Matching of Incomplete Service Specifications
Exemplified by Privacy Policy Matching

Marie Christin Platenius!®), Svetlana Arifulina?, Ronald Petrlic?,
and Wilhelm Schiifer!

! Heinz Nixdorf Institute, Paderborn, Germany
{m.platenius,wilhelm}@upb.de
2 Department of Computer Science, University of Paderborn, Paderborn, Germany
{s.arifulina,ronald.petrlic}@upb.de

Abstract. Service matching approaches determine to what extent a pro-
vided service matches a requester’s requirements. This process is based
on service specifications describing functional (e.g., signatures) as well
as non-functional properties (e.g., privacy policies). However, we cannot
expect service specifications to be complete as providers do not want
to share all details of their services’ implementation. Moreover, creating
complete specifications requires much effort. In this paper, we propose
a novel service matching approach taking into account a service’s sig-
natures and privacy policies. In particular, our approach applies fuzzy
matching techniques that are able to deal with incomplete service spec-
ifications. As a benefit, decision-making based on matching results is
improved and service matching becomes better applicable in practice.

Keywords: Service discovery - Service matching - Fuzzy matching -
Fuzziness - Uncertainty - Privacy policy matching

1 Introduction

Nowadays, service providers provide software components in the form of services
in service markets. In order to buy and use those services, service requesters have
to discover services that fit their requirements. For this reason, service brokers
apply service matching approaches that determine to what extent a provided
service’s specification matches a requester’s requirements [11]. Service matching
is the most accurate if many different properties of a service are considered [6].
This means, not only functional properties including structural and behavioral
information should be described and matched but also several non-functional
properties. For example, in this paper, we focus on service specifications includ-
ing signatures and privacy policies.

Current service matching approaches come with the problem that they assume
specifications to be complete with all considered service properties specified in

This work was supported by the German Research Foundation (DFG) within the
Collaborative Research Center “On-The-Fly Computing” (CRC 901).
© Springer International Publishing Switzerland 2015

G. Ortiz and C. Tran (Eds.): ESOCC 2014, CCIS 508, pp. 6-17, 2015.
DOT: 10.1007/978-3-319-14886-1_2

Matching of Incomplete Service Specifications 7

detail. However, in the real world, we cannot expect service specifications to be
perfect or complete for several reasons [12]. One of the reasons is that providers
often do not know all information about their services. For example, quality prop-
erties (e.g., response time) are hard to judge if they depend on third-party servers.
In addition, providers may not want to share everything in order to protect busi-
ness interests. Furthermore, creating detailed and machine-readable specifications
costs much effort. Especially if they are not used to it, it is hard to convince peo-
ple to work on such specifications. Current matching approaches are not able to
deal with such incomplete specifications and return false matching results in the
presence of incompleteness. This leads to requesters rejecting actually fitting ser-
vices or accepting unfitting services without knowing that the matching result is
uncertain.

We propose a novel service matching approach that extends traditional sig-
nature and privacy policy matching by applying fuzzy matching techniques. In
particular, our approach is able to deal with incomplete service specifications as
it reflects the grade of incompleteness in a fuzziness score. The contribution of
this paper is twofold: On the one hand, it provides an improved approach for
service brokers that allows better decision-making during service selection. On
the other hand, it represents a first step to bring service matching into practice,
coping with real world assumptions like incomplete specifications.

The remainder of this paper is structured as follows. In Sects.2 and 3,
we describe the service specifications for signatures and privacy policies and
how they are matched as a foundation. Section 4 motivates fuzzy matching and
explains how we cope with it. Section 5 describes a concrete application of fuzzy
matching to privacy policies. In Sect. 6, we briefly summarize related work and
we conclude the paper in Sect. 7.

2 Service and Request Specification

As a running example, we consider a market where service providers offer dif-
ferent software services for university management. In order to find a suitable
service, a service requester specifies her requirements, e.g., the requirements for
a service that prints out an overview of grades. Such a request has to be matched
to the specifications of the available provided services.

