
Chapter 2

Service-Oriented Model Engineering
and Simulation for System of Systems
Engineering

Bernard P. Zeigler and Lin Zhang

2.1 Introduction

The model is the foundation for simulation activities (Ören et al. 1982), especially

in regard to system of systems (SoS, a composition of systems which component

systems have legacy properties). A valid model and correct simulator are necessary

for obtaining simulation results that serve the intended use of the model (Zeigler

et al. 2000). Verification, validation, and accreditation (VV&A) is the primary

means of establishing the credibility of the simulation results (Pace 2004).

VV&A is usually considered after model construction and involves calibration

and/or validation of the established model in order to determine whether it is

credible. This post-construction determination has important implications to dis-

cover model problems and defects, but it cannot solve the problem of how to get a

correct model in the first place. Especially for complex systems, due to the

complexity and uncertainty of the system, the modeling process can be very

complicated, which makes VV&A of a model extremely difficult. Even if defects

are found via VV&A, revision of the model will be very difficult and costly.

More importantly, for a system of systems, to construct a valid model is just the

first step since a model of a SoS generally experiences a long term of evolution and

management. As a result, the key issue for a complex system model is to guarantee

the credibility of the full model life cycle with minimum cost.

To meet the challenges in development and management of the SoS model, this

chapter introduces the concept of the model engineering (Zhang 2011; Zhang
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et al. 2014a), which aims at setting up a systematic, normalized, and quantifiable

engineering methodology by exploring basic principles in model construction,

management, and maintenance to manage the data, processes, and organizations/

people involved in the full life cycle of a model to guarantee the credibility of its life

cycle. Meanwhile, in recent years, service-oriented technology has been widely

used in software intensive systems, as well as model construction and management

of complex system simulation. Therefore, we will show how modeling engineering

can take advantage of service-oriented technology to provide an efficient way of

building and managing the model of a system of systems.

2.2 Some Related History

It helps to recount some history relevant to service-oriented model engineering
(SOME) as appropriate to a volume dedicated to Tuncer Ören’s 80th birthday. As

early as 1973, Ören was expressing his normative views for modeling and simula-

tion (M&S) methodologies (Ören 1973) and recently published a treatise on the

synergies of simulation, agents, and systems engineering (Ören and Yilmaz 2012).

Many of his views on these synergies are covered in the book with Yilmaz on

Agent-directed Simulation and Systems Engineering (Yilmaz and Ören 2009).

As related by Ören and Zeigler (2012), Ören received his Ph.D. in systems

engineering under the supervision of A.W. Wymore. His Ph.D thesis was greatly

influenced by Wymore’s axiomatic approach for his systems theory (Wymore

1967). Moreover, Ören’s mechanical engineering background allowed him to

appreciate the vital importance of developing software tools for M&S (Ören

1990). He has always been interested in learning, conceiving, and developing

methodologies suitable for complex problems (especially for social problems)

which are inherently nonlinear in nature. As part of his Ph.D. requirements, in the

late 1960s, he developed a simulation model specification language called GEST

(General System Theory implementer) (Ören 1971) based on Wymore’s book

(Wymore 1967). Part of his aim was to use a translator to generate a simulation

program in a language which could be compiled or interpreted. Such translators

were implemented later by his students. GEST’s model specification language is

based on Wymore’s concept of systems composed of component systems and

couplings that all components to exchange information through input and output

ports. Since component systems and coupling recipes were already defined by

Wymore, in set-theoretic notation, Ören concentrated on ease of robust specifica-

tion and readability and avoided any set-theoretic representation.

Over the years, the scope of Ören’s concerns has broadened to formulate a body

of knowledge for M&S expressed in many publications and presented in detail in

Ören (2005, 2014), where he describes a paradigm shift from use of the term M&S

to the term simulation systems engineering (SSE): “In the early days, only very few

were referring to M&S. Afterwards, to stress modeling process and the associated

activities and environments, the term M&S is used by large number of
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simulationists. Currently, a very commendable shift of paradigm is being adopted

to cover all aspects of simulation studies. This is to conceive M&S –within a larger

perspective– as the Simulation Systems Engineering (SSE).” (Slight paraphrase of

(Ören 2005))

In this article, we take a similarly broad perspective and probe the nature of

model engineering in the context of systems engineering, particularly for systems of

systems (SoS) and implemented with service orientation environments. To estab-

lish the background needed for this discussion, we briefly introduce the definition

and theory of systems of systems as it relates to M&S, in particular to the discrete

event system specification (DEVS) formalism for M&S. We then define, and

examine in depth, model engineering for SoS which has deals with the full model

life cycle. With these concepts as foundation, we analyze the services necessary to

support model engineering and the requirements for design of a service-oriented

model engineering and simulation environment. Consideration of the results of

research in DEVS then enables us to give a more concrete characterization of such

an environment. We close with a discussion of how model engineering and DEVS

enable new frameworks for application areas and the opportunities for further

research.

