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Abstract. In the nineties, several methods for dealing in a more efficient
way with the implicitization of rational parametrizations were explored
in the Computer Aided Geometric Design Community. The analysis of
the validity of these techniques has been a fruitful ground for Commuta-
tive Algebraists and Algebraic Geometers, and several results have been
obtained so far. Yet, a lot of research is still being done currently around
this topic. In this note we present these methods, show their mathemat-
ical formulation, and survey current results and open questions.

1 Rational Plane Curves

Rational curves are fundamental tools in Computer Aided Geometric Design.
They are used to trace the boundary of any kind of shape via transforming a
parameter (a number) via some simple algebraic operations into a point of the
cartesian plane or three-dimensional space. Precision and esthetics in Computer
Graphics demands more and more sophisticated calculations, and hence any
kind of simplification of the very large list of tasks that need to be performed
between the input and the output is highly appreciated in this world. In this
survey, we will focus on a simplification of a method for implicitization rational
curves and surfaces defined parametrically. This method was developed in the
90’s by Thomas Sederberg and his collaborators (see [STD94,SC95,SGD97]),
and turned out to become a very rich and fruitful area of interaction among
mathematicians, engineers and computer scientist. As we will see at the end of
the survey, it is still a very active of research these days.

To ease the presentation of the topic, we will work here only with plane
curves and point to the reader to the references for the general cases (spatial
curves and rational hypersurfaces).

Let K be a field, which we will suppose to be algebraically closed so our
geometric statements are easier to describe. Here, when we mean “geometric”
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Fig. 1. The shape of an “orange” plotted with Mathematica 8.0 [Woll0].

we refer to Algebraic Geometry and not Euclidean Geometry which is the natural
domain in Computer Design. Our assumption on K may look somehow strange
in this context, but we do this for the ease of our presentation. We assume the
reader also to be familiar with projective lines and planes over K, which will be
denoted with P! and P2 respectively. A rational plane parametrization is a map

$p: P — P?
(t() . tl) — (uO(to,tl) : ul(to,tl) N UQ(to,tl)), (1)

where ug(to, t1), w1 (to,t1), ua(to,t1) are polynomials in K[Tp, 71], homogeneous,
of the same degree d > 1, and without common factors. We will call C to the
image of ¢, and refer to it as the rational plane curve parametrized by ¢.
This definition may sound a bit artificial for the reader who may be used to
look at maps of the form
K--» K2
PN (a<t> b(t>)7 (2)

c(t)? c(t)

with a(t), b(t), c(t) € K[t] without common factors, but it is easy to translate
this situation to (1) by extending this “map” (which actually is not defined on
all points of K) to one from P! — P2, in a sort of continuous way. To speak
about continuous maps, we need to have a topology on K" and/or in P", for
n =1,2. We will endow all these sets with the so-called Zariski topology, which
is the coarsest topology that make polynomial maps as in (2) continuous.

Now it should be clear that there is actually an advantage in working with
projective spaces instead of parametrizations as in (2): our rational map defined
in (1) is actually a map, and the translation from a(t), b(t), c(t) to wuo(to,t1),
uq (to,t1), ua(to,t1) is very straightforward. The fact that K is algebraically
closed also comes in our favor, as it can be shown that for parametrizations
defined over algebraically closed fields (see [CLOO07] for instance), the curve C is
actually an algebraic set of P2, i.e. it can be described as the zero set of a finite
system of homogeneous polynomial equations in K[Xg, X7, X3]).
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More can be said on the case of C, the Implicitization’s Theorem in [CLOO07]
states essentially that there exists F'(Xo, X1, X2) € K[X), X1, X3], homogeneous
of degree D > 1, irreducible, such that C is actually the zero set of F'(Xg, X1, X2)
in P2, i.e. the system of polynomials equations in this case reduces to one single
equation. It can be shown that F(Xg, X1, X5) is well-defined up to a nonzero
constant in K, and it is called the defining polynomial of C. The implicitization
problem consists in computing F having as input data the polynomials ug, u1, usg
which are the components of ¢ as in (1).

Example 1. Let C be the unit circle with center in the origin (0,0) of K2. A well-
known parametrization of this curve by using a pencil of lines centered in (—1,0)
is given in affine format (2) as follows:

K --» K2
PN (1—t2 2t ) (3)

1+t20 1+12>

Note that if K has square roots of —1, these values do not belong to the field of
definition of the parametrization above. Moreover, it is straightforward to check
that the point (—1,0) is not in the image of (3). However, by converting (3) into
the homogeneous version (1), we obtain the parametrization

¢: P — P2
(to : t1) — (t§ + 1 1t — 11 : 2toty), (4)
which is well defined on all P!. Moreover, every point of the circle (in projective
coordinates) is in the image of ¢, for instance (1 : —1 : 0) = ¢(0 : 1), which

is the point in C we were “missing” from the parametrization (3). The defining
polynomial of C in this case is clearly F(Xo, X1, X2) = X7 + X3 — X{.