We specify services using our Service Specification Language (SSL) [14]
because it has been optimized for efficient and accurate matching of compre-
hensive service specifications. It describes different service properties including
structural information, behavioral information, and non-functional properties of
a service. In this paper, we only focus on two aspects: signatures and privacy.

A signature describes the inputs and outputs of a service’s operation. For
example, the signature presented in the middle part of Fig. 1 describes the oper-
ation printOverview of the provided service OverviewOfGradesPrinter with
two input parameters (grades of type List and id of type ID) and one out-
put parameter (diagram of type Diagram). All data types used in the signature
are defined by ontological concepts that represent knowledge of different domains

8 M.C. Platenius et al.

subclassOf

MailAddress
Provided Service: OverviewOfGradesPrinter Provided Service: Visuals4Grades

Signature: Signature:

printOverview(List grades, ID id) : Diagram diagram printGrades(List grades,ID id):Diagram diagram
Privacy Policies: Privacy Policies:

Parameter| Purpose Delegation Reter-mon Visibility LO(iat'l.On Param. Purpose Del. Re-t. Vis. LOtfal'I.On

Depth Period Limit Depth |Period Limit
|grades Visualization 0 12] Germany grades [Visualization 0 ? Germany
id Visualization 0 12| Germany id Visualization 0 ? Germany
diagram |Visualization 0 0 Germany diagram [Visualization 0 ?) Germany
Request

Signature:
printOverview(List studentGrades, UniversityID studentID, MailAddress address) : Graph overview

Privacy Requirements:

Parameter Purpose |Delegation Depth|Retention Period Visibility Location Limit | Sensitivity
studentGrades|Visualization * 0 Europe Very High
studentID Visualization 0 12 Europe High
address Contact 1 12|Notification Services |Europe Medium
overview Visualization 0 0 Europe Very High

Fig. 1. Example ontologies, a specification of a provided service, and a request

including concepts and relations between these concepts. For example, the upper
part of Fig. 1 depicts extracts of ontologies for the domains of visualization, con-
tact, university, and locations.

Our privacy specifications are based on an integration of several existing lan-
guages. Most parts follow the principles of the privacy policy model by Costante
et al. [4,5] including further elements from the approaches presented by
Kapitsaki [8] and Tbahriti et al. [16]. We adapted, united, and extended these
approaches and integrated them into SSL. In particular, we connected the pri-
vacy specification to the above described signature specification.

The middle part of Fig.1 depicts the privacy specification of OverviewOf-
GradesPrinter in a tabular notation. Each row in this table represents a privacy
policy. Each privacy policy refers to a parameter from the service’s signature and
specifies what kind of usage regarding the data corresponding to this parameter
is permitted. In our example specifications, every parameter of the signature is
covered: the two input parameters grades und id and the output parameter
diagram. The columns represent the different restrictions that can be specified
for a policy:

Purpose defines the reason for the collection of the corresponding data and its
usage [4]. For example, the policies for all depicted parameters are related to
the purpose of Visualization. All other kinds of usage of grades, id, and
diagram are not allowed for OverviewOfGradesPrinter. All terms used as

Matching of Incomplete Service Specifications 9

purpose have to be defined in an ontology. A parameter may also appear in
several policies with different purposes.

Delegation Depth refers to the amount of levels (i.e., services) a parameter may
be forwarded to. This becomes relevant if a service is used as part of a
composition. The privacy policy for OverviewOfGradesPrinter is very strict
with respect to delegation as it allows no delegation of the given data at all.
The default range for delegation depth is [0,10] [4]. Additionally, the values
undefined and infinity are supported.

