remark that even for V bounded, the convergence of
the series in (1.6) and then the existence of pV .ˇ; �/ needs some assumption on the
interaction (obviously, stability is sufficient).

This limiting procedure is known as thermodynamic limit and can be repeated
in the case of the microcanonical and canonical ensembles, by providing similar
formulae for the entropy and free energy respectively, as functions of the appropriate
thermodynamic variables. The problem of showing that all these ensembles give the
same values for the thermodynamic functions is called the problem of thermody-
namic equivalence of ensembles. A solution to this problem is given in Ruelle’s
book [12].

As well as asking whether different ensembles lead to the same thermodynamic
potentials, we could wonder whether they lead to the same local properties. This
means to consider local observables (i.e., functions on phase space which depend
only on the positions and velocities of the particles in bounded regions) and ask
whether, in the thermodynamic limit, different ensembles lead to the same averages
for each function of this type. Local equivalence of ensembles is a stronger property
than thermodynamic equivalence of ensembles. For example, for values of the
parameters corresponding to a phase transition, due to the possibility of long range
correlations, the limiting averages of some local variables could even be ill defined.

Instead of considering an infinite sequence of finite systems, as in the theory of
the thermodynamic limit, we can deal with just one system, which is infinite from
the beginning. This simplification bypasses the finite size effects and allows a clear
formulation of questions relating to phase transitions and correlation functions. The
price to pay is that it requires a much more sophisticated mathematics with respect
to the finite-system approach.

In particular, for a classical infinite system, the phase space is infinite-
dimensional and the Gibbs ensembles cannot be described by means of phase-space
densities. The method used alternatively is to characterize the probability measures
on the infinite-dimensional phase space by specifying the expectations of all the
local observables. More precisely, the phase space � is the collection of sequences
X D f.ri ; pi /gi2N which are locally finite (i.e., the number of particles inside
any bounded region is finite), equipped with the topology of local convergence.
The equilibrium states, often called (infinite volume) Gibbs states, are then
defined as those Borel probability measures on � satisfying the so called DLR
equilibrium condition, formulated by Dobrushin [6] and independently by Lanford
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and Ruelle [10]. For finite range forces, the DLR equations are the mathematical
expression of the condition that if the particles outside a finite region are held fixed,
then the particles inside the region have a Gibbs grand canonical distribution in
the external field produced by the particles outside. In more detail, the probability
� satisfies the DLR condition if for any local function G and any finite region �

which contains the support of G we have,

Z

�.dX/G.X/ D
Z

�.dX/hGi�;X�c ;

where X�c is the restriction of X to �c and h�i�;X�c is the Gibbs grand canonical
distribution with boundary condition X�c , which is defined as in (1.5) with HN .x/

replaced by HN .xjX�c / D HN .x/CW�.xjX�c /, where W�.xjX�c / is the potential
energy due to the pair interaction ˚ between the N particles of the configuration
x 2 ��;N and the particles outside � of the locally finite configuration X.

For stable and finite-range forces this condition is equivalent to the condition
that the state be a limit of grand canonical states with suitable boundary conditions.
This justifies the physical interpretation of the infinite volume Gibbs states as the
different thermodynamic phases. In particular, the nonuniqueness of solution (for
given values of ˇ and �) of the DLR equations corresponds to the occurrence of a
phase transition. We address the interested reader to the books of Georgii [8] and
Ruelle [12] for an exhaustive exposition of the theory of Gibbs states.

Existence and good thermodynamic behavior of the Gibbs states depend on the
nature of the pair potential ˚ . For finite range forces, a sufficient condition is that
˚ be superstable [13], i.e., there are constants B1 > 0 and B2 � 0 such that for any
finite configuration of particles fr1; : : : ; rN g, N 2 N, and for any bounded region
� � R

d ,

X

i<j

�.ri 2 �/�.rj 2 �/˚.ri � rj / � B1N.�/2

j�j � B2N.�/ ; (1.7)

where �.A/ denotes the characteristic function of the set A, N.�/ is the number
of particles inside �, and j�j is the volume of �. Note that the stability property
previously introduced simply means that (1.7) holds with B1 D 0.

Superstability is a technical assumption, slightly stronger that stability. It can
be proved [12] that ˚ is superstable if it can be written as the sum of a stable
interaction plus a nonnegative interaction which is positive and continuous in the
origin. Actually, the only interesting potential which is stable but not superstable is
given by ˚ D 0.

We address the reader to the fundamental paper by Ruelle [13] for a detailed
study of the statistical mechanics of systems with superstable interactions. For our
purposes, we just recall here a crucial support property of the equilibrium states
in systems with this type of interaction. Such property asserts that the energy and
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number of particles in any bounded region of the space cannot fluctuate too much,
in the following sense.

We introduce, for any � 2 R
d and R > 0,

Q.XI �; R/ WD
X

i

�.jri � �j < R/

�
p2

i

2m
C 1

2

X

j Wj ¤i

˚.ri � rj / C NB
�

;

which controls the energy and number of particles in the open ball of center � and
radius R. The positive constant NB is chosen large enough to have Q � 0; it is easy
to verify that such choice is possible as ˚ is finite range and satisfies (1.7). Let
now � be any Gibbs state, i.e., any solution to the DLR equation for given ˇ and �.
Then, using Ruelle’s superstability estimates [13], a direct calculation shows that,
for appropriate ˛; c > 0,

Z

�.dX/ exp.˛Q.XI �; R// � exp.cRd / 8 � 2 R
d 8 R > 0 :

By the exponential Chebyshev’s inequality it follows that �.Q.XI �; R/ >

˛�1	Rd / � expŒ.c � 	/Rd 
 for any 	 > 0. From this last estimate it is not
difficult to show that, setting

Q.X/ WD sup
�

sup
RWR>log.eCj�j/

Q.XI �; R/

Rd
;

one has �.Q.X/ > K/ � a exp.�bK/ for suitable a; b > 0 and any K � 0; we
omit the details, see also [7]. In particular, by the Borell–Cantelli lemma,

�.Q.X/ < 1/ D 1 :

Otherwise stated, in the case of short range and superstable interactions, the support
of any equilibrium state is contained in the set of locally finite configurations which
have local energy and number of particle fluctuations only of logarithmic order.

1.1.2 Choice of the Initial Data

In the nonequilibrium case (as in our setting) the situation is much more com-
plicated, but the admissible interactions remain of the superstable type. Indeed,
superstability implies that it is very expensive (in term of energy) to have many
particles in bounded regions of the space, so that local conservation of energy may
prevent from collapses in finite time.

Concerning the choice of initial conditions, we want a set of full measure with
respect to at least the Gibbs states. For instance, a set of microscopic states in which
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the velocities of all the particles are uniformly bounded is exceptional and to know
its time evolution is not so important. While, from the discussion in the previous
subsection, we know that in order to consider configurations which are typical for
the thermodynamic states, we need to allow initial data with logarithmic divergences
in the velocities and local densities.

The bare existence of the dynamics is not enough for our purposes. In fact,
we also need nontrivial informations on the long time behavior of the system.
Nowadays, this kind of knowledge has been obtained only in one spatial dimension.
Of course, a one dimensional world is a little strange, but it is the first step to
face the problem. Moreover, by “one dimension” we do not solely mean particles
moving along a straight line, but also particles moving in a region which is infinitely
extended along one direction only.

Throughout this chapter we shall assume that the particles of the background
mutually interact via a positive potential with a finite range. Reasonably, we could
make the assumption that the interaction be superstable, including in this way also
negative interactions. The generalization of positive interactions with a finite range
by superstable potentials with a long range term have been done many times. For
instance, concerning the existence of the dynamics in three dimension for bounded
interaction, this has been done in [5], which generalizes the results of the pioneering
paper [4]. The calculations are very cumbersome. We hope that in our context also
this generalization may be performed, but the explicit study is long and nontrivial
and it has not been done so far.

We conclude with a notation warning valid in the rest of this chapter: in the
sequel, if not further specified, we shall denote by C a generic positive constant
whose numerical value may change from line to line and it may possibly depend
only on the interactions ˚ and � .

1.2 Infinite Dynamics in One Dimension: Existence
and Long Time Behavior

In this section we present the key tools which allow to prove the existence of the
infinite dynamics in one dimension, with a good control on its long time behavior.
For explanatory reasons, we consider here the simplest case of a gas of particles
of unit mass moving along a straight line and disregard the presence of the heavy
particle. We assume that the particles interact among themselves by means of a non-
negative, symmetric, short-range, two-body potential ˚ of the form

˚.x/ D ˚1.x/ C ajxj�b ; (1.8)

where a � 0, b > 0, and ˚1 is twice differentiable and symmetric. If ˚ is finite at
the origin we assume ˚.0/ > 0, which guarantees ˚ to be superstable [12]. Without
loss of generality we assume that ˚ has range not greater than one, i.e.,

˚.x/ D 0 if jxj > 1 : (1.9)
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We denote by .ri ; vi / 2 R
2 the position and velocity of the particles. The state X D

f.ri ; vi /gi2N is assumed to have a locally finite density and energy. In particular, for
any � 2 R and R > 0, it is well defined the quantity

Q.X I �; R/ WD
X

i

�i .�; R/

8
<

:

v2
i

2
C 1

2

X

j Wj ¤i

˚.ri � rj / C 1

9
=

;
; (1.10)

where �i .�; R/ D �.jri � �j � R/. According to the discussion of the previous
section, in order to consider configurations which are typical for the thermodynamic
states, we allow initial data with logarithmic divergences in the velocities and local
densities. In the present context, by defining

Q.X/ WD sup
�

sup
RWR>log.eCj�j/

Q.X I �; R/

2R
; (1.11)

the set

X WD fX W Q.X/ < 1g (1.12)

has a full measure with respect to any Gibbs state.
Given X 2 X and n 2 N let In WD fi 2 NW jri j � ng. The n-partial dynamics

t 7! X.n/.t/ D f.r.n/
i .t/; v

.n/
i .t//gi2In is defined as the solution to the Cauchy

problem

8
<

:

Rr.n/
i .t/ D �

X

j 2InWj ¤i

˚ 0.r.n/
i .t/ � r

.n/
j .t// ; i 2 In ;

X.n/.0/ D f.ri ; vi /gi2In :

(1.13)

Theorem 1.1 For X 2 X the following limits exist,

lim
n!1 r

.n/
i .t/ D ri .t/ ; lim

n!1 v
.n/
i .t/ D vi .t/ ; i 2 N : (1.14)

Moreover, the flow t 7! X.t/ D f.ri .t/; vi .t//gi2N is the unique (global) solution to

8
<

:

Rri .t/ D �
X

j ¤i

˚ 0.ri .t/ � rj .t// ; i 2 N ;

X.0/ D X :

(1.15)

such that X.t/ 2 X . Finally,

jvi .t/j � C
hp

Q.X/ log.e C jri j C Q.X// C Q.X/t
i

8 i 2 N 8 t � 0 ;

(1.16)
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and, for any � 2 R and R > log.e C j�j/,

Q.X.t/I �; R/ � CQ.X/
�
R C log.e C Q.X// C .1 C Q.X//t2

� 8 t � 0 :

(1.17)

A basic tool in the proof of this theorem is an estimate on the growth in time of
the local density and energy, which is the content of the following lemma. The idea
behind the proof is to use the local conservation of energy and number of particles,
combined with the superstability of the potential, to control the variation in time of
the local density and energy with these same quantities, thus obtaining a differential
inequality which gives the desired estimate. The proof turns out to be a little bit
technical as, to control the variation of energy by the energy itself, we need to work
with a mollified version of Q.X I �; R/.

Lemma 1.2 There exists a constant K0 > 0 such that, for any X 2 X and n 2 N,

sup
�

Q.X.n/.t/I �; Rn.t// � K0Q.X/Rn.t/ 8 t � 0 ; (1.18)

where

Rn.t/ WD log.e C n/ C
Z t

0

ds Vn.s/ (1.19)

and

Vn.t/ WD max
i2In

sup
s2Œ0;t 


jv.n/
i .s/j : (1.20)

Proof We introduce the following mollified version of Q.X I �; R/,

W.X I �; R/ WD
X

i

f
�;R

i

8
<

:

v2
i

2
C 1

2

X

j Wj ¤i

˚.ri � rj / C 1

9
=

;
; (1.21)

where

f
�;R

i D f

� jri � �j
R

�

(1.22)

and f 2 C 1.RC/ is not increasing and satisfies: f .x/ D 1 for x 2 Œ0; 1
, f .x/ D 0

for x � 2, and jf 0.x/j � 2. Clearly,

Q.X I �; R/ � W.X I �; R/ � Q.X I �; 2R/ : (1.23)
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For 0 � s � t , we define

Rn.t; s/ WD log.e C n/ C
Z t

0

d� Vn.�/ C
Z t

s

d� Vn.�/ (1.24)

(note that Rn.t; t/ D Rn.t/ and Rn.t; 0/ � 2Rn.t/) and compute

@sW.X.n/.s/I �; Rn.t; s// D
X

i

h
�i .t; s/"i .s/ C f

�;Rn.t;s/
i P"i .s/

i
; (1.25)

where, denoting by r
�
i .s/ the sign of ri .s/ � �,

�i .t; s/ D f 0
� jri .s/ � �j

Rn.t; s/

��
r

�
i .s/vi .s/

Rn.t; s/
� @sRn.t; s/

Rn.t; s/2
jri .s/ � �j

	

;

"i .s/ D vi .s/2

2
C 1

2

X

j Wj ¤i

˚.ri .s/ � rj .s// C 1;

and, to simplify notation, we have omitted the explicit dependence on n of ri , vi , �i ,
and "i .

Since f 0.jyj/ � 0, f 0.jyj/ D 0 if jyj � 1, @sRn.t; s/ D �Vn.s/, and jvi .s/j �
Vn.s/, then �i .t; s/ � 0. On the other hand, from the equations of motion,

P"i .s/ D �
X

j Wj ¤i

˚ 0.ri .s/ � rj .s//
vi .s/ C vj .s/

2
:

Then, by (1.25) and using ˚ 0 is odd,

@sW.X.n/.s/I �; Rn.t; s// � �
X

i¤j



f

�;Rn.t;s/
i � f

�;Rn.t;s/
j

�
˚ 0.ri .s/ � rj .s//

vi .s/

2
:

(1.26)

From (1.8) we have jqj j˚ 0.q/j � C Œ1 C ˚.q/
 for any q ¤ 0. Then, by the
inequality

ˇ
ˇf

�;R
i � f

�;R
j

ˇ
ˇ � 2

jri � rj j
R

�
�i .�; 2R/ C �j .�; 2R/

�
;

and since Rn.t; s/ > 1, the modulus of the double sum in the right-hand side
of (1.26) can be bounded from above by

� C
@sRn.t; s/

Rn.t; s/

X

i¤j

Œ1 C ˚.ri .s/ � rj .s//
�i .�; 4Rn.t; s//�j .�; 4Rn.t; s//�i;j .s/ ;

(1.27)
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where we shortened �i;j .s/ D �.jri .s/ � rj .s/j � 1/. Since ˚ is superstable, by
arguing as in the proof of [4, Eq. (2.15)], the double sum in the right-hand side
of (1.27) can be bounded by CW.X.n/.s/I �; 4Rn.t; s//; moreover, setting

W.X I R/ WD sup
�

W.X I �; R/ ; (1.28)

it can be proved that

W.X I �; 2R/ � CW.X I R/ (1.29)

(see, e.g., [3, 4]), and hence, by (1.26),

@sW.X.n/.s/I �; Rn.t; s// � �C
@sRn.t; s/

Rn.t; s/
W.X.n/.s/I Rn.t; s// ;

from which, by integrating and taking the supremum on �,

W.X.n/.s/I Rn.t; s// � W.X.n/.0/I Rn.t; 0//

� C

Z s

0

d�
@� Rn.t; �/

Rn.t; �/
W.X.n/.�/I Rn.t; �// ;

(1.30)

whence

W.X.n/.s/I Rn.t; s// � W.X.n/.0/I Rn.t; 0//

�
Rn.t; 0/

Rn.t; s/

�C

:

Setting s D t and using that Rn.t; 0/ � 2Rn.t; t/ D 2Rn.t/,

W.X.n/.t/I Rn.t// � CW.X.n/.0/I Rn.t// :

Then, from (1.23), (1.28), and definition (1.11), we conclude that

Q.X.n/.t/I �; Rn.t// � CW.X.n/.0/I Rn.t//

� C sup
�

Q.X.n/.0/I �; 2Rn.t//

� 4CQ.X/Rn.t/ ;

which proves (1.18). ut
We have thus proved that the growth of the local energy is controlled by the

maximal displacement of the particles. Since the potential is positive, the former
gives an upper bound on the square of the maximal velocity of the particles. But the
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maximal velocity (multiplied by the length of the time interval) is an upper bound for
the maximal displacement. As a result, one obtain a bound on the maximal velocity,
which depends linearly on time and on the square root of the initial energy particle
and density. The precise statement is the content of the following lemma.

Lemma 1.3 There exists a constant K1 > 0 such that, for any X 2 X , n 2 N, and
i 2 In,

jv.n/
i .t/j � K1

hp
Q.X/ log.e C n/ C Q.X/t

i
8 t � 0 : (1.31)

Proof Let Nn.�; t/ be the number of the particles i 2 In such that jr.n/
i .t/ � �j �

Rn.t/ and jv.n/
i .t/j > bn.t/, with

bn.t/ D K
p

Q.X/ log.e C n/ C Vn.t/

2
; (1.32)

where K > 0 will be fixed later and Vn is defined in (1.20). Clearly:

Q.X.n/.t/I �; Rn.t// >
bn.t/2

2
Nn.�; t/

so that, by inequality (1.18) and using the definitions (1.19) and (1.20),

Nn.�; t/ < 8K0Q.X/
log.e C n/ C tVn.t/

�
2K
p

Q.X/ log.e C n/ C Vn.t/

2

;

from which, after neglecting some positive terms,

Nn.�; t/ <
2K0

K2
C 8K0Q.X/t

2K
p

Q.X/ C Vn.t/
: (1.33)

We now choose K D 2
p

2K0; by (1.33), if Vn.t/ � 32K0Q.X/t then Nn.�; t/ <

1=2, i.e., Nn.�; t/ D 0. The above argument is independent of �, so that Vn.t/ �
32K0Q.X/t actually implies jv.n/

i .t/j � bn.t/ for all i 2 In. Since bn.t/ is not
decreasing, we have in fact Vn.t/ � bn.t/ when Vn.t/ � 32K0Q.X/t . Recalling
the definition (1.32), we conclude that

Vn.t/ � 2K
p

Q.X/ log.e C n/ C 64K0Q.X/t 8 t � 0 : (1.34)

By (1.34) the inequality (1.31) follows for K1 D maxf2K; 64K0g. ut
Proof of Theorem 1.1 The estimate (1.31) gives an upper bound for the velocities of
particles evolving according to the n-partial dynamics, which is independent of n.
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This is the key ingredient for the proof of the existence and locality of the infinite
dynamics, which is now achieved via a standard iterative procedure.