Fig. 2. The unit circle.

In general, the solution to the implicitization problem involves tools from
Elimination Theory, as explained in [CLOO07]: from the equation

(XO : X1 :Xg) = (UO(tO . tl) : U1(t0 . t1) : Ug(to : t1)),
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one “eliminates” the variables ¢ty and ¢; to get an expression involving only the
X’s variables.

The elimination process can be done with several tools. The most popular and
general is provided by Grébner bases, as explained in [AL94] (see also [CLOO07]).
In the case of a rational parametrization like the one we are handling here, we
can consider a more efficient and suitable tool: the Sylvester resultant of two
homogeneous polynomials in tg, ¢1, as defined in [AJ06] (see also [CLO05]). We
will denote this resultant with Resy, 4, (-, ). The following result can be deduced
straightforwardly from the section of Elimination and Implicitization in [CLOO07].

Proposition 1. There exist a, € N such that -up to a nonzero constant-

Resi,t; (XQUO(to, t1) — XouQ(to,tl),qul(to, tl) — X1U,2(t(),t1)) = )(;‘F(Xb7 X1,X2)'8.

()

Note that as the polynomial F(Xy, X1, X5) is well-defined up to a nonzero con-
stant, all formulae involving it must also hold this way. For instance, an explicit
computation of (3) in Example 1 shows that this resultant is equal to

—4X3 (X5 — X7 — X3). (6)

One may think that the number —4 which appears above is just a random
constant, but indeed it is indicating us something very important: if the charac-
teristic of K is 2, then it is easy to verify that (3) does not describe a circle, but
the line X5 = 0. What is even worse, (4) is not the parametrization of a curve,
as its image is just the point (1:1:0).

To compute the Sylvester Resultant one can use the well-known Sylvester
matriz (see [AJ06, CLOO07]), whose nonzero entries contain coefficients of the two
polynomials Xoug(to,t1) — Xousa(to,t1) and Xouq (to, t1) — Xyusa(to, t1), regarded
as polynomials in the variables ty and ¢;. The resultant is then the determinant
of that (square) matrix.

For instance, in Example 1, we have

Xg UO(to,tl) — Xo UQ(to,tl) = th% — 2X()t0t1 + th%
X2 Ul(to,tl) — X1 Ug(to,tl) = th% — 2X1t0t1 - th%,

and (6) is obtained as the determinant of the Sylvester matrix

X, —2Xy Xo O

0 Xo—-2Xo X o
Xy —2X; —Xo 0|

0 Xo—2X; —X,

Having Xo as a factor in (5) is explained by the fact that the polynomi-
als whose resultant is being computed in (3) are not completely symmetric in
the X’s parameters, and indeed X5 is the only X-monomial appearing in both
expansions.
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The exponent § in (5) has a more subtle explanation, it is the tracing index
of the map ¢, or the cardinality of its generic fiber. Geometrically, for all but
a finite number of points (pg : p1 : p2) € C, B is the cardinality of the set
¢ 1(po : p1 : p2). Algebraically, it is defined as the degree of the extension

[K(uo(to, t1)/uz(to, t1), ui(to, t1) /ua(to, t1)) : K(to/t1)] -

In the applications, one already starts with a map ¢ as in (1) which is generically
injective, i.e. with § = 1. This assumption is not a big one, due to the fact
that generic parametrizations are generically injective, and moreover, thanks
to Luréth’s theorem (see [vdW66]), every parametrization ¢ as in (1) can be
factorized as ¢ = ¢ o P, with ¢ : P! — P? generically injective, and P : P! — P!
being a map defined by a pair of coprime homogeneous polynomial both of them
having degree 3. One can then regard ¢ as a “reparametrization” of C, and there
are very efficient algorithms to deal with this problem, see for instance [SWPO0S].
In closing this section, we should mention the difference between “algebraic
(plane) curves” and the rational curves introduced above. An algebraic plane
curve is a subset of P? defined by the zero set of a homogeneous polynomial
G(Xop, X1, X>). In this sense, any rational plane curve is algebraic, as we can
find its defining equation via the implicitization described above. But not all
algebraic curve is rational, and moreover, if the curve has degree 3 or more, a
generic algebraic curve will not be rational. Being rational or not is actually a
geometric property of the curve,and one should not expect to detect it from the
form of the defining polynomial, see [SWPO08] for algorithms to decide whether
a given polynomial G(Xy, X1, X5) defines a rational curve or not. For instance,
the Folium of Descartes (see Fig. 3) is a rational curve with parametrization

(to : t1) — (L5 413 : 3t3ty : 3tot?),

and implicit equation given by the polynomial F(Xg, X1, X2) = X5 + X5 —
3XpX1X5. On the other hand, Fermat’s cubic plotted in Fig. 4 is defined by the
vanishing of G(Xg, X1, X2) = X5 + X3 — X but it is not rational.