Retention Period defines for how long (here: how many months) the service will
store given data. The more privacy-critical a parameter is, the more critical it
is to store it. However, storage may be necessary in order to perform certain
purposes. For example, for hotel reservation services, much data has to be
stored for billing purposes. In our example, the OverviewOfGradesPrinter
stores the grades as well as the id for 12 months. This is due to the provided
functionality to create visualizations of comparisons of the grades of different
terms. For retention period, we support values in [0,100] as well as undefined
and infinity.

Visibility allows providers to restrict a policy to a set of service providers, service
categories, or even specific services. For example, one can allow certain data
to be visible only to services provided by Google, only to notification services,
or only to the Google Alert Service.

Location Limit restricts privacy policies with respect to a location. For example,
for the OverviewOfGradesPrinter, the provided data may only be processed
in Germany. This also holds for delegated data. The location limit field
can contain one or more terms defined in an underlying ontology of loca-
tions. Thus, the granularity of values (e.g., cities vs. countries vs. continents)
depends on the ontology used.

We consider specifications that specify all properties listed above as complete.
If any property is not specified, a specification is incomplete. For example, the
provider of the second service in Fig. 1, Visuals4Grades, did not provide any
information about retention periods.

A requester specifies her privacy requirements with the same concepts (see
lower part of Fig.1). In addition, she specifies a column Sensitivity. Thereby,
the requester can define the importance of each requirement. She can choose
between “very low”, “low”, “medium”, “high”, “very high”, and “mandatory”.

Please note that Fig. 1 only shows extracts of the complete specifications that
can contain much more information, e.g., more detailed information about the
service’s behavior.

3 Service Matching

In order to decide to what extent provided services satisfy a given request
and to find out which one fits best, the services’ specifications are matched
to the request. Matching is performed using a stepwise matching process. In

10 M.C. Platenius et al.

general, our matching process includes comparisons of structural requirements,
behavioral requirements, and requirements for different non-functional proper-
ties [12]. In this paper, we focus on two steps of the matching process: Signa-
ture Matching and Privacy Matching. The lower part of Fig.1 illustrates an
exemplary specification of the request from our running example. In the fol-
lowing, we explain how this request is matched to the provided specification of
OverviewOfGradesPrinter.

3.1 Ontological Signature Matching

Our signature matching approach follows the principles of established signature
and semantic matching approaches [9,10,15]. In addition, our matcher is config-
urable and can take into account different parts of a signature, e.g., operation
names, parameter types, parameter names, optional parameters, and exceptions.
In this paper, we focus on signature matching based on parameter types.

The parameters are matched based on the rules for contravariance and covari-
ance. This means, two signatures match if (a) the set of input parameters of the
provided service’s signature is a subset of the input parameters of the requested
service’s signature and (b) the set of output parameters of the requested service’s
signature is a subset of the output parameters of the provided service’s signa-
ture. To achieve this, the signature matcher compares all parameter types of the
two signatures pairwise, applying bipartite graph matching. Each data type pair
is matched based on the referenced ontologies. Two parameter types match if
(a) the input parameter type in the requested service’s signature is either equiv-
alent or more specific (i.e., a subclass) than the corresponding input parameter
type in the provided service’s signature and (b) the output parameter type of
the provided service’s signature is either equivalent or more specific than the
output parameter type in the requested service’s signature. For example, in the
ontologies depicted in Fig.1, the concept UniversityID is more specific than
the concept ID and Graph is equivalent to Diagram. For our running example,
this means, the matcher determines the following matching pairs:

— requester’s input studentGrades and provider’s input grades
— requester’s input studentID and provider’s input id
— requester’s output overview and provider’s output diagram

As all output parameters of the requester signature found a match and all
input parameters of the provider signature found a match, the two signatures
match 100 %. This result, including the determined parameter pairs, is an input
to the subsequent privacy matching step.