Some short definitions of terms we employ as initial concepts are drawn from

Waite and Ören (2009):

• Body of Knowledge (BoK) – The set of justified true beliefs and competencies –

explicit and implicit – that defines a discipline, practice, role, or field of endeavor

• Referent – n. Something referenced or singled out for attention, a designated

object, real or imaginary, or any class of such objects

• Model – n. The representation of some referent

• Simulation – n. A mechanization of a model’s evolution through time

Although definitions are still in flux, for our purposes, service-oriented model
engineering is a form of model engineering that is based on a service approach to

computation, and simulation systems engineering is an inclusive term that includes

model engineering.

2.3 Theory of Systems of Systems

In systems theory as formulated by Wymore (Ören and Zeigler 2012), systems are

defined mathematically and viewed as components to be coupled together to form a

higher-level system.

As illustrated in Fig. 2.1, Wymore’s (1967) systems theory mathematically

characterizes:

• Systems as well-defined mathematical objects characterizing “black boxes” with

structure and behavior.
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• Composition of systems – constituent systems and coupling specification result

in a system, called the resultant, with structure and behavior emerging from their

interaction.

• Closure under coupling – the resultant is a well-defined system just like the

original components.

2.3.1 System of Systems

As illustrated in Fig. 2.2, a system of systems (SoS) is a composition of systems,

where often component systems have legacy properties, e.g., autonomy, belonging,

diversity, and emergence (Boardman and Sauser 2006). In this view, a SoS is a

system with the distinction that its parts and relationships are gathered together

under the forces of legacy (components bring their preexisting constraints as extant

viable systems) and emergence (it is not totally predictable what properties and

behavior will emerge). Here in Wymore’s terms, coupling captures certain proper-

ties of relevance to coordination, e.g., connectivity, information flow, etc. Struc-
tural and behavioral properties provide the means to characterize the resulting SoS,

such as fragmented, competitive, collaborative, coordinated, etc.

The main difference between SoS and general system composition is worth

noting. SoS generally refers to systems composed of components that are already in

existence and bring certain legacy properties “to the table” when placed into a new

composition. This is in contrast to general system composition where components

may be built from scratch for the distinct purpose of the new composition. This

implies that in the SoS case, a key feature is that the compositions require integra-

tion and/or coordination to overcome the features and goals of the existing systems

that don’t align well with the new system goals. However, we remark also that the

term SoS is still in flux and may sometimes mean complex systems whose compo-

nents themselves are complex systems. Depending on the definition of “complex-

ity” in this context, the two meanings may actually coincide.

Fig. 2.1 Wymore’s system composition
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2.3.2 Discrete Event Systems Specification (DEVS)
Formulation of SoS

The DEVS formalism (Zeigler et al. 2000), based on systems theory, provides a

framework and a set of M&S tools to support systems concepts in application to

SoS engineering (Mittal and Martin 2013). A DEVS model is a system-theoretic

concept specifying inputs, states, and outputs, similar to a state machine. Critically

different, however, is that it includes a time-advance function that enables it to

represent discrete event systems, as well as hybrids with continuous components, in

a straightforward platform-neutral manner. DEVS provides a robust formalism for

designing systems using event-driven, state-based models in which timing infor-

mation is explicitly and precisely defined. Hierarchy within DEVS is supported

through the specification of atomic and coupled models. Atomic models specify

behavior of individual components. Coupled models specify the instances and

connections between atomic models and consist of ports, atomic model instances,

and port connections (ports and connections are not shown here for simplicity). The

input and output ports define a model’s external interface, through which models

(atomic or coupled) can be connected to other models.

As illustrated in Fig. 2.3, based on Wymore’s systems theory, the DEVS

formalism mathematically characterizes the following:

• DEVS Atomic and Coupled Models specify Wymore systems.

• Composition of DEVS models – component DEVS and coupling result in a

Wymore system, called the resultant, with structure and behavior emerging

from their interaction.

• Closure under coupling – the resultant is a well-defined DEVS just like the

original components.

• Hierarchical composition – closure of coupling enables the resultant-coupled

models to become components in larger compositions.

Fig. 2.2 System of systems
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2.4 Model Engineering for SoS

A model is an abstract expression of objects to study and embodies high intelli-

gence of human beings in recognition of the world. With continuous development

of science and technologies, the model is becoming more and more important. It

refers not just to the process of modeling but also to the life cycle of model.

2.4.1 The Life Cycle of a SoS Model and Related Works

Generally, a model experiences requirement analysis, model design, model con-

struction, model verification and validation (VV&A), model application, and model

maintenance (Zhang 2011). These processes compose a complete life cycle of a

model as is shown in Fig. 2.4.

How to build a right model is the core issue in simulation. A large number of

research achievements on models have been obtained in the past dozens of years.

These achievements are related to different phases in a model life cycle, e.g.,

modeling theory and method, VV&A, and model management.