N

-1 0

Fig. 3. The Folium of Descartes.
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AN

Fig. 4. Fermat’s cubic.

The reason why rational curves play a central role in Visualization and Com-
puter Design should be easy to get, as they are

— easy to “manipulate” and plot,
— enough to describe all possible kind of shape by using patches (so-called spline
curves).

2 Moving Lines and p-Bases

Movwing lines were introduced by Thomas W. Sederberg and his collaborators
in the nineties, [STD94,SC95,SGD97,CSC98]. The idea is the following: in each
row of the Sylvester matrix appearing in (7) one can find the coefficients as
a polynomial in tg, t; of a form L(to,thXo,Xl,XQ) S K[to,tl,XQ,Xl,XQ] of
degree 3 in the variables t’s, and satisfying:

L(to, t1,uo(to, t1), u1(to, t1), u2(to, t1)) = 0. (8)
The first row of (7) for instance, contains the coefficients of
to(XQ UO(to, tl) - XO UQ(to, tl)) = X2t872X0t3t1 + thot% + Ot‘f7

which clearly vanishes if we set X; — w;(to,t1). Note that all the elements in (7)
are linear in the X’s variables.

With this interpretation in mind, we can regard any such L(t, t1, Xo, X1, X2)
as a family of lines in P? in such a way that for any (¢ : t1) € P!, this line passes
through the point ¢(to : 1) € C. Motivated by this idea, the following central
object in this story has been defined.

Definition 1. A moving line of degree § which follows the parametrization ¢ is
a polynomial
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ﬁ&(to,tl,Xo,Xth) = Uo(to,tl)X0+111(to,t1)X1 +'U2(t0,t1)X2 S K[to,h,Xo,Xl,XQ],
with each v; homogeneous of degree 6, i =0, 1,2, such that
Ls(to, t1,uo(to, t1), w1 (to, t1), u2(to, t1)) = 0,

i.€.
vo(to, t1)uo(to, t1) + v1(to, t1)ur(to, t1) + va(to, t1)ua(to, t1) = 0. 9)

Note that both XQUO(toﬂfl) — Xoug(t(),tl) and Xgul<t0,t1) — Xl’UQ(to,tl) are
always moving lines following ¢. Moreover, note that if we multiply any given
moving line by a homogeneous polynomial in K[tg, ¢1], we obtain another moving
line of higher degree. The set of moving lines following a given parametrization
has an algebraic structure of a module over the ring Kl[to,t1]. Indeed, another
way of saying that L;(to,t1, Xo, X1, X2) is a moving line which follows ¢ is that
the vector (vo(to, t1),v1(to, t1), v2(to, t1)) is a homogeneous element of the syzygy
module of the ideal generated by the sequence {ug(to,t1), u1(to, 1), u2(to,t1)}
-the coordinates of ¢- in the ring of polynomials K[¢g, t1].

We will not go further in this direction yet, as the definition of moving lines
does not require understanding concepts like syzygies or modules. Note that
computing moving lines is very easy from an equality like (9). Indeed, one first
fixes § as small as possible, and then sets vg(to, t1), v1(to, t1), v2(to,t1) as homo-
geneous polynomials of degree 6 and unknown coefficients, which can be solved
via the linear system of equations determined by (9).

With this very simple but useful object, the method of implitization by moving
lines as stated in [STD94] says essentially the following: look for a set of moving
lines of the same degree §, with ¢ as small as possible, which are “independent”
in the sense that the matrix of their coefficients (as polynomials in ¢g, ¢;) has
maximal rank. If you are lucky enough, you will find § + 1 of these forms, and
hence the matrix will be square. Compute then the determinant of this matrix,
and you will get a non-trivial multiple of the implicit equation. If your are even
luckier, your determinant will be equal to F|(Xo, X1, X3)”.

Ezample 2. Let us go back to the parametrization of the unit circle given in
Example 1. We check straightforwardly that both

Li(to, t1, X0, X1, X2) = —t1 X0 —t1 X1 + 10 X2 = Xoto — (Xo+ X1) ta
Cg(to,tl,Xle,Xg) = —tgXg +to X1 +t1 X = (—Xo + Xl)to + Xo tq.

satisfy (8). Hence, they are moving lines of degree 1 which follow the para-
metrization of the unit circle. Here, § = 1. We compute the matrix of their
coefficients as polynomials (actually, linear forms) in tg, ¢, and get

X, Xy - X,
(X0+X1 X2) ' (10)

It is easy to check that the determinant of this matrix is equal to

F(Xo, X1, X2) = X7 + X2 — X¢.



Moving Curve Ideals of Rational Plane Parametrizations 37

Note that the size of (10) is actually half of the size of (7), and also that the
determinant of this matrix gives the implicit equation without any extraneous
factor.