3.2 Privacy Policy Matching

The privacy policies of a provided service match the privacy requirements of
a request if the provided policies are more strict than the requested ones. For
this purpose, the matching algorithm iterates over the requirements (rows) of

Matching of Incomplete Service Specifications 11

V'r € requirements
Find corresponding| | Check del.depth,., | | Check ret.periody.. | | Check visy | .| Check loc,., aggregate
policy < del.deptheq < ret.period,eq S viseq < locreq

Fig. 2. Privacy matching algorithm

the requester’s specification and checks all the columns as depicted in Fig. 2:
(1.) Find a corresponding policy in the provider’s specification based on the
parameter pairs created during signature matching and the specified purposes.
(2.) Match delegation depth and (3.) retention period: both checks succeed if the
provider’s value is lower or equal than the requester’s value. (4.) Match visibility
and (5.) location limits: both succeed if the provider’s values are a subset of the
requester’s values, using an ontology to find relations between values. At the
end, the final matching result is aggregated taking into account the requester’s
sensitivity specifications; the final result is a value between 0 (does not match
at all) and 1 (matches perfectly).

For our running example, these five steps work as follows:

(1.) Based on the preceding signature matching and an ontology-based match-
ing of the purposes, we know that the studentGrades policy of the request cor-
responds to the grades policy of the provider’s specification. Furthermore, the
studentID policy of the request corresponds to the id policy of the provider’s
specification and the overview policy corresponds to the diagram policy. As the
parameter address has not been assigned during signature matching, there has to
be no corresponding policy for the requester’s address requirement. As a conse-
quence, this requirement is ignored as always holds: since address is not taken
as an input, its privacy requirements cannot be violated. (2.) In our example,
all requirements match with respect to delegation depth as the provider’s spec-
ification is very strict in this context (0 < %, 0 < 0,0 < 0). (3.) Retention
period matches for studentID (12 < 12) and for overview (0 < 0). However,
for studentGrades, the requester’s retention period is stricter (12 > 0). This
is considered a mismatch. (4.) The visibility restrictions match if the visibility
restrictions of the provider are a subset of the allowed visibilities of the requester.
For our running example, this is the case for the three policies to be considered.
(5.) Furthermore, these policies also match regarding the location limit because
the locations specified in the provider’s policies are part of the locations specified
by the requester (Germany < Europe). This relation is defined in the underlying
ontology (see upper part of Fig. 1).

Due to the retention period mismatch in one of the policies, the final result
for our example must be less than 1. The concrete value is calculated as fol-
lows: Each policy starts with a result of 1. This result is reduced with each
mismatch depending on the difference. For example, because of the retention
period mismatch above, we calculate the result for the studentGrades pol-
icy as follows: resultpoiicy = 1 — min(1,0.5 + ((providerRetentionPeriod —
requester RetentionPeriod)/100)) = 1 — min(1,0.5 + ((12 — 0)/100)) = 0.38.

12 M.C. Platenius et al.

The value 0.5 is part of the matcher’s configuration and denotes the minimal
impact of a retention period mismatch. By configuring this value, the broker can
customize how much each of the properties contribute to the privacy matching
result. The difference is divided by 100 (maximum value for retention period)
for normalization. The results for the policies are aggregated to a final result for
the whole privacy aspect. For this, we use a weighted average about the results
of each policy multiplied with a multiplier corresponding to its sensitivity level.
The higher the sensitivity level, the larger is the multiplier (“very low” =0.2,
“low” =0.4, “medium” =0.6, “high” =0.8, “very high” =1). For policies with
the sensitivity “mandatory”, any kind of mismatch results in a matching result
of 0. According to these values, for our example, we have the following aggre-
gation function: finalresult = (resultsiydentGrades * 1 + resultsiudentip - 0.8 +
resultoperview - 1)/(1+0.841) = 0.78. In addition to the final, numerical match-
ing result, the requester can be provided with a detailed log about the matching
process including a list of all mismatches.