The life cycle concept has not been emphasized enough in the simulation

domain, and related research and applications are not sufficient (Balci 2012).

Fishwick (1989)called the simulation model development process as simulation

model engineering to emphasize engineering feature of the model development

process, but no special explanation on its meaning was given, and no systematic

method system was established.

In recent years, the international simulation community has become conscious of

the unfavorable influences of missing foundational theory of M&S on the develop-

ment of simulation curriculum. As a result, research on the M&S life cycle

management is gradually attracting attention from academic circles. Radeski and

Fig. 2.3 DEVS formulation of systems of systems
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Parr (2002) proposed the modeling simulation life cycle model framework, which

defined organization mode and structure of the modeling simulation process, work

products, quality assurance, and project management, and described the features

and requirements of the life cycle phases such as development, use, maintenance,

and reuse of the modeling simulation system. References (Fishwick 1990; Abdouni

Khayari et al. 2010) achieved some valuable results in the model life cycle

management and developed a model prototype management system, which pro-

vided valuable reference to model development for designers.

2.4.2 Challenges in Development and Management of SoS
Models

As can be seen from the related work, current research on models generally focused

on one phase in the model life cycle and is separate and diffuse. Although impor-

tance of the engineering idea is gradually recognized in applications of the full

model life cycle, currently no complete theory and technology system and philos-

ophy are available. So there are still lots of challenges in the life cycle of the model

of SoS. As pointed in (Zhang et al. 2014a), some reasons for this situation are:

1. High complexity of the referent SoS – Firstly, a SoS is composed of various

component systems, and the relationship between them is very complicated.

Secondly, generally a complex system is dynamic, variable, and very uncertain.

Thirdly, SoS generally performs emergent behaviors. These features make a SoS

very complicated. The complexity of SoS leads to the complexity of the model

itself.

2. The long life cycle of a SoS – With passage of time, the models should be

continuously improved and changed. Different model versions are available.

Each version may be applicable to different application phases. Different

requirement

design

construction

VV&A

application

maintenance

Fig. 2.4 The life cycle of a

SoS model
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versions and application phases of multiple models compose a complicated

network. How to keep consistency and credibility of different parts and versions

of the model is the key for model maintenance.

3. Model heterogeneity – A SoS is composed of many heterogeneous component

models. Heterogeneity of models generally comes from different development

organizations, different platforms and architectures, different development lan-

guages and databases, etc. Heterogeneity brings big challenges to integration

and maintenance of the system models.

4. Complicated evolution of models – Generally, a SoS is in continuous evolution,

so the models will be continuously adjusted and changed. Changes of different

relations are very complicated in evolution due to system complexity, so the

model elements and its relation should be completely tracked and managed to

guarantee correctness of the model evolution.

5. Difficult model reuse – With growth of complexity of the systems to study, the

roles and values of model reuse are very remarkable in model development and

use of a SoS (Liu et al. 2008). Generally, a SoS includes multiple combined

systems. A huge number of system models in past research and development

practices have been accumulated. Correct and efficient reuse of models will

reduce model development cost, greatly shorten development time, and effec-

tively improve model credibility. Although some research on model reuse has

been conducted, no efficient and practicable model reuse method is

available now.

6. Massive processing data – Generally, a SoS entails a large amount of data to

process, including the required modeling data, data generated in modeling, and

data generated in the modeling process. Data processing includes data storage,

inquiry, exchange, management, understanding, analysis, and mining, which

bring many challenges.

7. The multidisciplinary collaborative model development – Collaborative model

development is associated with different steps in the whole model life cycle.

Collaboration is required on different phases, e.g., collaborative requirement

analysis, collaborative design, and collaborative validation. All this work com-

poses a huge engineering requirement and should be supported by appropriate

management tools.

8. Higher requirements for system performance – Compared to a simple system, a

SoS requires higher performance, e.g., higher requirements for reliability, secu-

rity, credibility, cost, and energy saving. To guarantee that these performance

requirements are met, special means should be required to analyze and process

the models.
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2.4.3 Meaning of Model Engineering

2.4.3.1 Concept of Model Engineering

Based on the state-of-the-art researches on the model, a systematic methodology

was proposed to cope with challenges in model life cycle management of a SoS

(Zhang 2011; Zhang et al. 2014a). The model development and management

activities change from a spontaneous and random behavior to conscious, system-

atic, standardized, and manageable behavior by constructing a model engineering

theory and methodology system in order to guarantee credibility of different model

phases.

Zhang (2011; Zhang et al. 2014a) gave a definition of model engineering as

follows:

Model engineering is defined as a general term for theories, methods, technol-

ogies, standards, and tools relevant to a systematic, standardized, quantifiable

engineering methodology that guarantees the credibility of the full life cycle of a

model with the minimum cost.