Of course, in order to convince the reader that this method is actually better than
just performing (5), we must shed some light on how to compute algorithmically
a matrix of moving lines. The following result was somehow discovered by Hilbert
more than a hundred years ago, and rediscovered in the CAGD community in
the late nineties (see [CSC98]).

Theorem 1. For ¢ as in (1), there exist a unique p < % and two moving

lines following ¢ which we will denote as P, (to,t1, Xo, X1, X2), Qa—pu(to,t1, Xo,
X1, X5) of degrees p and d— i respectively such that any other moving line follow-
ing ¢ is a polynomial combination of these two, i.e. every Ls(to,t1, Xo, X1, X2)
as in the Definition 1 can be written as

Ls(to, t1, Xo, X1, X2) = p(to, t1)Pulto, t1, Xo, X1, X2)+q(to, t1)Pa—pu(to, t1, Xo, X1, Xo),

with p(to,t1), q(to,t1) € K[to,t1] homogeneous of degrees § — u and 6 — d + p
respectively.

This statement is consequence of a stronger one, which essentially says that a
parametrization ¢ as in (1), can be “factorized” as follows:

Theorem 2 (Hilbert-Burch). For ¢ as in (1), there exist a unique p < %
and two parametrizations o, Ya—, : P — P? of degrees p and d— p respectively
such that

d(to : t1) = pulto : t1) X ha—p(to : t1), (11)
where X denotes the usual cross product of vectors.

Note that we made an abuse of notation in the statement of (11), as ¢, (to : t1)
and g_,(to : t1) are elements in P? and the cross product is not defined in

Fig. 5. Moving lines £ (left) and L2 (right).
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this space. The meaning of x in (11) should be understood as follows: pick
representatives in K® of both ¢, (to : t1) and ¥q_,(to : t1), compute the cross
product of these two representatives, and then “projectivize” the result to P2
again.

The parametrizations ¢, and 14—, can be explicited by computing a free
resolution of the ideal (ug(to,t1), u1(to,t1), ua(to,t1)) C K[to,t1], and there are
algorithms to do that, see for instance [CDNR97]. Note that even though general
algorithms for computing free resolutions are based on computations of Grébner
bases, which have in general bad complexity time, the advantage here is that we
are working with a graded resolution, and also that the resolution of an ideal
like the one we deal with here is of Hilbert-Burch type in the sense of [Eis95].
This means that the coordinates of both ¢4 and 14—, appear in the columns of
the 2 x 3 matrix of the first syzygies in the resolution. We refer the reader to
[CSCI8] for more details on the proofs of Theorems 1 and 2.

The connection between the moving lines P, (to, t1, Xo, X1, X2), Qa—p(to, 11,
Xo, X1, X2) of Theorem 1 and the parametrizations ¢, ¢¢—, in (11) is the obvi-
ous one: the coordinates of ¢, (resp. 14—,) are the coefficients of P, (to,t1, Xo,
Xl,XQ) (resp. Qd_u(to,tl,Xo,Xth)) as a polynomial in Xo, Xl, X2.

Definition 2. A sequence {P,(to,t1, X0, X1,X2), Qa—p(to,t1, X0, X1, X2)} as
in Theorem 1, is called a p-basis of ¢.

Note that both Theorems 1 and 2 only state the uniquenes of the value of u, and
not of Pu(to, tl,X(),Xl, XQ) and Qd,u’(to,tl,X(),Xl,Xg). Indeed, if on = d— 1
(which happens generically if d is even), then any two generic linear combina-
tions of the elements of a p-basis is again another u-basis. If 4 < d — p, then any
polynomial multiple of P, (to, t1, Xo, X1, X2) of the proper degree can be added
to Qq—p(to,t1, Xo, X1, X2) to produce a different p-basis of the same parame-
trization.

Ezample 3. For the parametrization of the unit circle given in Example 1, one
can easily check that

p1(to 1 t1) = (—t1 : —t1 : to),
P1(to s t1) = (—to 1 to : t1)
is a p-basis of ¢ defined in (4), i.e. this parametrization has 4 = d — p = 1.

Indeed, we compute the cross product in (11) as follows: denote with eq, e, es
the vectors of the canonical basis of K3. Then, we get

ep e e
—t1 t1 to| = (—t§ — 1, t] — t5, —2tot1),
—to to t1

which shows that the 1 (tg : t1) X ¥1(to : t1) = ¢(to : 1), according to (11).

The reason the computation with u-bases are important, not only because with
them we can generate all the moving lines which follow a given parametrization,
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but also because they will allow us to produce small matrices of moving lines
whose determinant give the implicit equation. Indeed, the following result has
been proven in [CSC98, Theorem 1].