4 Fuzziness in Service Matching

Current service matching approaches work fine if we count on several assump-
tions including that the providers share all information about their services and
specify them in detail. As discussed in Sect. 1, there are several reasons for doubt-
ing this. However, when dropping these assumptions, uncertainty or fuzziness
can be induced in service matching. Induced fuzziness leads to the fact that
current matching approaches potentially deliver false results or even cannot be
applied at all. In our earlier work, we describe different fuzziness sources [12,13].
In this paper, we focus on provider-induced fuzziness, i.e., the case of incomplete
specifications.

Coping with fuzziness in service matching leads to the problem that we
require some kind of measurement in order to enable assessing the risk for fuzzi-
ness of a matching result. As an example, consider Fig. 1. With current match-
ing approaches, both services, OverviewOfGradesPrinter and Visuals4Grades,
would receive a very similar matching result considering the depicted request
because in both cases, retention periods do not match. However, in the first
case, we are certain that there is a mismatch, while, in the second case, we are
uncertain, and the service could potentially match completely. For a requester,
the second service would be a better choice as it matches at least as good as the
other one, but, probably, even better. Because of such uncertainties, we propose
that matchers should not only determine and output the matching result but
also a fuzziness score reflecting the confidence a requester can have regarding
the delivered matching result.

There are some requirements such fuzziness scores should satisfy:

— Normalization: For the requester, it should always be clear whether a returned
fuzziness score is low or high. This means, the maximum possible fuzziness
score and the minimum possible fuzziness score should be known.

Matching of Incomplete Service Specifications 13

— Comparability: Fuzziness scores calculated for different services need to be
comparable. For example, if the requester chooses between two services based
on matching results of mMgerpicea = 90 % and Mmgervicen = 95 % and fuzziness
scores of feorvicea = 10% and foervice = 50%, it should make sense to
choose serviceA because its matching result is very close to the best available
matching result while it is the less fuzzy one.

— Severity: The severity of fuzziness should be reflected in the fuzziness score.
For example, if fuzziness occurs in a part of the specification that is irrelevant
for the matching result, it should be ignored.

Our idea is to let each matching step return one fuzziness score and to aggre-
gate these at the end to get a final fuzziness score. Thereby, the fuzziness mea-
surements can leverage the specifics of each matching step best in order to fulfill
the mentioned requirements, as we will show in the next section.

5 Fuzzy Matching of Incomplete Privacy Policies

In the example of privacy, a provider has to provide policies by law. However, this
still does not mean that she also provides a formal representation as required
for matching and that this representation includes all properties used during
the matching process. In this section, we apply the fuzzy matching concepts
introduced in Sect. 4 to privacy matching based on incomplete specifications.

5.1 Considering Incompleteness During Matching

In the presence of incomplete specifications, the matching approach has two
possibilities to take into account missing values. (1) The optimistic case is to
consider all missing information on the provider side as the most strict case, e.g.,
retention period =0. This potentially increases the number of false positives.
This means, the matcher returns a high matching result although, in reality,
the service does not match. (2) The pessimistic case is to substitute missing
information with the least strict case, e.g., retention period =*. This can lead
to false negatives because, in uncertain cases, the matcher might return low
matching results although, in reality, the service would be a good match. The
choice whether to use a pessimistic or an optimistic approach depends on the
broker’s strategy and the risk affinity of the requesters.

5.2 Measuring Fuzziness Scores

There are different ways to measure incompleteness in privacy policies such that
the returned fuzziness score satisfies the requirements mentioned above. In this
paper, we describe one selected algorithm. The algorithm takes the mapping of
requirements to corresponding provided policies, as determined during signature
matching, as an input. It builds upon the privacy matching algorithm as it
iterates through the specified concepts in similar ways.

14 M.C. Platenius et al.

For each requirement, the algorithm checks, whether one of the requested
properties is not specified at the provider’s side. In general, the more values
are missing at the provider’s side, the higher is the fuzziness score. If nothing
is missing, the fuzziness score is 0. If everything is missing (the provider didn’t
specify privacy policies at all), the fuzziness score is 1.