Let

ıi .n; t/ WD jr.n/
i .t/ � r

.n�1/
i .t/j C jv.n/

i .t/ � v
.n�1/
i .t/j : (1.35)

From the equations of motion in integral form we have,

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

v
.n/
i .t/ D vi �

Z t

0

ds
X

j 2InWj ¤i

˚ 0.r.n/
i .s/ � r

.n/
j .s// ;

r
.n/
i .t/ D ri C vi t �

Z t

0

ds .t � s/
X

j 2InWj ¤i

˚ 0.r.n/
i .s/ � r

.n/
j .s// :

(1.36)

From (1.35) and (1.36) it follows that, for any i 2 In�1,

jıi .n; t/j � .1 C t/

Z t

0

ds G
.n/
i .s/ ; (1.37)

where

G
.n/
i .s/ WD

ˇ
ˇ
ˇ
ˇ

X

j 2InW j ¤i

˚ 0.r.n/
i .s/ � r

.n/
j .s// �

X

j 2In�1W j ¤i

˚ 0.r.n�1/
i .s/ � r

.n�1/
j .s//

ˇ
ˇ
ˇ
ˇ :

By (1.9) and (1.31), each particle i 2 In may interact during the time Œ0; t 
 only
with the particles j such that jrj � ri j � pn.t/, with

pn.t/ WD 1 C 2K1t
hp

Q.X/ log.e C n/ C Q.X/t
i

: (1.38)

We now fix k 2 N and define

n.k/ WD minfm 2 NW n > 1 C k C pn.t/ 8 n � mg : (1.39)

For n � n.k/ each particle i 2 Ik does not interact, during the time Œ0; t 
, with the
particles j 2 In n In�1. Moreover, since ˚ is of the form (1.8),

j˚ 0.	/ � ˚ 0.
/j � C Œ˚.	/� C ˚.
/� C �.j	j � 1/ C �.j
j � 1/
 j	 � 
j ;

where � D .b C 1/=b. Therefore, for any n � n.k/, s � 0, and i 2 Ik ,

G
.n/
i .s/ � C

X

j Wj ¤i

� h
˚.r

.n/
i .s/ � r

.n/
j .s//� C ˚.r

.n�1/
i .s/ � r

.n�1/
j .s//� C 1

i

� �ıi .n; s/ C ıj .n; s/
�

;
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where
P�

j Wj ¤i denotes the sums restricted to all the particles j 2 In�1 closer than 1

to r
.n/
i .s/ or r

.n�1/
i .s/. Using the definition (1.10) and introducing

uk.n; t/ WD sup
i2Ik

ıi .n; t/; (1.40)

by (1.37) and the above bounds, for any t � 0,

uk.n; t/ � C.1Ct/

Z t

0

ds sup
�

�
Q.X.n/.s/I �; 1/ C Q.X.n�1/.s/I �; 1/

��
uk1.n; s/ ;

(1.41)

where k1 D Int Œk C pn.t/
 C 1 (Int Œ�
 denotes the integer part of �). On the other
hand, from (1.18) and (1.31), for any s 2 Œ0; t 
,

Q.X.n/.s/I �; 1/ � K0Q.X/
n
log.e C n/ C K1t

hp
Q.X/ log.e C n/ C Q.X/t

io
:

(1.42)

Therefore, by (1.41), we obtain the following integral inequality, valid for any t � 0,

uk.n; t/ � gn.t/

Z t

0

ds uk1.n; s/; (1.43)

where

gn.t/ WD K2.1 C t/2�C1 fQ.X/ Œlog.e C n/ C pn.t/
g2� : (1.44)

with K2 > 0 large enough. Setting kq D Int Œkq�1 C pn.t/
 C 1, q 2 N, and k0 D k,
we can iterate the inequality (1.43) ` times, with

` WD Int

�
n � k � 1

1 C pn.t/

	

(1.45)

(which ensures n > n.k`�1/). Since uk.n; t/ � an.t/ with

an.t/ WD 2K1.1 C t/
hp

Q.X/ log.e C n/ C Q.X/t
i

; (1.46)

we finally get the following bound,

uk.n; t/ � an.t/
Œgn.t/t 
`

`Š
: (1.47)

Recalling the definitions (1.35), (1.40), the existence of the infinite dynamics via
the limits (1.14) now follows from the absolute convergence, uniform on compact
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time intervals, of the series
P

n uk.n; t/, which is a straightforward consequence
of (1.47). Uniqueness can be proved with similar reasonings and it is omitted.

To prove the bound (1.16), we choose k D Int Œjri j
 C 1 and let

n� WD Int
�
˛.k2 C Q.X/4�C2/et

�
;

with ˛ > 1 to be fixed later. From (1.31), v
.n�/
i .t/ satisfies a bound like (1.16). On

the other hand, by (1.40),

jvi .t/ � v
.n�/
i .t/j �

1X

n0Dn�

uk.n0; t/ : (1.48)

From definition (1.39) it is easy to check that there exists ˛0 such that if ˛ � ˛0 then
n� � n.k/ for all k � 1. We can then use (1.47) to bound each term in the sum on
the right-hand side of (1.48). Moreover, recalling definitions (1.38), (1.44), (1.46),
and (1.45), there exists K3 > 1 such that, for all n0 � n�,

t � log.e C n0/ ; pn0.t/ � K3Œ1 C Q.X/
 log2.e C n0/ ;

gn0.t/ � K3Œ1 C Q.X/
4� log6�C1.e C n0/ ; an0.t/ � K3Œ1 C Q.X/
 log2.e C n0/ ;

` � n0 � k � 1

2K3Œ1 C Q.X/
 log2.e C n0/
:

(1.49)

Inserting the bounds above in (1.47) and using Stirling formula we get,

uk.n0; t/ � K3Œ1 C Q.X/
 exp

"

�` log
n0 � k � 1

2eK3
3Œ1 C Q.X/
4�C2 log6.�C1/.e C n0/

#

:

(1.50)

Since n� � ˛Œk2 C Q.X/4�C2
, there is ˛1 � ˛0 such that the log in the square
brackets on the right-hand side of (1.50) is not smaller than 1 for all Q.X/, k 2 N,
˛ � ˛1, and n0 � n�. Hence, from (1.48), the last bound in (1.49), and (1.50) we
obtain, for all ˛ � ˛1,

jvi .t/ � v
.n�/
i .t/j � K3Œ1 C Q.X/


X

n0�n�

exp

�

� n0 � k � 1

2K3Œ1 C Q.X/
 log2.e C n0/

	

:

(1.51)

Since n� � ˛Œk2 C Q.X/4�C2
, by choosing ˛ � ˛1 large enough, the right-hand
side is bounded uniformly with respect to Q.X/ and k 2 N. The bound (1.16) is
thus proved.

We are left with the proof of (1.17). By (1.23) it is enough to prove (1.17) with
Q.X.t/I �; R/ replaced by W.X.t/I �; R/. Given ˛2 � 1 let

n0 D Int
�
˛2.e C Q.X/4�C2/e2.RCt /

�C 1 :
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Since log.e C n0/ > R, by (1.18), (1.31), and (1.23),

W.X.n0/.t/I �; R/ � Q.X.n0/.t/I �; 2Rn0.t// � C sup
�

Q.X.n0/.t/I �; Rn0.t//

� CQ.X/Rn0.t/ � CQ.X/
�
log.e C n0/ C Q.X/t2

�

� CQ.X/
�
R C log.e C Q.X// C .1 C Q.X//t2

�
;

where in the second inequality we used the positivity of the potential, see [3, Eq.
(A.12)]. On the other hand,

W.X.t/I �; R/ � W.X.n0/.t/I �; R/

C
X

n>n0

jW.X.n/.t/I �; R/ � W.X.n�1/.t/I �; R/j: (1.52)

Let us estimate the sum on the right-hand side of (1.52). We have,

jW.X.n/.t/I �; R/ � W.X.n�1/.t/I �; R/j

�
X

i

f

 
jr.n/

i .t/ � �j
R

!
ˇ
ˇ"

.n/
i � "

.n�1/
i

ˇ
ˇ

C
X

i

ˇ
ˇ
ˇ
ˇ
ˇ
f

 
jr.n/

i .t/ � �j
R

!

� f

 
jr.n�1/

i .t/ � �j
R

!ˇ
ˇ
ˇ
ˇ
ˇ
"

.n�1/
i ; (1.53)

where

"
.n/
i D jv.n/

i .t/j2
2

C 1

2

X

j 2InWj ¤i

˚.r
.n/
i .t/ � r

.n/
j .t// C 1 :

By (1.16), which is obviously valid also for the n-partial dynamics, if jr.n/
i .t/��j �

2R then all the particles j 2 In such that jr.n/
i .t/ � r

.n/
j .t/j � 1 or jr.n�1/

i .t/ �
r

.n�1/
j .t/j � 1 are initially contained in the interval with center � and radius R.t/,

where R.t/ D C ŒR C Q.X/.1 C t2/
. In particular, by choosing ˛2 large enough,
for any n � n0 each particle i such that jr.n/

i .t/ � �j � 2R does not interact with
the particles j 2 In n In�1, so that

ˇ
ˇ"

.n/
i �"

.n�1/
i

ˇ
ˇ � C

2

4
jv.n/

i .t/j C jv.n�1/
i .t/j

2
ıi .n; t/ C

X

j Wj ¤i

� �
ıi .n; t/ C ıj .n; t/

�

3

5 ;

(recall the definition (1.35)) where
P�

j Wj ¤i denotes the sum restricted to all the

particles j 2 In�1 such that jr.n/
i .t/ � r

.n/
j .t/j � 1 or jr.n�1/

i .t/ � r
.n�1/
j .t/j � 1.



18 1 Gas of Point Particles

The number of these particles is thus bounded by N.X I �; R.t// � 2Q.X/R.t/,
where we used (1.60), (1.61), and that R > log.e C j�j/. Then, setting �n.t/ WD
maxfıi .n; t/ W jri � �j � R.t/g and using (1.16), if i is such that jri � �j � R.t/,
for any n > n0,

ˇ
ˇ"

.n/
i � "

.n�1/
i

ˇ
ˇ � C

hp
Q.X/ log.e C j�j C R.t// C Q.X/.t C R.t//

i
�n.t/

� C Œ1 C Q.X/2
 log2.e C n/ �n.t/ ; (1.54)

On the other hand,

ˇ
ˇ
ˇ
ˇ
ˇ
f

 
jr.n/

i .t/ � �j
R

!