Theorem 3. With notation as above, let 3 be the tracing index of ¢. Then,
up to a nonzero constant in K, we have

Resyq i, (Pyu(to, t1, Xo, X1, X2), Qa—p(to, t1, Xo, X1, X2)) = F(Xo, X1, Xo)".
(12)

As shown in [SGD97] if you use any kind of matrix formulation for computing
the Sylvester resultant, in each row of these matrices, when applied to formulas
(5) and (12), you will find the coefficients (as a polynomial in g, ¢;) of a moving
line following the parametrization. Note that the formula given by Theorem 3
always involves a smaller matrix than the one in (5), as the ¢-degrees of the
polynomials P, (to, t1, Xo, X1, X2) and Qg4 ,(to,t1, Xo, X1, X2) are roughly half
of the degrees of those in (5).

There is, of course, a connection between these two formulas. Indeed, denote
with Syl ;, (G, H) (resp. Bezy, +, (G, H)) the Sylvester (resp. Bézout) matrix for
computing the resultant of the two homogeneous polynomials G, H € K[tg, t1].
For more about definitions and properties of these matrices, see [AJ06]. In [BD12,
Proposition 6.1], we proved with Laurent Busé the following:

Theorem 4. There exists an invertible matriz M € K%*¢ such that

X2 : Sylvto’tl (P;L(t07t17X07X17X2)7 Qd*/l.(t07t17X07X17X2))
= M - Bezy, (Xouo(to, t1) — Xouz(to, t1), Xouq (to, t1) — Xiua(to, t1)).

From the identity above, one can easily deduce that it is possible to compute
the implicit equation (or a power of it) of a rational parametrization with a
determinant of a matrix of coeficients of d moving lines, where d is the degree
of ¢. Can you do it with less? Unfortunately, the answer is no, as each row
or column of a matrix of moving lines is linear in X, X1, X5, and the implicit
equation has typically degree d. So, the method will work optimally with a matrix
of size d x d, and essentially you will be computing the Sylvester matrix of a
p-basis of ¢.

3 Moving Conics, Moving Cubics...

One can actually take advantage of the resultant formulation given in (12) and
get a determinantal formula for the implicit equation by using the square matrix

Bezto,h (Pﬂ(toatla XOlea X2)7 Qd—#(t07t17X07X17X2))7

which has smaller size (it will have d — p rows and columns) than the Sylvester
matrix of these polynomials. But this will not be a matrix of coefficients of
moving lines anymore, as the input coefficients of the Bézout matrix will be
quadratic in X, X7, Xo. Yet, due to the way the Bézout matrix is being built
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(see for instance [SGDIT], one can find in the rows of this matrix the coefficients
of a polynomial which also vanishes on the parametrization ¢. This motivates
the following definition:

Definition 3. A moving curve of bidegree (v, ) which follows the parametriza-
tion ¢ is a polynomial L, s(to,t1, Xo, X1, X2) € Klto,t1, X0, X1, Xo] homoge-
neous i Xg, X1, Xo of degree v and in tg, t1 of degree §, such that

L(to, t1,uo(to, t1),u1(to, 1), ua(to, t1)) = 0.

If v = 1 we recover the definition of moving lines given in 1. For v = 2, the poly-
nomial L(tg,t1,Xo, X1, X2) is called a moving conic which follows ¢ [ZCG99].
Mowving cubics will be curves with ¥ = 3, and so on.

A series of experiments made by Sederberg and his collaborators showed
something interesting: one can compute the defining polynomial of C as a deter-
minant of a matrix of coefficients of moving curves following the parametriza-
tion, but the more singular the curve is (i.e. the more singular points it has), the
smaller the determinant of moving curves becomes. For instance, the following
result appears in [SC95]:

Theorem 5. The implicit equation of a quartic curve with no base points can
be written as a 2 X 2 determinant. If the curve doesn’t have a triple point, then
each element of the determinant is quadratic; otherwise one row is linear and
the other is cubic.

To illustrate this, we consider the following examples.

Example 4. Set ug(to,t1) = t§ — t1, ui(to, t1) = —t3t3, us(to,t1) = tot3. These
polynomials define a parametrization ¢ as in (1) with implicit equation given by
the polynomial F(Xg, X1, X2) = Xi — X{ — XX X2. From the shape of this
polynomial, it is easy to show that (1 : 0 : 0) € P2 is a point of multiplicity 3 of
this curve, see Fig. 6. In this case, we have p = 1, and it is also easy to verify that

L1,1(to, t1, Xo, X1, X2) = toXo + 11 X4

is a moving line which follows ¢. The reader will now easily check that the
following moving curve of bidegree (3,1) also follows ¢:

L1 3(to, t1, Xo, X1, Xo) = to(X} + XoX3) + 11 X3.

And the 2 x 2 matrix claimed in Theorem 5 for this case is made with the coeffi-
cients of both £y 1 (to,t1, Xo, X1, X2) and £y 3(to, t1, Xo, X1, X2) as polynomials

in tg, t1:
X5 X1
X3+ XoX2 X3 '



Moving Curve Ideals of Rational Plane Parametrizations 41

10F

osf

00

Fig. 6. The curve of Example 4.

Fig. 7. The curve of Example 5.