The fuzziness score for privacy matching is an aggregation of fuzziness scores
for the different policies. A policy’s score grows with respect to (a) the requester’s
sensitivity for this policy and (b) the weight assigned according to the severity of
the provider’s restrictions. The rationale for taking sensitivity into account is as
follows: if a policy cannot be checked due to incompleteness and the requester’s
sensitivity regarding this policy is very high, the fuzziness is critical; if his sen-
sitivity for this policy is rather low, fuzziness is less critical. The rationale for
taking the severity into account is as follows: if a requester allows an infinite
delegation depth (or retention period) for a certain policy, it does not matter if
the provider’s delegation depth for this policy is not specified; but if a requester
is very strict and specified an allowed delegation depth of 0, fuzziness induced
by the missing provider’s delegation depth is much more critical.

As an example, consider the specification of Visuals4Grades and the request
depicted in Fig. 1. Note that the provider did not specify any retention periods.
The fuzziness score of the grades policy will be calculated as follows: fgrades =
1.1 =1, with the first 1 being a constant assigned to the requester’s sensitivity
value “very high” (see Sect.3.2) of the corresponding studentGrades policy
and the second 1 being a constant corresponding to the minimum value 0 that
the requester specified for retention period. Accordingly, the fuzziness score of
the id policy will be calculated as follows: f;y = 0.8 - 0.8 = 0.64, with 0.8
being the constant assigned to the sensitivity “high” and 0.8 being a constant
corresponding to a medium low value 12 the requester specified for retention
period in this policy. As a result, the fuzziness value for the grades policy is
lower because the requester required a very strict policy for grades, while she
specified a less strict policy with respect to retention period for id.

As we see in this example, the requirements Severity as well as Comparability
are satisfied. As a foundation for Comparability and with all fuzziness values
determined by this approach being normalized to a value between 0 and 1, the
requirement Normalization is satisfied as well.

5.3 Case Study

We implemented our specification and matching approaches including the pre-
sented algorithm to measure incompleteness within an Eclipse-based tool-suite.
Using this implementation, we evaluated the concepts presented in this paper
together with privacy experts from the CRC 901 “On-The-Fly Computing” [17].
Our evaluation question was: how well do the results returned by our approach
support a requester in deciding for a service. For this, we performed our fuzzy
privacy matching approach on 21 pairs of example specifications and requests
from the university management domain. For all these pairs, we first deter-
mined the matching results manually by expert knowledge, based on complete

Matching of Incomplete Service Specifications 15

specifications. After that, we ran our approach on incomplete versions of these
specifications. After that, the experts’ matching results based on full knowledge
were compared to the results the matcher determined for the incomplete spec-
ifications. Thereby, we could determine correct matches (calculated matching
result was equal to the expert’s result, i.e., a true positive or a true negative)
as well as mismatches (calculated matching result was not equal to the expert’s
result, i.e., a false positive or a false negative). Precision turned out to be 0.714
and recall was 1. Furthermore, we measured fuzziness scores and compared them
to the matching results. The case study’s results showed that the fuzziness scores
for true positives and true negatives were rather low while the results for false
positives and false negatives were comparatively high in 95 % of all cases. Based
on a selection strategy that does not select services with a high (>0.5) fuzzi-
ness score, true positives have been reduced. Accordingly, the precision has been
increased to 0.857. This result suggests to answer the evaluation question with
“yes” as the determined fuzziness scores can contribute to an improved decision-
making. In the future, we plan to evaluate our approach more extensively, taking
into account more examples and more evaluation questions.

6 Related Work

Many approaches about service matching have already been published. The nov-
elty of our approach is the combination of privacy matching and ontological
signature matching considering fuzzy techniques to handle incomplete specifi-
cations. Thus, approaches considered related to our work are, on the one hand,
privacy matching approaches, and, on the other hand, matching approaches that
are able to handle incomplete service specifications.