� f

 
jr.n�1/

i .t/ � �j
R

!ˇ
ˇ
ˇ
ˇ
ˇ

� 2
jr.n/

i .t/ � r
.n�1/
i .t/j

R
�

jr.n�1/

i .t/ � �j � ıi .n; t/ C 2R
�

� C�

jr.n�1/

i .t/ � �j � �n.t/ C 2R
�
�n.t/ : (1.55)

By the same argument leading to (1.50), (1.51), and the by definition of n0, if ˛0 is
large enough,

�n.t/ � C Œ1 C Q.X/
 exp

�

� n

C Œ1 C Q.X/
 log2.e C n/

	

8 n > n0 :

(1.56)

In particular �n.t/ � C . Then, inserting the bounds (1.54) and (1.55) in (1.53),

jW.X.n/.t/I �; R/ � W.X.n�1/.t/I �; R/j
� C Œ1 C Q.X/2
 log2.e C n/N.X.n/.t/I �; 2R/ �n.t/

C W.X.n�1/.t/I �; �n.t/ C 2R/ �n.t/

� C Œ1 C Q.X/2
 log2.e C n/W.X.n/.t/I �; 2Rn.t// �n.t/

C W.X.n�1/.t/I �; C C 2Rn�1.t// �n.t/

� C Œ1 C Q.X/2
 log2.e C n/ ŒRn�1.t/ C Rn.t/
 �n.t/ ;

where in the last inequality we used the positivity of the potential, (1.23), and (1.18).
Again by (1.16) we have that Rn.t/ � C Œ1 C Q.X/2
 log2.e C n/ for n � n0.
By (1.56) we then conclude that the sum on the right-hand side of (1.52) is bounded
by a constant. ut
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1.3 Runaway Effects for Bounded Body/Medium
Interactions in One Dimension

This section is the core of the chapter, where we rigorously prove the runaway effect
for not singular interaction, by analyzing the two specific models shortly described
in Sect. 1.1.

1.3.1 The Quasi-One-Dimensional Model

In this model the gas is confined in an infinitely extended tube of R3. More precisely,
let n be a fixed unit vector in R

3. For any q 2 R
3, we denote by q? D q�.q �n/n its

orthogonal projection. Given L > 0, let ˝ WD fq 2 R
3 W jq?j < Lg be the infinite

tube of radius L and symmetry axis n. The heavy particle of mass M is subjected
to the force F D F n, F > 0, and it is coupled with the infinite system of particles
of unit mass by means of a non-negative, symmetric, twice differentiable, short-
range, two-body potential � . The particles interact among themselves by means of
a non-negative, symmetric, short-range, two-body potential ˚ of the form

˚.q/ D ˚1.q/ C ajqj�b ; (1.57)

where a � 0, b > 0, and ˚1 is twice differentiable and symmetric. As in the
previous section, if ˚ is finite at the origin we assume ˚.0/ > 0. Without loss of
generality we assume that both � and ˚ have range not greater than one, i.e.,

˚.q/ D 0; �.q/ D 0 if jqj > 1 : (1.58)

We force the system to stay confined inside the tube ˝ , by requiring that all the
particles are subjected to a one-body potential of the form

�.q/ D �h.jq?j/
.L � jq?j/�

; q 2 ˝ ; (1.59)

where � > 0, h 2 .0; L/, and �h.s/, s 2 R
C, is a non-negative, twice differentiable

function, identically zero for s � h and strictly positive at s D L.
The state of the system is determined by the position and velocity x D .r; v/ of

the heavy particle and those xi D .ri ; vi /, i 2 N, of the other particles. We denote
by X D fxi gi2N the state of the infinite extended system, which is assumed to have
a locally finite density and energy. In particular it is well defined, for any � 2 R and
R > 0,

Q.XI �; R/ WD
X

i

�i .�; R/

�
v2

i

2
C �.ri / C 1

2

X

j Wj ¤i

˚.ri � rj / C 1

�

; (1.60)
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where �i .�; R/ D �.jri � n � �j � R/. Analogously to the one dimensional case of
the previous section, by defining

Q.X/ WD sup
�

sup
RWR>log.eCj�j/

Q.XI �; R/

2R
; (1.61)

the set X WD fX W Q.X/ < 1g has a full measure with respect to any Gibbs
state. The time evolution t 7! .x.t/; X.t// is defined by the solutions of the Newton
equations,

8
<

:

Rr.t/ D G.x.t/; X.t// ;

Rri .t/ D Gi .x.t/; X.t// ; i 2 N ;

x.0/ D .0; 0/; X.0/ D X ;

(1.62)

where

G.x; X/ WD �M �1

�X

j

r�.r � rj / C r�.r/

	

C M �1F ; (1.63)

Gi .x; X/ WD �
X

j Wj ¤i

r˚.ri � rj / � r�.ri � r/ � r�.ri / ; i 2 N ;

(1.64)

and, without loss of generality, we assumed that the heavy particle is initially located
at r D 0 with velocity v D 0.

The Cauchy problem for this system of infinite equations is well posed when the
initial condition X is chosen in the set X , and the solution can be constructed as a
limit of the n-partial dynamics, here defined as follows. Given X 2 X and n 2 N,
let In WD fi 2 N W ri 2 ˝.0; n/g, where ˝.�; R/ WD fr 2 ˝ W jri �n��j � Rg. The
n-partial dynamics t 7! .x.n/.t/; X.n/.t//, X.n/.t/ D fx.n/

i .t/gi2In , is the solution of
the differential system,

8
<

:

Rr.n/.t/ D G.x.n/.t/; X.n/.t// ;

Rr.n/
i .t/ D Gi .x.n/.t/; X.n/.t// ; i 2 In ;

x.n/.0/ D .0; 0/; X.n/.0/ D fxigi2In :

(1.65)

For notational convenience we introduce the vector,

E D En WD M �1F ; (1.66)

which will be used in the sequel.
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Theorem 1.4 For each X 2 X there exists a unique flow t 7! .x.t/; X.t//, X.t/ D
fxi .t/gi2N 2 X satisfying (1.62). Moreover, for any t � 0,

lim
n!1 x.n/.t/ D x.t/ ; lim

n!1 x.n/
i .t/ D xi .t/ 8 i 2 N : (1.67)

Finally, setting

QE.X/ D Q.X/ C E ; (1.68)

for any X 2 X , i 2 N, and t � 0,

jv.t/j � C
hp

QE.X/ log.e C QE.X// C QE.X/t
i

; (1.69)

jvi .t/j � C
hp

QE.X/ log.e C jxi j C QE.X// C QE.X/t
i

; (1.70)

and, for any � 2 R, R > log.e C j�j/, and t � 0,

Q.X.t/I �; R/ � CQE.X/
�
R C log.e C QE.X// C .1 C QE.X//t2

�
: (1.71)

The strategy used to prove Theorem 1.1 can be easily adapted here and we omit
the details. We just remark that the analogous of Lemma 1.2 has to be proved for
the local energy and density of the whole system. More precisely, after denoting by
x0 D .r0; v0/ the position and velocity of the heavy particle and setting OX D .x0; X/,
we define

OQ. OXI �; R/ WD
X

i

�i .�; R/

�
.M � 1/ıi;0 C 1

2
v2

i C �.ri / C 1

2

X

j Wj ¤i

O̊
i;j C 1

�

;

where O̊
i;j D ˚.ri � rj / if i; j � 1 and O̊

i;j D �.ri � rj / if i D 0 or j D 0.

Then, calling OX.n/
.t/ D .x.n/

0 .t/, X.n/.t//,

sup
�

OQ. OX.n/
.t/I �; ORn.t// � CQE.X/ ORn.t/ 8 t � 0 ; (1.72)

where

ORn.t/ WD log.e C n/ C
Z t

0

ds OVn.s/; OVn.t/ WD max
i2In[f0g

sup
s2Œ0;t 


jv.n/
i .s/ � nj :
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We also remark that the analogous of (1.26) is now,

@s
OW . OX.n/

.s/I �; ORn.t; s// � �f
�;Rn.t;s/

0 E � v0.s/

�
X

i¤j



f

�; ORn.t;s/
i � f

�; ORn.t;s/
j

�r O̊
i;j � vi .s/

2
;

where OW . OXI �; R/ is a mollified version of OQ. OXI �; R/ similar to (1.21) and
ORn.t; s/ is defined as Rn.t; s/ in (1.24) with Vn.�/ replaced by OVn.�/. Noticing that

Z s

0

d� f
�;Rn.t;s/

0 jE � v0.�/j � E ORn.t/ ;

the same reasoning leading to the integral inequality (1.30) gives,

OW . OX.n/
.s/I ORn.t; s// � OW . OX.n/

.0/I ORn.t; 0// C E ORn.t/

� C

Z s

0

d�
@�

ORn.t; �/

ORn.t; �/
W. OX.n/

.�/I ORn.t; �// ;

which can be integrated, obtaining,

sup
�

OW . OX.n/
.t/I �; ORn.t// � C

"

E ORn.t/ C sup
�

OW . OX.n/
.0/I �; ORn.t//

#

;

from which one easily concludes the proof of (1.72). We finally notice that the
presence of the confining potential � does not cause problems in the iterative
procedure since, as for ˚ , the variation of its gradient can be controlled with a
suitable power of the potential itself.

Here we state the main result on this model.

Theorem 1.5 There exist positive constants C0 and C1 such that for any X 2 X
the following holds. Let t 7! .x.t/; X.t// be the unique solution of Eqs. (1.62) and
recall (1.66). If Œlog.e C E/
�1E > C0Q.X/ then, for any t � 0,

jv.t/ � Et j � C0Q.X/

�
log.e C E/p

E
C t

�

(1.73)

and, for any i 2 N,

jvi .t/j � C1

hp
Q.X/ log.e C jri � nj C E/ C Q.X/t

i
: (1.74)

The meaning of this theorem appears evident from the following corollary.
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Corollary 1.6 For each Gibbs state h�i of the background system there exists a
threshold NE > 0 such that, for any E > NE,

lim
t!1hv.t/ � ni D 1 :

The above corollary is an immediate consequence of the bound (1.69) and Theo-
rem 1.5 since for any Gibbs state h�i there exist A, B > 0 such that h�.Q.X/ >

�/i � A expŒ�B�
 for any � > 0, see, e.g., [7]. It is clear that the same result holds
not only for Gibbs states but for any reasonable equilibrium or non-equilibrium
thermodynamic state.