Here, model engineering involves the following meaning (Zhang 2011; Zhang

et al. 2014a):

1. Model engineering regards the full life cycle of a model as its object of study,

which studies and establishes a complete technology system at the methodology

level in order to guide and support the full model life cycle process such as

model construction, model management, and model use of a SoS.

2. Model engineering aims to ensure credibility of the full model life cycle;

integrate different theories and methods of models; study and find the basic

rules independent of specific fields in the model life cycle; establish systematic

theories, methods, and technical systems; and develop corresponding standards

and tools.

3. Model engineering manages the data, knowledge, activities, processes, and

organizations/people involved in the full life cycle of a model and takes into

account time period, cost, and other metrics of development and maintenance of

a model.

4. Here, the model credibility is a comprehensive indicator and includes factors

such as availability, accuracy, reliability, and quality of service (QoS).

2.4.3.2 Key Technologies of Model Engineering

As described in the above part, current research on the technologies related to the

full model life cycle is preliminary and diffuse. For comprehensive and systematic

application and implementation of model engineering, many key technologies

should be studied (Zhang et al. 2014a). These technologies can be divided into

six categories as shown in Fig. 2.5.

1. General technologies
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• Body of knowledge of the model engineering: The body of knowledge system

(BoK) includes the concepts and terminologies involved in a specific research

field. The model engineering BoK identifies the research scope of the model

engineering and its boundary and relationship with other related subjects.

Establishment of systematic and complete BoK requires long-term accumu-

lation and extraction.

• Model engineering standards and specifications: Standards are the basis for

the implementation of the model engineering. During the life cycle process of

a model, each activity requires corresponding standards, including model

development process, model description, model component interface,

Key technologies

General technologies

Supporting
technologies

Analysis and
evaluation

technologies

Modeling
technologies

Model management
technologies

Model engineering
process management

technologies

Body of knowledge of the model engineering

Support environment and tools of model engineering

Visualization technology of model engineering

Model data and knowledge management

Model reconstruction and configuration management

Model composition and reuse

 Model library

Model validation, verification and accreditation (VV&A)

Quantitative analysis and evaluation of the model
engineering

 Model description and modeling language

Model engineering standards and specifications

 Modeling of model lifecycle process

Model engineering process management

Acquisition and management of model requirements

Fig. 2.5 Key technologies of model engineering
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model storage, model data exchange, model interoperation, model service,

model maintenance, etc.

2. Model engineering process management technologies

• Modeling of model life cycle process: The life cycle model of the model

engineering aims to identify the structural framework of activities involved in

model construction and management (Zeigler et al. 2000), which is the

methodology to guide the model engineering, and ensure improvement of

model quality and development efficiency and reduction of full model life

cycle cost. Proper process models and corresponding implementation

methods can be proposed by referring to the existing achievements in the

system engineering and software engineering and other relevant fields and

combining the model development features of SoS.

• Model engineering process management: The data, knowledge, tools, per-

sons/organizations, and technologies in the full model life cycle should be

effectively managed with the model life cycle process model as the guide,

with standards and specification as the basis, and with the project manage-

ment methods and means as reference in order to get the dependable model

with the minimum cost. The model maturity definition and control, perfor-

mance management, flow monitoring and optimization, risk control, and cost

control are important in model engineering process management.

3. Modeling technologies

• Acquisition and management of model requirements: Accurate requirement

acquisition is the key in modeling. Requirement acquisition and management

is very challenging due to uncertainty and ambiguity of SoS. Requirement

acquisition studies to extract, describe, parse, and validate requirement via

automated or half-automated means. Requirement management studies how

to reflect the changing requirements in the model construction and mainte-

nance accurately and timely.

• Model description and modeling language: Generally, a SoS contains multi-

ple different systems with different properties such as qualitative systems,

quantitative systems, continuous systems, discrete event systems, determin-

istic systems, uncertain systems, etc. One of the core issues in model devel-

opment of SoS is how to take advantage of effective ways to describe the

whole system. Therefore, it is required to study corresponding model descrip-

tion mechanism and structure and develop generic or specific description

languages according to the characteristics of the various systems.

4. Model management technologies

• Model library: The model library is the foundational platform to carry out

model management and perform standardized encapsulation, storage, and

query for the models (Ören and Zeigler 1979). The complicated applications

such as model reuse, combination, and configuration management can be

based on the model library. Traditional database technology, service-oriented
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technology, and cloud-computing technology can support construction and

management of the model library.

• Model composition and reuse: The model composition and reuse is an

important technology to improve model construction and maintenance effi-

ciency and improve model credibility of SoS. It mainly studies how to use the

existing model components to quickly and correctly compose complicated

models according to the system requirements and includes standardized

encapsulation of model components, intelligent model matching, model

relation management, dynamic model combination, model consistency vali-

dation, and model service.