There are many privacy matching approaches. The approach closest to our
approach is the approach presented by Costante et al. [4,5], which is also a foun-
dation for our work. For example, the concepts of purpose, delegation depth,
retention period, visibility, and sensitivity are based on their work. However,
we added our own notions of ontology references and the connections to sig-
natures and signature matching. In addition, their approach focuses on service
composition, while we only focus on matching and provide additional concepts
of fuzzy matching. Costante’s original approach does not deal with incomplete
specifications. The same differences hold for the works of Kapitsaki [8] and
Thahriti [16]. Further similar approaches are semantic matching approaches for
WS-Policy specifications [3,18]. Although these specifications describe rather
security-related properties [18] or other quality properties [3] instead of privacy,
the presented matching approaches are based on ontologies, as well. However,
these approaches do not address the challenge of matching incomplete specifica-
tions and quantifying fuzziness occurring during fuzzy matching.

The challenge of matching incomplete service specifications has not been
focussed in literature up to now. In our earlier work [13], we surveyed fuzzy
matching approaches in general and came to the conclusion that the quantifica-
tion of fuzziness, especially in the presence of incomplete specifications, is still

16 M.C. Platenius et al.

an open issue. There are some approaches that consider incomplete knowledge
at the provider’s side, e.g., [1] or [19], however, they do not quantify and return
this incompleteness. Instead, the matching result is “adulterated” and does
not provide the requester with information about uncertainty or its severity.
Furthermore, these approaches deal with rather simple specifications without
considering different characteristics of quality properties like our privacy speci-
fication does. Other approaches deal with incomplete specifications by trying to
extract them either from a service’s implementation or from other parts from
the specification. For example, StrawBerry synthesizes protocols [2]. This is no
substitute for measuring and returning fuzziness scores and it probably does not
work for all kinds of service properties, but it could reduce the induced fuzziness.
Thus, it would be interesting to combine such approaches with ours. Similarly,
component adaption approaches (e.g., [7]) could be used to enforce requested
properties, e.g., delegation depth, in case of uncertainty.

To conclude, although there are many service matching approaches that can
be used for privacy policy matching and service matching in general, the chal-
lenge of matching incomplete specifications and reflecting incompleteness is the
matching result is new.

7 Conclusions

In this paper, we propose a service matching approach for combined signatures
and privacy policies matching using fuzzy matching techniques. In particular,
in addition to returning matching results, our approach measures and returns
fuzziness score representing the degree of fuzziness induced by incomplete service
specifications. This fuzziness score reflects the extent and criticality of the occur-
ing fuzziness and, thereby, improves the service requester’s decision-making. In
general, the benefit is a novel service matching approach doing first steps to
make service matching applicable in practice by reducing the assumptions exist-
ing service matching approaches make.

In the future, we want to learn more about how to improve our fuzzy matching
concepts by applying them to other service aspects. For example, incompleteness
at the provider side could occur if the service’s reputation is matched: If a service
is new in the market, then there are only few or no ratings.

Acknowledgments. We would like to thank Shafi Vijapurwala for contributing to
our algorithm for measuring incompleteness in privacy specifications.

References

1. Bacciu, D., Buscemi, M., Mkrtchyan, L.: Adaptive fuzzy-valued service selection,
pp. 2467-2471. ACM (2010)

2. Bertolino, A., Inverardi, P., Pelliccione, P., Tivoli, M.: Automatic synthesis of
behavior protocols for composable web-services. In: Proceedings of the the 7th
Joint Meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engineering. ACM (2009)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Matching of Incomplete Service Specifications 17

Chaari, S., Badr, Y., Biennier, F.: Enhancing web service selection by QoS-based
ontology and WS-policy. In: Proceedings of the 2008 ACM Symposium on Applied
Computing, pp. 2426-2431. ACM (2008)

Constante, E., Paci, F., Zannone, N.: Privacy-aware web service composition and
ranking. In: IEEE 20th International Conference on Web Services (ICWS), pp.
131-138. IEEE (2013)