The rigorous proof of Theorem 1.5 is given in [1]. Here we shall only give a
sketch of it. But let us first briefly discuss the main ideas. Disregarding for the
moment the interaction of the heavy particle with the background, we observe that,
after a time of order 1=

p
E , the heavy particle reaches a velocity of order

p
E .

On the other hand, during this time, its displacement is bounded by a constant so
that the heavy particle can interact only with a finite number (not depending on
E) of particles. Since the interaction is assumed to be bounded, we may expect
that, even taking into account this interaction, if E is very large then the velocity
of the heavy particle is still of order

p
E at a time of order 1=

p
E . After this time

another mechanism takes place: since also in this quasi-one-dimensional model the
velocities of the background particles may increase at most linearly in time, the
heavy particle is now much faster than all the particles it meets. Hence, it interacts
with each of them for a very short time and, since the interaction is bounded,
this implies that also the momentum transferred during the scattering process is
very small. Clearly, as time goes by, the number of particles which may interact
with the heavy one increases. But for E large enough we may suppose the heavy
particle to accelerate so rapidly that, in a unit time, the momentum transferred
by the other particles (which is of order Œnumber of collisions
 � Œtime of collision
)
remains bounded by a constant smaller than E: if this happens the heavy particle
will increase its velocity indefinitely.

If the external field E is not large, the above mechanism does not work, and
the heavy particle can exchange a large part of its energy with the background.
However, the velocity of both the heavy and background particles may increase at
most linearly in time, as shown in Theorem 1.4, see (1.69) and (1.70).

To prove rigorously the above picture, we consider the maximal time for which
the horizontal velocity of the heavy particle remains close enough to Et, and the
absolute velocity of the particles which may interact with the former is much
smaller than Et. By choosing E large enough, this maximal time is positive.
Then, by analyzing the dynamics up to this time, we obtain sharper estimates
implying, by a continuity argument, that this time is actually infinite. After that,
the inequalities (1.73) and (1.74) will be a byproduct of the above bounds.

Before explaining the main steps of the above strategy, we remark that it is not
possible to work directly with the infinite dynamics, since a control of the explicit
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dependence on E and Q.X/ in the limiting procedure is needed. Therefore, we
analyze the n-partial dynamics, by obtaining bounds which are uniform in n.

Step 1 (definitions). Let

Un.t/ WD max
i

G
�

inf
s2Œ0;t 


jr.n/
i .s/ � nj � p

Et � 6Et2

5



sup

s2Œ0;t 


jv.n/
i .s/j ; (1.75)

where G 2 C.R/ is not increasing and satisfying: G.x/ D 1 for x � 1, G.x/ D 0

for x � 2. We next define,

Tn WD sup

�

t � 0W maxfUn.s/I jv.n/.s/ � n � Esjg � p
E C Es

5
8 s 2 Œ0; t 


�

;

(1.76)

setting Tn D 0 if the above set is empty. By (1.58), for any t 2 Œ0; Tn/, the i th
particle can interact with the heavy one during the time Œ0; t 
 only if i 2 An.t/,
where

An.t/ WD
�

i 2 In W inf
s2Œ0;t 


jr.n/
i .s/ � nj � 1 C p

Et C 6Et2

5

�

: (1.77)

Observe also that Un.�/ is a continuous and not decreasing function such that

max
i2An.t/

sup
s2Œ0;t 


jv.n/
i .s/j � Un.t/ � max

i2 NAn.t/

sup
s2Œ0;t 


jv.n/
i .s/j ; (1.78)

where

NAn.t/ WD
�

i 2 In W inf
s2Œ0;t 


jr.n/
i .s/ � nj � 2 C p

Et C 6Et2

5

�

: (1.79)

Since, by definition (1.61),

jvi j � 2
p

Q.X/ log.e C jri � nj/ 8 i 2 N ; (1.80)

it follows that, setting C � WD 16 log.e C 2/,

Un.0/ �
p

E

2
8 n 2 N 8 E � C �Q.X/ :

Recalling that v.0/ D 0, by continuity we conclude that if E � C �Q.X/ then
Tn > 0 for all n 2 N.

Step 2 (energy estimate). We study the n-partial dynamics for E � C �Q.X/

and t 2 Œ0; Tn/. We essentially show that up to time Tn the heavy particle does
not exchange too much energy with the background. This is the content of the
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following estimate on the growth in time of the local density and energy (1.60)
of the background. In fact, with respect to (1.72), here the estimate is uniform for
large E . More precisely, for any X 2 X , E � C �Q.X/, and n 2 N,

sup
�

Q.X.n/.t/I �; Rn.t// � CQ.X/Rn.t/ 8 t 2 Œ0; Tn/ ; (1.81)

where

Rn.t/ WD log.eCn/C
Z t

0

ds Vn.s/ ; Vn.t/ WD max
i2In

sup
s2Œ0;t 


jv.n/
i .s/�nj : (1.82)

The proof of (1.81) is essentially the same as that of Lemma 1.2. The main
difference is that the analogous of (1.26) for the mollified version W of Q now
reads,

@sW.X.n/.s/I �; Rn.t; s// � �X

i

f
�;Rn.t;s/

i r�.r.n/
i .s/ � r.n/.s// � v.n/

i .s/

� 1

2

X

i¤j



f

�;Rn.t;s/
i � f

�;Rn.t;s/
j

�r˚.r.n/
i .s/ � r.n/

j .s// � v.n/
i .s/ :

Therefore, the same reasoning leading to the integral inequality (1.30) gives in this
case,

W.X.n/.s/I Rn.t; s// � W.X.n/.0/I Rn.t; 0//

C sup
�

Z s

0

d�
X

i

f
�;Rn.t;s/

i jr�.r.n/
i .�/ � r.n/.�// � v.n/

i .�/j

� C

Z s

0

d�
@� Rn.t; �/

Rn.t; �/
W.X.n/.�/I Rn.t; �// : (1.83)

We observe that in the sum on the right-hand side of (1.83) only the particles which
are initially in ˝.�; 4Rn.t; 0// can contribute; the number of these particles is
bounded by W.X.n/.0/I 4Rn.t; 0//. Moreover, letting

tE WD 20p
E

; (1.84)

by the definition of Tn, if Tn > tE then

h
v.n/.�/ � v.n/

i .�/
i

� n � E�

2
8 i 2 An.�/ 8 � 2 .tE; Tn/ ; (1.85)
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and
Z s

0

d�
X

i

f
�;Rn.t;�/

i

ˇ
ˇr�.r.n/

i .�/ � r.n/.�// � v.n/
i .�/

ˇ
ˇ

� W.X.n/.0/I �; 4Rn.t; 0//kr�k1
� �p

E C EtE
5

�

tE

C �.Tn > tE/ max
i

Z Tn

tE

d� �.jr.n/
i .�/ � r.n/.�/j � 1/jv.n/

i .�/j
�

:

(1.86)

We now observe that if Tn > tE then the bound (1.85) implies that for each i 2 N

there exists an interval Œsi1; si2
 � ŒtE ; Tn/ such that

�


� 2 ŒtE ; Tn/

�
�.jr.n/

i .�/ � r.n/.�/j � 1/ � �.Œsi1; si2
/; jsi2 � si1j � 2

Esi1

:

Since jv.n/
i .�/j � p

E C E�=5, it follows that

�.Tn > tE/

Z Tn

tE

d� �.jr.n/
i .�/ � r.n/.�/j � 1/jv.n/

i .�/j

� 2

Esi1

�p
E C Esi1

5
C 2

5si1

�

;

and the right-hand side of the above inequality is bounded by a constant since Esi1 �
EtE . Hence, by (1.86), we conclude that, for any � 2 R,

Z s

0

d�
X

i

f
�;Rn.t;�/

i

ˇ
ˇr�.r.n/

i .�/�r.n/.�// �v.n/
i .�/

ˇ
ˇ � CW.X.n/.0/I �; 4Rn.t; 0// :

(1.87)

Inserting (1.87) in (1.83) we obtain a differential inequality which can be solved,
finally getting

W.X.n/.t/I Rn.t// � CW.X.n/.0/I Rn.t// :

from which (1.81) follows by arguing as in the proof of Lemma 1.2.

Step 3 (velocity bounds). As a corollary of the above estimate the velocities of the
particles background increase at most linearly in time with a rate uniformly bounded
with respect to E . More precisely, by arguing as in the proof of Lemma 1.3, we now
deduce from (1.81) that for any X 2 X and E � C �Q.X/, n 2 N, and i 2 In,

jv.n/
i .t/j � C

hp
Q.X/ log.e C n/ C Q.X/t

i
8 t 2 Œ0; Tn/ : (1.88)
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By (1.88) we can apply an iterative procedure as in the proof of Theorem 1.1. As
a result we get the following estimate, whose proof is omitted: there exist C1 > 0

such that, for any X 2 X , E � C �Q.X/, i 2 N, and n � jri � nj,

jv.n/
i .t/j � C1

hp
Q.X/ log.e C jri � nj C E/ C Q.X/t

i
8 t 2 Œ0; NTn/ ;

(1.89)

where

NTn WD min
n0�n

Tn0 : (1.90)

Step 4 (bootstrap argument) By exploiting the dynamics and using (1.88) it is now
possible to show that if E is large enough then Tn D 1 for any n 2 N and sharper
estimates do hold. This is the content of the following proposition.

Proposition 1.7 There exists C2 � C � such that, for each given X 2 X , if Œlog.eC
E/
�1E � C2Q.X/ then Tn D 1 for any n 2 N.

Proof We shall prove that there exists C2 � C � such that, for any X 2 X , Œlog.e C
E/
�1E � C2Q.X/, n 2 N, and k � n,

Uk.t/ � 1

2

�p
E C Et

5

�

8 t 2 Œ0; NTn/ ; (1.91)

jv.k/.t/ � n � Etj � 1

2

�p
E C Et

5

�

8 t 2 Œ0; NTn/ : (1.92)

By continuity this implies that Tk > NTn for all k � n (which contradicts the
definition of NTn) unless NTn D 1, and the proposition is proved.