• Model reconstruction and configuration management: The requirements for

model functions and performances change due to diversified requirements

inside and environmental uncertainty, so the models should be quickly

reconstructed or configured. The model reconstruction aims to adjust the

internal structure without change of the main external functions of models,

further optimize the model performance, and ease its understanding, mainte-

nance, and transplant of models. Model configuration can adapt different

requirements or change of models in function and performance by adjusting

and optimizing internal components and parameters. For SoS model engi-

neering, model reconstruction and configuration management are very impor-

tant and challenging.

5. Analysis and evaluation technologies

• Quantitative analysis and evaluation of the model engineering: The quanti-

tative analysis is one of main features of the model engineering. To ensure

credibility of the full model life cycle, many steps should be analyzed,

evaluated, and optimized in a quantitative manner, e.g., complexity analysis

and evaluation of model development process, cost and benefit analysis and

optimization, risk analysis and control, model availability and reliability

analysis, and model service quality analysis.

• Model validation, verification, and accreditation (VV&A): The model

VV&A technology is one important part in the model engineering. Although

some rich research achievements have been achieved, they cannot meet the

actual requirements of modeling simulation of SoS. Most research focuses on

qualitative analysis, and quantitative and formalized analysis methods are

lacking, so VV&A technology, especially VV&A quantitative analysis, and

formalized analysis technology are still a main research focus in the model

engineering.

• Model data and knowledge management: Many SoS models contain volumi-

nous data to process. Some models are constructed based on massive data, or

even exist in the form of data and their relations. Data management aims to

effectively organize and use the data, especially massive data, and plays a key

role in quantitative analysis of the model engineering. On the whole, the

knowledge is divided into two classes in the model engineering. The class

1 indicates the knowledge in the model, e.g., some qualitative models include
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massive knowledge rules. Another class indicates the knowledge on model

development and management and generally includes experiences accumu-

lated and extracted by developers and users in practices. Different knowledge

should be managed and used in different manners to improve model quality

and intelligence and automation of model construction and maintenance.

6. Supporting technologies

• Visualization technology of model engineering: Visualization technology can

be used on different phases of the model engineering, can realize transparent

model development and management process, facilitate understanding and

monitoring, and improve human–machine interaction efficiency. The visual-

ization technology plays an important role in the model engineering.

• Support environment and tools of model engineering: Implementation of the

model engineering requires an integrated support environment and

corresponding support tool to support different activities of model engineer-

ing, e.g., network collaboration, requirement management, process model

construction and maintenance, model library management, qualitative and

quantitative analysis and evaluation, data integration, knowledge manage-

ment, model validation, and simulation experiment.

2.4.4 Body of Knowledge of Model Engineering

Model engineering is the resultant of fusion of many crossing subjects including the

software engineering, system engineering, computer science and engineering,

mathematics, system M&S, knowledge engineering, project management, quality

management, and related application fields. Based on the body of knowledge in

these disciplines, specific BoK of the model engineering is formed according to the

requirements and features of the model engineering.

To establish the model engineering BoK, it is necessary to tease out the involved

knowledge system in a systematic manner, extract features closely associated with

the model-related activities from related fields, and summarize and condense those

specific development technologies and management means of the model life cycle

process. A preliminary BoK framework of the model engineering was given by

Zhang (2011, 2014a). Two aspects are mainly considered in this process.

1. Identify the horizontal crossing relations between the model engineering and

other closely associated subjects, properly tailor their overlapping parts, and

make these overlapping parts reflect specific features of the model engineering.

2. Identify the modules in the model engineering system and vertical hierarchical

relations and horizontal interface relations between modules, make the frame-

work compose an organic whole, and serve for the full life cycle process of the

model.
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By introducing the model engineering BoK framework, we hope to reach the

following targets:

1. Promote consistent opinion within academic circles on the meaning of model

engineering

2. Identify the research scope of model engineering

3. Relate the position of model engineering to other subjects such as software

engineering, system engineering, computer science, and mathematics and set

their boundaries.

A BoK framework of model engineering is shown in Fig. 2.6 (Zhang 2011;

Zhang et al. 2014a). The BoK framework of the model engineering is divided into

five parts:

• Part 1: Foundation: including the basic concepts and terms, methodology,

technical system, etc. It provides the basic guidance for the implementation of

the model engineering and also is the foundation and guarantee of the model

engineering independent of other subjects.

• Part 2: Model life cycle: it describes different phases of the full model life cycle

at the technical level. This part modeling requirement, model design, model

construction, model VV&A, model application, model maintenance.

• Part 3: Implementation and management of the model engineering: it includes

the process management quality management of model engineering and model

configuration management. All activities in the full model life cycle are man-

aged and controlled implementation, process, and quality.

Model management M
odel engineering process

Model engineering standareds

Model engineering foundation

Model engineering tools

M
aintenance

A
pplication

V
V

&
A

D
esign

Q
uality m

anagem
ent of m
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R
equirem

ent

C
onstruction

Fig. 2.6 The BoK framework of the model engineering
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• Part 4: Model engineering tools: it provides the necessary software tools for the

implementation and application of the full life cycle of the model engineering.