Ezample 5. We reproduce here Example 2.7 in [Cox08]. Consider
uo(to, t1) = to, ui(to, t1) = 6t3t7 — 4t], ua(to, t1) = 4toty — 4tots.

This input defines a quartic curve with three nodes, with implicit equation given
by F(Xo, X1, X2) = X5 +4X0 X3 +2X0 X1 X3 — 16X2X? — 6X2X3 + 16X Xy,
see Fig. 7.

The following two moving conics of degree 1in tg, t; follow the parametrization:

L1 2(to, t1, Xo, X1, Xa) = to(X1 X2 — XoXo) +t1(—X3 — 2Xo X, +4X7)

~ 1

L1 2(to, t1, X0, X1, X2) = to(X7 + §X22 —2X0X1) + t1(Xo X2 — X1 Xo).
As in the previous example, the 2 x 2 matrix of the coefficients of these moving
conics is the matrix claimed in Theorem 5.

4 The Moving Curve Ideal of ¢

Now it is time to introduce some tools from Commutative Algebra which will
help us understand all the geometric constructions defined above. The set of
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all moving curves following a given parametrization generates a bi-homogeneous
ideal in K[tg, t1, X0, X1, X2], which we will call the moving curve ideal of this
parametrization.

As explained above, the method of moving curves for implicitization of a
rational parametrization looks for small determinants made with coefficients of
moving curves which follow the parametrization of low degree in tg, t;. To do
this, one would like to have a description as in Theorem 1, of a set of “minimal”
moving curves from which we can describe in an easy way all the other elements
of the moving curve ideal.

Fortunately, Commutative Algebra provides the adequate language and tools
for dealing with this problem. As it was shown by David Cox in [Cox08], all
we have to do is look for minimal generators of the kernel K of the following
morphism of rings:

K[t07t17X07X17X2] B K[t(htlaz]
Xj I—>’U,j(t0,t1)2 ]207172

Here, z is a new variable. The following result appears in [Cox08, Nice Fact 2.4]
(see also [BJ03] for the case when ¢ is not generically injective):

Theorem 6. K is the moving curve ideal of ¢.

Let us say some words about the map (13). Denote with I C Klto, t1] the
ideal generated by wg(to,t1), u1(to,?1), uz(to,t1). The image of (13) is actually
isomorphic to Klto,t1][z I], which is called the Rees Algebra of I. By the Iso-
morphism Theorem, we then get that Kltg, ¢, Xo, X1, X2]/K is isomorphic to
the Rees Algebra of I. This is why the generators of K are called the defining
equations of the Rees Algebra of I. The Rees Algebra that appears in the moving
lines method corresponds to the blow-up of V(I), the variety defined by I. Geo-
metrically, it is just the blow-up of the empty space (the effect of this blow-up
is just to introduce torsion), but yet the construction should explain somehow
why moving curves are sensitive to the presence of complicated singularities. It
is somehow strange that the fact that the description of I actually gets much
simpler if the singularities of C are more entangled.

Let us show this with an example. It has been shown in [Bus09] that, by
unravelling some duality theory developed by Jouanolou in [Jou97], that for any
proper parametrization of a curve of degree d having u = 2 and only cusps as
singular points, the kernel K has (d+)(d=4) | 5 minimal generators. On the other
hand, in a joint work with Teresa Cortadellas [CD13b] (see also [KPU13]), we
have shown that if g = 2 and there is a point of very high multiplicity (it can
be proven that if the multiplicity of a point is larger than 3 when p = 2, then it
must be equal to d — 2), then the number of generators drops to [%J, i.e. the
description of K is simpler in this case. In both cases, these generators can be
made explicit, see [Bus09,CD13b, KPU13].

Further evidence supporting this claim is what is already known for the
case 1 = 1, which was one of the first one being worked out by several authors:
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[HSV08, CHW08, Bus09, CD10]. It turns out (cf. [CD10, Corollary 2.2]) that 4 = 1
if and only if the parametrization is proper (i.e. generically injective), and there
is a point on C which has multiplicity d — 1, which is the maximal multiplicity
a point can have on a curve of degree d. If this is the case, a set of minimal
generators of the kernel has exactly d + 1 elements.

In both cases (u = 1 and p = 2), explicit elements of a set of minimal
generators of L can be given in terms of the input parametrization. But in
general, very little is known about how many are them and which are their
bidegrees. Let ng(IC) be the 0-th Betti number of K (i.e. the cardinal of any
minimal set of generators of ). We propose the following problem which is the
subject of attention of several researchers at the moment.

Problem 1. Describe all the possible values of ng(K) and the parameters that
this function depends on, for a proper parametrization ¢ as in (1).

Recall that “proper” here means “generically injective”. For instance, we just
have shown above that, for 4 = 1, no(u) = d + 1. If p = 2, the value of ny(K)
depends on whether there is a very singular point or not. Is ng a function of
only d, p and the multiplicity structure of C?