In the sequel we shall assume E � maxfC �I 4C1gQ.X/. Let n 2 N and k � n.
By (1.89) and recalling the definitions of Tk and NAk.t/, see (1.76) and (1.79), for t 2
Œ0; NTn/ the initial position ri of each particle i 2 NAk.t/ has to verify the inequality,

jri � nj � C1t
p

Q.X/ log.e C jri � nj C E/ � C1Q.X/t2 � 2 C p
Et C 6E

5
t2 :

Since E � maxfC �I 4C1gQ.X/ and C � > 1, the above inequality implies

jri � nj � C1

p
Et
p

log.e C jri � nj C E/ � 2 C p
Et C 2Et2 ; (1.93)

from which it follows that there exists � > 1 such that, for any k � n and t 2 Œ0; NTn/,

i 2 NAk.t/ H) ri 2 ˝.0; RE.t// with RE.t/ WD �
�
log.e C E/ C Et2

�
;

(1.94)
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and hence, by (1.60) and (1.61), recalling also that Ak.t/ � NAk.t/,

jAk.t/j � j NAk.t/j � 2Q.X/RE.t/ ; (1.95)

where for any finite set B we denote by jBj its cardinality.
By (1.78), (1.94), and (1.89),

Uk.t/ � C

�q

Q.X/ log.e C E C Et2/ C Q.X/t

	

8 t 2 Œ0; NTn/ : (1.96)

Consider now the difference jv.k/.t/ � n � Etj. By the equations of motion, since
r� � n D 0, we have

jv.k/.t/ � n � Etj � kr�k1
M

X

j

Z t

0

ds �.jr.k/.s/ � r.k/
j .s/j � 1/ : (1.97)

By (1.84) and (1.85) for n D k, we estimate, for any t 2 Œ0; NTn/,

jv.k/.t/ � n � Etj � kr�k1
M

˚jAk.minft I tEg/j tE C Fk.t/
�

; (1.98)

where

Fk.t/ D �. NTn > t > tE/
X

j

Z t

tE

ds �.jr.k/.s/ � r.k/
j .s/j � 1/ : (1.99)

By (1.95) and the definition (1.84),

jAk.minft I tEg/j tE � CQ.X/
log.e C E/p

E
: (1.100)

To bound the term Fk.t/ we use (1.85) with k D n. Given K > 0 to be fixed later,
let q0 2 N be such that 2KCq0 < RE.t/ � 2KCq0C1 (RE.t/ as in (1.94)) and define

NN D fj 2 N W jrj � nj � 2Kg ;

Nq D fj 2 N W 2KCq < jrj � nj � 2KCqC1g ; q D 0; : : : ; q0 :

By (1.85), for any t 2 Œ0; NTn/,

Fk.t/ � 2j NN j
EtE

C
q0X

qD0

2jNqj
Etk;q

�. NTn > tE/ ; (1.101)
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where, for NTn > tE ,

tk;q WD min
j 2Nq

inffs 2 ŒtE ; NTn/ W jr.k/.s/ � r.k/
j .s/j � 1g ;

setting tk;q D 1 if the above set is empty for all j 2 Nq . We choose K such that
2K D Nc log.e C E/ with Nc to be fixed below and so large that 2KCx�1 > log.e C
2KCxC1/ for all x � 0 and E � 0. Then, since 2KCqC1 � 2KCq D 2KCq, by (1.60)
and (1.61) we have jNqj � 2Q.X/2KCq. On the other hand, by inequality (1.93)
which is valid for all i 2 Ak.t/, the time tk;q has to satisfy the condition:

2KCq � C1

p
Etk;q

p
log.e C 2KCqC1 C E/ � 2 C p

Etk;q C 2Et2k;q :

It follows that if Nc is chosen sufficiently large then tk;q � C
p

2KCq=E . Finally,
again by (1.60) and (1.61), we have j NN j � 2Q.X/2K . Inserting all the previous
bounds in (1.101) we finally obtain,

Fk.t/ � CQ.X/p
E

0

@2K C
q0X

qD0

2.KCq/=2

1

A � CQ.X/p
E

�
2K C 4

p
RE.t/




� CQ.X/

�
log.e C E/p

E
C t

�

; (1.102)

where we used 2.KCq0/=2 � p
RE.t/. By (1.98), (1.100), and (1.102), we conclude

that, for any E � maxfC �I 4C1gQ.X/ and k � n,

jv.k/.t/ � n � Etj � CQ.X/

�
log.e C E/p

E
C t

�

8 t 2 Œ0; NTn/ : (1.103)

By (1.96), (1.103), and by choosing C2 � maxfC �I 4C1g large enough, the
inequalities (1.91) and (1.92) are verified for all E such that Œlog.e C E/
�1E �
C2Q.X/. The proposition is proved. ut
Step 5 (conclusion). We can now conclude the proof of the estimates (1.73)
and (1.74). The latter holds with C1 as in (1.89), and C0 � C2 large enough. In fact,
for Œlog.e CE/
�1E � C2Q.X/, since NTn D 1, the bounds (1.89) and (1.103) hold
for all t � 0. The former implies the inequality (1.74) for the corresponding infinite
dynamics. The inequality (1.73) follows from (1.103) and an analogous upper bound
for jv.n/.t/?j, which we next prove. Let

E ?
n .t/ WD M

2
jv.n/.t/?j2 C �.r.n/.t// :
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From the equations of motion, since r� � n D 0,

PE ?
n .t/ D �

X

j

r�.r.n/.t/ � r.n/
j .t// � v.n/.t/? ;

and hence, since � is non-negative,

ˇ
ˇ PE?

n .t/
ˇ
ˇ � kr�k1

s

2E?
n .t/

M

X

j

�.jr.n/.t/ � r.n/
j .t/j � 1/ :

Then, setting NE ?
n .t/ D sups2Œ0;t 
 E

?
n .s/ and using E ?

n .0/ D 0, we obtain:

jv.n/.t/?j �
s

2 NE ?
n .t/

M
� 2kr�k1

M

Z t

0

ds
X

j

�.jr.n/.s/ � r.n/
j .s/j � 1/ :

We have already found an upper bound for the right-hand side of the above
inequality, see the analysis done starting from (1.97) to prove (1.103) (but now with
NTn D 1). We conclude that, for Œlog.e C E/
�1E � C2Q.X/,

jv.n/.t/?j � CQ.X/

�
log.e C E/p

E
C t

�

8 t � 0 : (1.104)

By choosing C0 > C2 large enough, the inequality (1.73) follows from (1.103)
and (1.104) for any E such that Œlog.e C E/
�1E � C0Q.X/.

1.3.2 The One-Dimensional Model: Violation of Ohm’s Law

We try now to remove the assumption E > NE of Corollary 1.6. We are able to prove
it rigorously only in a particular one-dimensional model (particles interacting with
a nonnegative, finite range, smooth pair potential), but we believe that the result
holds also in higher dimension. Actually, we need to show that the growth of the
velocity of a background particle is sub-linear in time. Our approach depends on
the (strict) one dimensionality of the system: in one dimension the conservations
of total impulse and total energy impose that after a binary collision the outgoing
velocities are exactly the same of the ingoing ones. Of course, the reality is not
so simple because there are multiple collisions, nevertheless in [2] we show that
if a particle is much faster than the others its velocity remains almost unchanged
during the scattering process. As a consequence we obtain the required bounds on
the growth of the velocities of the background particles, which allow to consider the
case of small external force. However, we believe that this is a useful technical tool
but not an essential one (also in higher dimension a fast particle does not change too
much its velocity in a binary collision).
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We then study the system (1.1) in dimension d D 1, i.e.,

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

Rr.t/ D E � M �1
X

j

� 0.r.t/ � rj .t// ;

Rri .t/ D �� 0.ri .t/ � r.t// �
X

j ¤i

˚ 0.ri .t/ � rj .t// ; i 2 N ;

.r.0/; v.0// D .0; 0/ X.0/ D X

(1.105)

where we drop the bold font, set m D 1, and E D F=M as in the previous section.
The initial condition X D f.ri ; vi /gi2N is chosen in X as defined in (1.12). We
assume that both ˚ and � are nonnegative, symmetric, finite range, and smooth pair
potentials. We also require ˚.0/ > 0 so that ˚ is superstable. In [2] the following
theorem is proved.

Theorem 1.8 For any Gibbs state h�i of the background system and any intensity
of E ,

lim inf
t!1

hv.t/i
t

> 0 :

We recall that the Ohm’s law states a proportionality between the external force
and the mean velocity (linear response). The previous theorem means that for
a bounded particle/background interaction the Ohm’s law is not valid. We need
singular interactions. Heuristic arguments in [1] suggest how large must be the
divergence, but we will discuss this point in the next section with more details.

The proof of Theorem 1.8 is nontrivial and rather technical. In the rest of the
section we briefly sketch the strategy, by only giving the main ideas without entering
into details.

As already claimed, the crucial point is a new estimate on the growth in time of
the background particle velocity. Since the argument leading to this new estimate is
not really affected by the presence of the heavy particle, we discuss it in the case
when the latter is absent. Therefore, we consider the Cauchy problem (1.15) and
assume that the potential satisfies (1.8) with a D 0 (i.e., it is nonnegative, finite
range, smooth, and superstable) and (1.9).

Theorem 1.9 There exist K � 1 and a0 2 .0; 1/ such that for any a 2 .0; a0
 and
X 2 X the following holds. Let t 7! X.t/ D f.ri .t/; vi .t/gi2N be the solution to
Eqs. (1.15). Then, for any i 2 N and t � 0,

jvi .t/j � at 8 t � Ta.X; ri/ ; (1.106)

where

Ta.X; ri / D a�KŒ1CQ.X/3
=a2p
log.e C jri j/ : (1.107)
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The theorem is proved by contradiction: we assume that at time T large enough the
velocity absolute value of a particle is greater than aT and we then show that this
particle does not change very much its velocity during the backward motion, so that
the latter is initially larger than aT=2. For T large enough this fact contradicts the
assumptions on the initial data.