• Part 5: Related standards of model engineering: it includes rules, protocols, or

specifications, which are necessary for implementation of model engineering

and development of related tools.

The detailed contents of each part can be found in Zhang et al. (2014a).

2.5 Service-Oriented Model Engineering and Simulation
Environment

The construction and management based on model engineering are shown in

Fig. 2.7 (Zhang et al. 2014b). Taking modeling as an example, a simulation scenario

is given, then multiple subtasks of the system are formed automatically according to

the scenario, and automatic matching between tasks and processes is completed in

the model engineering platform, so a new model is built. This just-built model can

be added into the model library as a case; therefore, the model library is enriched.

The use, management, and maintenance are completed by the full life cycle of

model engineering.

2.5.1 Architecture of Service-Oriented Model Engineering
and Simulation Environment

Service-oriented technology is one of the most powerful and popular technologies

to the development, management, and integration of software intensive systems and

has been widely applied to lots of different domains.

A service-oriented model engineering and simulation environment is a kind of

software to support the implementation of model engineering (Zhang et al. 2014b)

and simulation (Fig. 2.8). There are five layers including model component layer,

model service layer, model management layer, simulation layer, and application

layer. The functions of each layer are as follows:

1. Model component layer: there are various models, such as qualitative model,

quantitative model, linear model, and nonlinear model. Meanwhile, these

models are provided by different organizations and developers, which can lead

to model heterogeneity, so model component layer is needed to classify and

organize models.

2. Model service layer: this layer is a process of model normalization. It provides

interface specifications among models and conducts unified service encapsula-

tion and transformation (e.g., service–agent modeling (Si et al. 2009; Liu
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et al. 2014) is a kind of method), and then the standardized model is put into the

model service center.

3. Model management layer: model management layer executes management and

operation of models in the model service center, such as searching, matching,

Simulation 
scenario

Task 1

Task n

Task 2

Simulation

searching

configurion

VV&A

composition

matching baxxf +=)(

maintenance

Data sheet model
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relationship model
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composition, configuration, modification, VV&A, etc. Fast and accurately

matching among models is guaranteed by management, so requirements of

M&S can be satisfied.

4. Simulation layer: simulation layer mainly consists of simulating calculation,

visualization, man–machine interaction. Simulating calculation means getting

simulation results under the help of software and hardware. Visualization tech-

nology can realize transparent model development and management, as well as

facilitate the process of understanding and monitoring; man–machine interaction

can support different types of interactions.

5. Application layer: different kinds of applications can be carried out with the help
of model engineering. These applications can include manufacturing, medical

treatment, military, environment, society, etc. This reflects the value of model

engineering itself and its contributions to society development.

2.5.2 Implementation of a Service–Agent-Based Model
Engineering Supporting Environment

According to the idea of model engineering, the elements in a model library should

have the characteristics of service oriented, intelligence, standardization, etc.

2.5.3 Encapsulation of Model Components

To achieve this purpose, we use service–agent (SA) that was proposed in Si

et al. (2009) to encapsulate component models in the model library. Service–

agent is a combination of service and agent, which can make service with agent

characteristics (Si et al. 2009; Liu et al. 2014) and will be well suited to features of

SoS. The structure of a SA is shown in Fig. 2.9.

A SA has several features (Liu et al. 2014): (1) A SA is an autonomous entity

which observes and acts upon an environment and directs its activity toward

achieving goals. (2) A SA pertains to SOA standard with XML-based protocols

such as WSDL, SOAP, etc. (3) A SA has states, e.g., working state, prepared state,

waiting state, and searching state.

After component models are encapsulated into SAs, the process of modeling of a

complex system can be transferred into the process of composition of SAs in the

model library. Theoretically, the composition of component models with SAs can

be automatic and have the ability to be self-adapted to the uncertainty of SoS.
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2.5.3.1 Specifications of Service Agents

Specifications of SA are basis of communication, interaction, and composition

among SAs. A set of SA specifications were given by Zhang et al. (2014b). The

SA specifications are described as three parts: interface specifications, architectural

specifications, and implementation specifications.

1. Interface specifications: SA external interface is either java component interface

or web service, which can support integration of local area network (LAN) and

wide area network (WAN). The purpose of user-oriented interface layer speci-

fication is to unify the descriptions of components and build standard calling

interfaces for components. Component interface follows the principle of service

orientation, which let users pay attention to functions provided by components,

rather than the internal structure and state of components.

2. Architectural specifications: SA has the characteristics of environment aware-

ness and special communication interface, which general simulation compo-

nents do not have. These reflect the intelligence of SA. Architectural layer is

designed to support the underlying services for interface layer, while conducts

constraint and guidance as a component for realizing infrastructure by special-

ized technological standard for implementation layer.