Costante, E., Paci, F., Zannone, N.: Privacy-aware web service composition and
ranking. Int. J. Web Serv. Res. (IJWSR) 10(3), 1-23 (2013)

Cubo, J., Pimentel, E.: On the service discovery using context-awareness, semantic
matching and behavioural compatibility. In: IEEE 15th International Conference
on Computational Science and Engineering. IEEE (2012)

Gay, R., Mantel, H., Sprick, B.: Service automata. In: Barthe, G., Datta, A., Etalle,
S. (eds.) FAST 2011. LNCS, vol. 7140, pp. 148-163. Springer, Heidelberg (2012)
Kapitsaki, G.M.: Reflecting user privacy preferences in context-aware web services.
In: IEEE 20th International Conference on Web Services (ICWS). IEEE (2013)
Klusch, M., Kapahnke, P.: The iSeM matchmaker: A flexible approach for adaptive
hybrid semantic service selection. J. Web Semant. Sci. Serv. Agents World Wide
Web 15, 1-14 (2012)

Moser, O., Rosenberg, F., Dustdar, S.: Domain-specific service selection for com-
posite services. Trans. Softw. Eng. 38(4), 828-843 (2012)

Papazoglou, M.P., Van Den Heuvel, W.-J.: Service oriented architectures: app-
roaches, technologies and research issues. VLDB J. 16, 389-415 (2007)

Platenius, M.C.: Fuzzy service matching in on-the-fly computing. In: Proceedings
of the 9th Joint Meeting of the European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of Software Engineering (2013)
Platenius, M.C., von Detten, M., Becker, S., Schifer, W., Engels, G.: A survey of
fuzzy service matching approaches in the context of on-the-fly computing. In: Pro-
ceedings of the 16th International ACM Sigsoft Symposium on Component-Based
Software Engineering (2013)

SSE Development Team. Service Specification Environment - Website. http://goo.
gl/E7QjPN. Last Access May 2014

Stroulia, E., Wang, Y.: Structural and semantic matching for assessing web-service
similarity. Int. J. Coop. Inf. Syst. 14(04), 407—437 (2005)

Tbahriti, S.-E., Medjahed, B., Ghedira, C., Benslimane, D., Mrissa, M.: Respecting
privacy in web service composition. In: 2013 IEEE 20th International Conference
on Web Services (ICWS), pp. 139-146. IEEE (2013)

University of Paderborn. Collaborative Research Center “On-the-Fly Computing”
(CRC 901). http://sfb901.uni-paderborn.de. Last Access Apr 2014

Verma, K., Akkiraju, R., Goodwin, R.: Semantic matching of web service policies.
In: Proceedings of the Second Workshop on SDWP, pp. 79-90 (2005)

Wang, P.: QoS-aware web services selection with intuitionistic fuzzy set under
consumer’s vague perception. Expert Syst. Appl. 36(3), 44604466 (2009)

http://goo.gl/E7QjPN
http://goo.gl/E7QjPN
http://sfb901.uni-paderborn.de

2 Springer
http://www.springer.com/978-3-319-14885-4

Advances in Service-Oriented and Cloud Computing
Workshops of ESOCC 2014, Manchester, UK, September
2-4, 2014, Revised Selected Papers

Ortiz, G.; Tran, C. (Eds.)

2015, X, 287 p. 81 illus., Softcover

ISBEN: 978-3-319-14885-4

	Matching of Incomplete Service Specifications Exemplified by Privacy Policy Matching
	1 Introduction
	2 Service and Request Specification
	3 Service Matching
	3.1 Ontological Signature Matching
	3.2 Privacy Policy Matching

	4 Fuzziness in Service Matching
	5 Fuzzy Matching of Incomplete Privacy Policies
	5.1 Considering Incompleteness During Matching
	5.2 Measuring Fuzziness Scores
	5.3 Case Study

	6 Related Work
	7 Conclusions
	References