The proof is based on a nontrivial perturbative analysis of the collision processes.
To explain the general idea, let us consider the following particular and very simple
situation: given a 2 .0; 1/, at a large time T there is only one fast particle, say the
i th particle, with velocity larger than aT, while the other particles have velocities
with absolute value smaller than aT=4 during the whole time interval Œ0; T 
. More
precisely, we assume this situation occurs with

T > K1

1 C Q.X/

a2

p
log.e C jri j/ ; (1.108)

where K1 > 1 is to be fixed later. Let

T� WD inf

�

t 2 .0; T�/W vi .t/ D aT

2

�

;

setting T� D 0 if the above set is empty, and define, for t 2 ŒT�; T 
,

pi.t/ WD vi .t/ C
X

j ¤i

˚.ri .t/ � rj .t//

vi .t/ � vj .t/
: (1.109)

From the equations of motion and recalling that ˚ is symmetric we have,

Ppi .t/ D �
X

j ¤i

X

s¤i

˚.ri .t/ � rj .t//˚ 0.ri .t/ � rs.t//

.vi .t/ � vj .t//2

C
X

j ¤i

X

s¤j

˚.ri .t/ � rj .t//˚ 0.rj .t/ � rs.t//

.vi .t/ � vj .t//2
:

Since vi .t/ � vj .t/ � aT=4 for t 2 ŒT�; T 
 and ˚ , ˚ 0 are bounded with support in
Œ�1; 1
, it follows that

jpi.T / � pi.T�/j � C

.aT/2

Z T

T
�

ds Ni.s/2 � C

.aT/2

"

sup
�2Œ0;T 


Ni.�/

# Z T

T
�

ds Ni.s/

D C

.aT/2

"

sup
�2Œ0;T 


Ni.�/

#
X

j ¤i

Z T

T
�

ds �.jrj .s/ � ri .s/j � 2/ ;

(1.110)
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where Ni.s/ clearly denotes the number of particles which are contained at time
s in the interval Œri .s/ � 2; ri .s/ C 2
. We now observe that since the potential ˚

is superstable with range bounded by 1, denoting by N.X I �; R/ the number of
particles of the configuration X contained in the interval Œ� � R; � C R
,

N.X I �; R/2 � CQ.X I �; R/ 8 X 2 X 8 � 2 R 8 R � 1 : (1.111)

Therefore, by (1.17), and (1.108), for any � 2 Œ0; T 
,

Ni.�/2 � CQ.X.�/I ri .�/; 2/

� CQ.X/Œlog.e C jri j/ C log.e C Q.X// C .1 C Q.X//�2


� CQ.X/Œ1 C Q.X/
T 2 :

Since vi .t/ � vj .t/ � aT=4, the time integrals on the right-hand side of (1.110) are
not greater than 16=.aT/. Consequently,

jpi .T / � pi .T�/j � C
p

Q.X/Œ1 C Q.X/


a3T 2
NNi .T / ;

where NNi .T / is the total number of particles j such that jrj .s/�ri .s/j � 2 for some
s 2 Œ0; T 
. Now, by (1.16) and (1.108), for such particles we have,

jrj �ri j � 2C2C
hp

Q.X/ log.e C jri j C Q.X// C Q.X/T
i

� C Œ1CQ.X/
T 2 ;

whence, by (1.111) and (1.108),

NNi.T /2 � N.X I ri ; C Œ1 C Q.X/
T 2/2 � CQ.X I ri ; C Œ1 C Q.X/
T 2/

� CQ.X/Œlog.e C jri j/ C C Œ1 C Q.X/
T 2


� CQ.X/Œ1 C Q.X/
T 2 :

Therefore,

jpi .T / � pi .T�/j � CQ.X/Œ1 C Q.X/


a3T
:

On the other hand, for any t 2 ŒT�; T 
,

jv.t/ � p.t/j � C

aT
Ni.t/ � C

p
Q.X/Œ1 C Q.X/


a
;
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whence

jv.T / � v.T�/j � C

"
Q.X/Œ1 C Q.X/


a3T
C
p

Q.X/Œ1 C Q.X/


a

#

:

By (1.108), if K1 is large enough the right-hand side in the above display is
smaller than aT=2 so that T� D 0. Since jvi j � p

2Q.X/ log.e C jri j/ we get a
contradiction, therefore vi .T / � aT if T satisfies (1.108).

Notice that in the above argument we used that the average force acting on the fast
particle is very small for two reasons: firstly, the fast particle interacts with a slow
one for a very short time (inversely proportional to the velocity gap); secondly, there
is a compensation effect in the action of the forces during a collision of two particle
(this fact is proved introducing the quantity pi .t/, a sort of “adiabatic invariant”).
The fast particle thus returns to the initial time essentially with the same velocity aT
and this fact gives an absurd for large T .

Of course, the assumption that the fast particle is alone and the background does
not increase its velocity is too drastic. Concerning the first question, we now make
an essential observation. Consider the set P D fj 2 NW jrj � ri j � LT g with
LT D C�Œ1 C Q.X/
T 2. By (1.16) (we still assume (1.108)), for C� sufficiently
large P contains all the particles which can interact with the i th one during the
time interval Œ0; T 
. Moreover jvj .t/j � C Œ1 C Q.X/
T 2 for any j 2 P . Now,
Eq. (1.17) implies that, for each time t 2 Œ0; T 
, the total number of fast particles in
P does not depend on T . Indeed, setting It D fj 2 P W jvj .t/j > aT=4g, we have

jIt j � 32

.aT/2
Q.X.t/I ri ; LT C C Œ1 C Q.X/
T 2/ �

NC Q.X/Œ1 C Q.X/


a2
;

for a suitable NC > 0.
For T large enough this fact imposes that there exists a velocity gap between

the fast and slow particles. Then we can find an " small enough such that in the
interval Œ.1 � "/T; T 
 the background does not increase very much its velocity and
the fast particles remain such. We emphasize that the control on the background is
nontrivial, but we do not discuss it here and address the interested reader to [2].
So the effect of the background on the fast particles is small. We must now control
the mutual interactions among the fast particles: it is possible to show that each
fast particle after some collisions either remains alone (and so it does not change
its velocity) or it remains in a small cluster (in momentum space), whose center of
mass is almost unchanged. In conclusion, the velocity of each fast particle in the
interval Œ.1 � "/T; T 
 is almost unchanged. Repeating "�1 times this estimate, we
arrive to an absurd.

The dependence on the small parameter a of Ta.X; ri / in (1.107) is very bad:
we have to wait a super-exponentially large (with respect to a�1) time to catch the
asymptotic estimate on the i th particle velocity. On the other hand, this choice is
a useful mathematical device to control the effect of the mutual interaction among
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the fast particles. In fact, it guarantees an a priori bound on the maximal number of
refinements into small clusters which are needed to follow the evolution of the fast
particles during the time interval Œ.1 � "/T; T 
.

Let us go back to the whole system (1.105). The following theorems are proved
in [2].

Theorem 1.10 Given Q > 0 and L > 0 let

BQ;L WD fX 2 X W Q.X/ � Q; jri j � L 8 i 2 Ng : (1.112)

Then, for each E > 0 and Q > 0 there exists L0 > 0 such that, for any L � L0

and X 2 BQ;L,

lim
t!1

v.t/

t
D E : (1.113)

Theorem 1.11 For any E � 0 and X 2 X ,

lim inf
t!1

v.t/

t
� 0 : (1.114)

Theorem 1.8 is an easy consequence of these theorems. In fact, by well known
properties of the DLR states, see, e.g., [7], the subset BQ;L has positive measure
w.r.t the state h�i for Q large enough (depending on h�i) and for any L � 0. Then,
by fixing Q large enough and L as in Theorem 1.10,

lim inf
t!1

hv.t/i
t

�
�

lim inf
t!1

v.t/

t

�

D
�

�.BQ;L/ lim
t!1

v.t/

t

�

C
�

�.Bc
Q;L/ lim inf

t!1
v.t/

t

�

� ˝
�.BQ;L/

˛
E > 0 ;

where in the first inequality we used Fatou’s lemma. Obviously, the same result
holds not only for Gibbs states but for any reasonable equilibrium or non-
equilibrium thermodynamic state.

Remark 1.12 By exploiting the proof of Theorem 1.10 in [2] it is easy to check
that we actually prove also the following statement. Assume the heavy particle is
initially in the position r D 0 with a positive velocity v0. Then for each X 2 X and
E > 0 there exists a threshold Nv0 such that Eq. (1.113) holds for any v0 � Nv0. This
Hamiltonian model is thus an example of runaway particle, see, e.g., [9]. We also
remark that (1.113) improves the results of the previous section not only because is
valid for any intensity of E , but also in view of the fact that predicts an asymptotic
uniformly accelerated motion for the heavy particle (with acceleration equal to E).
We recall that this result for the Cauchy problem (1.105) when E is large enough
with respect to Q.X/ was already proved in [1].
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The proof of Theorem 1.10 can be summarized as follows. We start by noticing
that the analogous of Theorem 1.4 clearly holds in the present case. Therefore,
if t 7! f.r.t/; v.t//I X.t/g, X.t/ D f.ri .t/; vi .t//gi2N, denotes the solution to
Eqs. (1.105) and QE.X/ WD Q.X/ C E , for any X 2 X , i 2 N, and t � 0,

jv.t/j � C
hp

QE.X/ log.e C QE.X// C QE.X/t
i

; (1.115)

jvi .t/j � C
hp

QE.X/ log.e C jri j C QE.X// C QE.X/t
i

; (1.116)

and, for any � 2 R, R > log.e C j�j/, and t � 0,

Q.X.t/I �; R/ � CQE.X/
�
R C log.e C QE.X// C .1 C QE.X//t2

�
:

(1.117)

We fix E; Q > 0 and define QE WD Q C E so that QE.X/ � QE for any X 2
BQ;L. By (1.115) and (1.116), it is easy to deduce that there exists a constant NC � 1

such that, for any X 2 BQ;L and i 2 N,

inf
s2Œ0;t 


jr.s/ � ri .s/j � 2 H) jri j � Yt WD NC �
log.e C QE/ C QEt2

�
;

(1.118)

from which it follows that if jri j � 2 NC log.e C QE/ then

inf
s2Œ0;t 


jr.s/ � ri .s/j � 2 H) t �
s

jri j
2 NCQE

: (1.119)