3. Implementation specifications: One implementation for the SA is an agent based

on JADE/JAVA platform. Compared with general agents, this endows SA with

function operations in the form of web service and can support web integration.

We discuss DEVS-based approaches to service-oriented model engineering in

Section 2.6.

2.5.3.2 Cooperation Mechanism of SA

Cooperation mechanism of SA can be different according to different SA specifi-

cations and applications. A mechanism is given in Liu et al. (2014). In the
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mechanism, a SA is designed to have four states including the working state,

prepared state, waiting state, and searching state. In working state, service agent

provides service and receives output from its previous SA. In prepared state, all

behaviors are blocked for a new message to come. Waiting state is for the workers.

In this state, the worker receives other organization members’ ID information and

input/output matching information from the organizer. Searching state is for the

organizer. The organizer adopts “first come first serve” strategy to choose workers.

A composition algorithm is given based on the above cooperation mechanism,

and a software platform prototype for an abstracted SoS simulation problem is also

developed (Liu et al. 2014). This prototype used JADE4.1 (Java Agent Develop-

ment Framework) platform to perform model composition with the SA-based

method. JADE is a MAS (multi-agent system) software development platform in

JAVA language. Web services are published in a Tomcat7.0 container and are

packaged byWSIG (JADEWeb Service Integration Gateway) plug-in. The purpose

of WSIG is to achieve the integration of MAS and WS (web service) architecture.

2.6 DEVS-Based Service-Oriented Model Engineering
and Simulation Environment

Mittal (2014) describes model engineering for cyber complex adaptive systems, a

very challenging class of SoS, by extending Model-Based Systems Engineering

(MBSE) paradigms (Zeigler 1976; Zeigler et al. 2000; Mittal and Martin 2013).

Applied to complex adaptive systems, model engineering must address distinct

challenges posed in the M&S domain such as model composability and

executability. These problems can be overcome with formalisms that distinguish

models (which represent the essence of a SoS) from simulators (which are the

platforms for executing the models to generate their behavior). To do so, we can

employ the theoretical and conceptual frameworks such as the systems-based

DEVS concepts presented earlier. The DEVS formalism provides a sound and

practical foundation for the architecture of model engineering and simulation

environment presented in Fig. 2.7. Some of the main reasons for basing the

architecture on DEVS are the following:

• DEVS formalizes what a model is, what it must contain, and what it doesn’t
contain (e.g., experimentation and simulation control parameters are not

contained in the model).

• DEVS represents a system of interest (SoI) using well-defined input and output

interfaces. This is critical because composing models requires respecting such

boundaries for the constituent referent SoIs.

• DEVS is universal and unique for discrete event system models in the sense that

any system that accepts events as inputs over time and generates events as

outputs over time is equivalent to a DEVS in a strong sense: i.e., its behavior

and structure can be described by such a DEVS.
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• A DEVS model is a system-theoretic concept specifying inputs, states, outputs,

similar to a state machine. Critically different, however, is that it includes a time-

advance function that enables it to represent discrete event systems, as well as

hybrid systems with continuous components in a straightforward platform-

neutral manner.

• DEVS-compliant simulators execute DEVS-compliant models correctly and

efficiently. DEVS defines what’s necessary to compose modularized models

that will be executable by a compliant simulator.

• DEVS models can be executed on multiple different simulators, including those

on desktops (for development) and those on high-performance platforms, such

as multi-core processors.

• DEVS supports model continuity which allows simulation models to be exe-

cuted in real time as software by replacing the underlying simulator engine.

Mittal (2014) stresses the fundamental difference between software-based dis-

crete event simulation and systems-based discrete event simulation. While the

former is strictly based on object-oriented software engineering paradigm (e.g.,

Schmidt 2006; Volter et al. 2006), the latter enforces Wymore’s System Theory on

the object-oriented discrete event simulation engine as shown in Section 2. Since

cyber complex adaptive systems are multi-agent adaptive systems at the funda-

mental level, there are many agent-based modeling (ABM) tools available to

represent them. Unfortunately, due to their software-based object orientation, the

large majority of these tools do not conform to Wymore systems theory’s closure
under composition principle. In contrast, a DEVS-based agent has the notion of a

system attached to it and is built on formal semantics that adheres to Wymore’s
systems theory. Such an approach makes it possible to develop a simulator, a

simulation protocol, and a distributed high-performance engine for agent/system

model’s execution that ensures that closure of coupling is not violated. Moreover,

DEVS formal specification allows it to interface with model-checking tools based

on unified modeling language (UML) tools to supplement simulation with formal

verification and validation, a critical feature of model engineering (Zeigler and

Nutaro 2014).