A more ambitious problem of course is the following. Let B(K) C N2 be the
(multi)-set of bidegrees of a minimal set of generators of K.

Problem 2. Describe all the possible values of B(K).
For instance, if ;1 = 1, we have that (see [CD10, Theorem 2.9])

B(K)=1{(0,d), (1,1), (1,d—-1), (2,d = 2),...,(d—1,1)}.

Explicit descriptions of B(K) have been done also for 1 = 2 in [Bus09,CD13b,
KPU13]. In this case, the value of B(K) depends on whether the parametrization
has singular point of multiplicity d — 2 or not.

For p = 3 the situation gets a bit more complicated as we have found in
[CD13b]: consider the parametrizations ¢1 and ¢2 whose p-bases are respectively:

P3,1(t07t17X03 X17X2) = tSXO + (t? B tot%)Xl
Q7.1(to, t1, Xo, X1, Xo) = (t5t1 — t5t3) Xo + (t5t7 + t5t5) X1 + (¢ +t]) Xo,

Ps.2(to, t1, Xo, X1, X2) = (6§ — t3t1)Xo + (¢5 + tot3 — t5t1) X1
Q7,2(to, t1, Xo, X1, Xo) = (t5t1 — t513) Xo + (5] + 1519) X1 + (85 + 1) Xo.

Each of them parametrizes properly a rational plane curve of degree 10 having
the point (0 : 0 : 1) with multiplicity 7. The rest of them are either double or
triple points. Set K and Ko for the respective kernels, we have then

B(K1) ={(3,1), (7.1), (2,3), (2,3), (4,2), (2,4), (1,6), (1,6), (1,6), (0,10)},
B(K2) ={(3,1), (7,1), (2,3), (2,3), (4,2), (2,4), (1,5), (1,6), (1,6), (0,10)}.

The parameters to find in the description of ny(K) proposed in Problem 1 may
be more than p and the multiplicities of the curve. For instance, in [CD13],
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we have shown that if there is a minimal generator of bidegree (1,2) in K, then
the whole set B(K) is constant, and equal to

{(0,d), (1,2), (1,d —2), (2,d —4),..., (G, 1), (L, 1)} ifdis odd
{{(O,d), (1,2), (1,d—2), (2,d—4),...,(,1), (4,1)} if dis even.

To put the two problems above in a more formal context, we proceed as in
[CSC98, Sect.3]: For d > 1, denote with Vg C Klto,t1]4° the set of triples
of homogeneous polynomials (ug(to,t1), u1(to,t1), Ug(to,tl)) defining a proper
parametrization ¢ as in (1). Note that one can regard V; as an open set in
an algebraic variety in the space of parameters. Moreover, V; could actually
be taken as a quotient of Klto,#,]¢° via the action of SL(2,K) acting on the
monomials tg, t1.

Problem 3. Describe the subsets of V; where B(K) is constant.

Note that, naturally the u-basis is contained in X, and moreover, we have (see
[BJ03, Proposition 3.6]):

K= <P,u(t0at1aX07X1aX2)v Qd*,u(t()?tl»XOle?XQ» : <t07 t1>oov

so the role of the p-basis is crucial to understand K. Indeed, any minimal set
of generators of K contains a p-basis, so the pairs (1, 1), (1,d — p) are always
elements of B(K). The study of the geometry of V; according to the stratification
done by p has been done in [CSC98, Sect.3] (see also [DAn04,Iar13]). Also,
in [CKPU13], a very interesting study of how the p-basis of a parametrization
having generic p (u = |d/2]) and very singular points looks like has been made.
It would be interesting to have similar results for .

In this context, one could give a positive answer to the experimental evidence
provided by Sederberg and his collaborators about the fact that “the more sin-
gular the curve, the simpler the description of K” as follows. For W C V,, we
denote by W the closure of W with respect to the Zariski topology.

gonjecﬁme 1. If Wy, Wy C Vg are such that ngly, is constant for ¢ = 1,2, and
Wi € Wy, then
no (W) < ng(Ws).

Note that this condition is equivalent to the fact that no(K) is upper semi-
continuous on V4 with its Zariski topology. Very related to this conjecture is the
following claim, which essentially asserts that in the “generic” case, we obtain
the largest value of ny(K):

Conjecture 2. Let Wy be open set of V4 parametrizing all the curves with p =
|d/2], and having all its singular points being ordinary double points. Then,
no(KC) is constant on Wy, and attains its maximal value on V4 in this component.

Note that a “refinement” of Conjecture 1 with B(K;) C B(K2) will not hold in
general, as in the examples computed for g = 2 in [Bus09, CD13b, KPU13] show.
Indeed, we have in this case that the Zariski closure of those parametrizations
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with a point of multiplicity d — 2 is contained in the case where all the points
are only cusps, but the bidegrees of the minimal generators of X in the case of
parametrizations with points of multiplicity d — 2 appear at lower values than
the more general case (only cusps).