The parameter L0 D L0.E; Q/ in the statement of the theorem is then chosen in
the following way. Let

0 < a0 � minf1I Eg
8

; K � 1 ;

be two parameters to be fixed later. Then L0 � 2 NC log.e C QE/ is chosen large
enough that, for any a 2 .0; a0
, K � 1, and L � L0,

T � a�K.1CQ3
E/=a2p

log Œe C YT C 1
 8 T � TL WD
s

L

2 NCQE

: (1.120)

Define now,

U.t/ WD max
i

G.jri j � Yt / sup
s2Œ0;t 


jvi .s/j ; (1.121)
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with Yt as in (1.118) and G 2 C.R/ a not increasing function satisfying: G.x/ D 1

for x � 0, G.x/ D 0 for x � 1. By (1.118), the continuous and not decreasing
function U.�/ is an upper bound for the maximal velocity of any particle which may
interact with the heavy one during the time Œ0; t 
. We next define,

T � WD sup

�

t > 0W maxfU.s/I jv.s/ � Esjg � Es

4
8 s 2 Œ0; t 


�

; (1.122)

setting T � D 0 if the above set is empty. By (1.119), the definition of TL in (1.120),
and recalling that jri j � L � 2 NC log.e C QE/, we have U.t/ D 0 and v.t/ D Et
for t � TL, whence T � > TL. We next prove that if a0 is small enough and K is
large enough then

maxfU.t/I jv.t/ � Etjg � Et

8
8 t 2 ŒTL; T �/ ; (1.123)

which implies, by continuity, T � D 1. Moreover, since we actually prove that
jv.t/ � Etj D O.log t/ for t < T �, the limit (1.113) follows.

To bound U.t/ we can apply Theorem 1.9 in the present context. To this end, we
first notice that by (1.120) and the definition (1.107), if T � TL then T � Ta.X; ri /

for any i such that jri j � YT C 1. Moreover, since for t < T � the heavy particle
is much faster than the particles it meets, the interaction with this particle does
not affect too much the velocity of each background particle up to this time. More
precisely, for any 0 � �1 � �2 < T � and i 2 N,

ˇ
ˇ
ˇ
ˇ

Z �2

�1

ds r�.ri .s/ � r.s//

ˇ
ˇ
ˇ
ˇ � 2kr�k1

ETL

: (1.124)

Note in fact that the i -th particle may interact with the heavy one only after the time
TL, and hence for a time not bigger than 2=.E�1/ � 2=.ETL/. From the previous
estimate the strategy used for proving (1.106) applies in this case almost unchanged,
getting,

jvi.T /j � aT 8 T 2 ŒTL; T �/ 8 i W jri j � YT C 1 ; (1.125)

which in particular implies, by the definition of U.�/,

U.t/ � maxfjvi .t/j W jri j � Yt C 1g � Et

8
(1.126)

(recall we assume a0 � E=8).
We are left with an upper bound for jv.t/ � Etj when TL < t < T � (recall in fact

that jv.t/ � Etj D 0 for t � TL). Define,

p.t/ WD v.t/ � Et C
X

i

�.r.t/ � ri .t//

M.v.t/ � vi .t//
:
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By the equations of motion,

Pp.t/ D
X

i;j

�.r.t/ � ri .t//r�.r.t/ � rj .t//

M 2Œv.t/ � vi .t/
2
�
X

i¤j

�.r.t/ � ri .t//r˚.ri .t/ � rj .t//

M Œv.t/ � vi .t/
2

�
X

i

�.r.t/ � ri .t//ŒE C r�.ri .t/ � r.t//


M Œv.t/ � vi .t/
2
;

and therefore, for TL � t < T �,

jp.t/ � p.TL/j � C

Z t

TL

ds
N.s/

Es

�
1

s
C 1 C N.s/

Es

	

; (1.127)

where N.s/ D N.X.s/I r.s/; 2/. By (1.111) and (1.71),

N.s/2 � CQ.X.s/I r.s/; 2/ � CQE

�
log.e C QE/ C .1 C QE/s2

�
; (1.128)

where we used that jr.s/j � C sŒ
p

QE log.e C QE/ C QEs
, which follows
by (1.69). The term Œ1 C N.s/
=.Es/ in (1.127) can be bounded using (1.128); by
the definitions of L and TL we thus obtain, for any t � TL,

jp.t/ � p.TL/j � C
1 C QE

E

Z t

TL

ds
N.s/

Es

D C
1 C QE

E

X

j

Z t

TL

ds
1

Es
�.jr.s/ � rj .s/j � 2/ :

An upper bound for the right-hand side of the above inequality can be obtained as it
follows. We first observe that by (1.118) and the definition (1.112) only the particles
which are initially in Œ�Yt ; �L
 [ ŒL; Yt 
 may contribute to the above integral. We
next define Nq D fj 2 N W 2q < jrj j � 2qC1g. Since t < T �,

X

j

Z t

TL

ds
1

Es
�.jrj .s/ � r.s/j � 2/ �

qt C1X

qDqL

4jNqj
E2t2

q

; (1.129)

where qL [resp. qt ] is the integer such that 2qL < L � 2qLC1 [resp. 2qt < Yt �
2qt C1] and

tq WD min
j 2Nq

inffs 2 ŒTL; T �/ W jr.s/ � rj .s/j � 2g ;

setting tq D 1 if the above set is empty for all j 2 Nq . We may assume L so
large (i.e., a0 small enough) that 2q�1 > log.e C 2qC1/ for any q � qL. Then, since
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2qC1 � 2q D 2q , by (1.60) and (1.61) we have jNqj � 2Q.X/2q � QE2qC1. On the

other hand, from (1.119) it follows that tq >
p

2q�1=. NCQE/. Inserting the previous
bounds in (1.129) we obtain, for any t 2 ŒTL; T �/,

X

j

Z t

TL

ds
1

Es
�.jrj .s/ � r.s/j � 2/ � C

Q2
E

E2
log

Yt

L
� C

Q2
E

E2
log t ;

so that

jp.t/ � p.TL/j � C
1 C Q3

E

E3
log t 8 t 2 ŒTL; T �/ : (1.130)

Since v.TL/ � ETL D 0 we have,

jv.t/ � Etj � jv.t/ � Et � p.t/j C jp.t/ � p.TL/j C jv.TL/ � ETL � p.TL/j :

By the definition of p.t/, the first [resp. third] term on the right-hand side is smaller
than a constant multiple of N.t/=.Et/ [resp. N.TL/=.ETL/], which we have already
shown to be bounded by C.1 C QE/=E for any t � TL. Finally, the second term is
bounded in (1.130). In conclusion,

jv.t/ � Etj � C
1 C QE

E

�

1 C Q2
E

E2
log t

�

8 t 2 ŒTL; T �/ ; (1.131)

which in particular implies, if a0 is small enough, jv.t/ � Etj � Et=8 for all t 2
ŒTL; T �/. By (1.126) Eq. (1.123) is thus proved, whence T � D 1. The limit (1.113)
then follows from (1.131).

Concerning Theorem 1.11, we have to prove that there exist a0 2 .0; 1/ and
Ta D Ta.X; E/ > 0 such that, for any a 2 .0; a0
,

v.t/ � �at 8 t � Ta : (1.132)

The proof is much more involved and cannot be achieved by the same strategy used
in the proof of Theorem 1.9. Let us firstly review the proof of the case without
external force. We divide the time interval Œ0; T 
 in many subintervals ŒTk�1; Tk


and the fast particles into many disjoint clusters. By using the equations of motion
and some tricks we prove that the velocity of the center of mass of each cluster
remains almost constant. Of course a cluster may increase its size due to the internal
forces, thus approaching an adjacent one. But the first time �1 (in the backward
evolution) when this happens, we decompose the set of fast particles into smaller
clusters which remain disjoint until a time �2 and so on. The important point is that
the number of clusters increases at each step, so that the number of steps is not
bigger than the cardinality of the set of the fast particles. This procedure holds in
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each time interval and we go back to time zero with some fast particles, thus getting
a contradiction because of the initial data we have chosen.

The above strategy fails in the present context. In fact, due to the presence of the
external force, the above scheme does not hold for the cluster containing the heavy
particle: the velocity of its center of mass decreases during the backward evolution.
Therefore this cluster could approach the adjacent one without modifying its size.
For this reason, a refinement into smaller clusters does not anymore guarantee that
the number of clusters increases. We then need a nontrivial modification of that part
of the proof, that we do not discuss here and address the interested readers to [2].

1.3.3 Higher Dimensions and Open Problems

It is reasonable that the violation of Ohm’s law for bounded interactions holds also
in the case of particles in the tube, but we are not able to prove it rigorously. In
fact, in one dimension a very fast particle interacts once and for a short time with a
slow particle. In the tube it is not so: a particle could be very fast because of a high
transversal velocity, thus remaining near the origin and interacting many times with
a slow one. As time goes by, it increases its transversal velocity and then changes its
direction and moves along the n-axis. Of course this behavior is very unlikely, but
it is hard to be excluded.

We can introduce a strange model to overcome this effect. The background
particles freely move in the whole tridimensional space R

3, but they are attracted
by the n-axis via an external force of potential

�.q/ D �.jq?j/ jq?j˛ ; (1.133)

where q? D q � .q � n/n, ˛ 2 .0; 1/, and �.s/, s 2 R
C, is a non-negative, twice

differentiable function, identically zero for s � 1=2 and equal to one for s � 1. This
potential plays the role of the confining one-body potential in (1.59). This model
has not been investigated.

We have no rigorous results for singular interaction particle/background, except
the hard core case, that will be discussed in the next sections in the framework of the
mean field approximation. The difficulty arises from the fact that a single collision
could affect the motion of the heavy particle. Obviously, if the heavy particle is very
fast only quasi-central collisions are important and they become very few. This fact
suggests some heuristic considerations on the divergence necessary to forbid large
velocities [1], but a rigorous analysis seems too hard. See also Sect. 2.4, where such
a heuristic analysis is done in the context of mean field models.
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