5 Why Rational Plane Curves Only?

All along this text we were working with the parametrization of a rational plane
curve, but most of the concepts, methods and properties worked out here can
be extended in two different directions. The obvious one is to consider “surface”
parametrizations, that is maps of the form

os : P2 --» P3
(to ity : ta) — (Uo(to,thtz) sup(to, ty,t2) s uz(to, t1,ta) : U3(t0,t1,t2))
(14)

where wu;(to,t1,t2) € Kltg,t1,t2],4 = 0,1,2,3, are homogeneous of the same
degree, and without common factors. Obviously, one can do this in higher dimen-
sions also, but we will restrict the presentation just to this case. The rea-
son we have now a dashed arrow in (14) is because even with the conditions
imposed upon the u;’s, the map may not be defined on all points of P2. For
instance, if

uo(to, t1,t2) = tite, ui(to, t1,t2) = tote, uz(to, t1,t2) = tot1, us(to, t1,t2) = tot1 + tita,

¢s will not be defined on the set {(1:0:0), (0:1:0), (0:0:1)}.

In this context, there are methods to deal with the implicitization analogues
to those presented here for plane curves. For instance, one can use a multivariate
resultant or a sparse resultant (as defined in [CLO05]) to compute the implicit
equation of the Zariski closure of the image of ¢g. Other tools from Elimination
Theory such as determinants of complexes can be also used to produce matrices
whose determinant (or quotient or ged of some determinants) can also be applied
to compute the implicit equation, see for instance [BJ03,BCJ09].

The method of moving lines and curves presented before gets translated into
a method of moving planes and surfaces which follows ¢g, and its description
and validity is much more complicated, as both the Algebra and the Geometry
involved have more subtleties, see [SC95, CGZ00,Cox01,BCD03,KD06]. Even
though, it has been shown in [CCLO05] that there exists an equivalent of a u-
basis in this context, its computation is not as easy as in the planar case. Part of
the reason is that the syzygy module of general u;(to,t1,t2), ¢ = 0,1,2,3 is not
free anymore (i.e. it does not have sense the meaning of a “basis” as we defined in
the case of curves), but if one set ¢y = 1 and regards these polynomials as affine
bivariate forms, a nicer situation appears but without control on the degrees of
the elements of the p-basis, see [CCL05, Proposition 2.1] for more on this. Some
explicit descriptions have been done for either low degree parametrizations, and
also for surfaces having some additional geometric features (see [CSD07, WC12,
SG12,SWG12)), but the general case remains yet to be explored.
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A generalization of a map like (13) to this situation is straightforward, and
one can then consider the defining ideal of the Rees Algebra associated to ¢g.
Very little seems to be known about the minimal generators of K in this sit-
uation. In [CD10] we studied the case of monoid surfaces, which are rational
parametrizations with a point of the highest possible multiplicity. This situation
can be regarded as a possible generalization of the case y = 1 for plane curves,
and has been actually generalized to de Jongquiéres parametrizations in [HS12].

We also dealt in [CD10] (see also [HW10]) with the case where there are two
linearly independent moving planes of degree 1 following the parametrization
plus some geometric conditions, this may be regarded of a generalization of the
“u = 17 situation for plane curves. But the general description of the defining
ideal of the Rees Algebra for the surface situation is still an open an fertile area
for research.

The other direction where we can go after consider rational plane parame-
trizations is to look at spatial curves, that is maps

bc: PL — p3
(to = t1) = (uo(to,t1) : ua(to,t1) : ua(to, t1) : uz(to,t1)),

where u; € Kltg, 1], homogeneous of the same degree d > 1 in K[tg, t;] without
any common factor. In this case, the image of ¢¢ is a curve in P3, and one has
to replace “an” implicit equation with “the set of” implicit equations, as there
will be more than one in the same way that the implicit equations of the line
joining (1:0:0:1) and (0:0:0: 1) in P3 are given by the vanishing of the
equations X7 = Xy = 0.

As explained in [CSC98], both Theorems 1 and 2 carry on to this situation, so
there is more ground to play and theoretical tools to help with the computations.
In [CKPU13], for instance, the singularities of the spatial curve are studied as
a function of the shape of the u-basis. Further computations have been done in
[KPUO09] to explore the generalization of the case y = 1 and produce generators
for IC in this case. These generators, however, are far from being minimal. More
explorations have been done in [JG09, HWJG10,JWG10], for some specific values
of the degrees of the generators of the p-basis.

It should be also mentioned that in the recently paper [larl3], an attempt of
the stratification proposed in Problem 2 for this kind of curves is done, but only
with respect to the value of p and no further parameters.

As the reader can see, there are lots of recent work in this area, and many
challenges yet to solve. We hope that in the near future we can get more and
deeper insight in all these matters, and also to be able to apply these results in
the Computer Aided and Visualization community.
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