Several M&S environments exist that support the DEVS-based methodology

just described, including DEVS-Suite, CD++, DEVSim++, JAMES II, Python

DEVS, and VLE (see the list at DEVS Standardization Group (2014) for descrip-

tions). Mittal and Martin (2013) describe packaging all these functionalities in a

netcentric DEVS Virtual Machine (VM) that provides and agent-execution envi-

ronment to apply to cyber complex adaptive systems. The M&S environment

MS4Me was developed as the first in a commercial line of DEVS products

(ms4systems.com). It employs Xtext, an EBNF grammar, within the Eclipse

Modeling Framework on the Rich Client Platform and the Graphical Modeling

Project to provide a full-blown IDE specifically tailored to a DEVS development

environment (Zeigler and Sarjoughian 2012).
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2.6.1 System Entity Structure (SES)

The System Entity Structure (SES) formalism is an ontology representation of

compositions, components, and coupling patterns that can be pruned to select a

particular hierarchical model tree information structure. Automatic synthesis can

then generate an executable simulation model through selection of model compo-

nents in the model base (Zeigler 1984; Kim et al. 1990; Kim and Zeigler 1989). The

SES is implementation agnostic and can be represented in various knowledge

representation frameworks including standard relational data formalisms (Park

et al. 1997; Kim and Kim 2006; Zeigler et al. 2013).

The SES/MB framework has been studied in various computational environ-

ments and applied to numerous industrial problems (Mittal et al. 2006; Cheon

et al. 2008). Recently, the SES/MB framework has seen increasing application to

M&S of system of systems (SoS). Commercial environments have been developed

to enable more flexible representation of alternatives (including composition pat-

terns and hierarchical components) and rule-based constraints for pruning enabling

the development of suites of families of models (Zeigler and Sarjoughian 2012).

Distributed simulations of complex federations in HLA can now be generated in

addition to the original stand-alone simulations (Kim et al. 2013; Seo and Zeigler

2009).

The methodology has led to the Hierarchical Encapsulation and Abstraction

Principle which allows combining the top-down paradigm for the constructive

simulation with the bottom-up paradigm for the emergent simulation. Applications

have been to simulation study of agent-based tactical and operational effectiveness

of warfare and network vulnerability analysis (Chi et al. 2009; You et al. 2013; You

and Chi 2009).

Table 2.1 summarizes the above review by examining the layers of service-

oriented model engineering and simulation environment presented in Fig. 2.8 from

the point of view of DEVS support.

DEVS enables new frameworks for application domains, especially those that

feature continuous/and discrete systems that interact (sometimes called hybrid

systems). Some examples such as production flows in the food industry, building

energy design, quantum key distribution (QKD) systems, and agent-based trans-

portation evacuation are presented in Table 2.2 in terms of their novel features and

unique capability offered when compared to existing approaches. DEVS also

supports tools for simulating such models. For example, a compiler that employs

DEVS to execute models expressed in the well-known simulation language,

Modelica.
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2.7 Conclusion

Inspired by Prof. Tuncer Ören’s broad perspective on the M&S enterprise, we

probed the nature of model engineering as spanning the life cycle of a model in

the context of systems of systems engineering, particularly implemented with

service orientation. We presented an architecture for service-oriented model engi-

neering and simulation environments whose layers support the various activities of

model engineering. Based on the results of DEVS research, we gave a more

concrete characterization of such an environment and how model engineering and

DEVS enable new frameworks for application areas. Unifying the various activities

needed to produce credible models via the concept model engineering is only in its

infancy.

Further research is needed to organize and deepen the body and knowledge and

to probe each of the architectural layers we have identified, establish their cross

connections, and add new ones as needed. The application context of service

orientation is a good one to focus attention on the implementation of support for

model engineering but not necessarily the only context in which support might be

conceived. Similarly, DEVS theory and research have given much solid substance

to the body of knowledge and practice of model engineering but more general

Table 2.1 Layers of service-oriented model engineering and simulation environment

Layer Description DEVS support

Model com-

ponent layer

Classifies and organizes models Implementation agnostic, flexible

representation of alternatives (includ-

ing composition patterns and hierar-

chical components), and rule-based

constraints for pruning enabling the

development of suites of families of

models

Model ser-

vice layer

Provides model standardization with

interface specifications, unified service

encapsulation, and transformation

The DEVS formalism provides a for-

mal basis for semantic and pragmatic

interoperability among DEVS models

using Service-Oriented Architecture

and DEVS Namespace

Model man-

agement

layer

Executes searching, matching, com-

position, configuration, modification,

and VV&A

Pruning of the SES enables automatic

synthesis of an executable simulation

model through extraction and cou-

pling of model components in the

model center

Simulation

layer

Provides simulation, visualization,

man–machine interaction

The DEVS Abstract Simulator pro-

vides a standard distributed DEVS

protocol for interoperation of DEVS

simulators

Application

layer

Enables model engineering applica-

tions to specific domains

Numerous applications have been

done with DEVS-based M&S. Exam-

ples of the development of frame-

works are given below
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theory of M&S should inform and unify such a body. For example, ultimately the

elements, such as experimental frame, simulator, etc., and relations (modeling,

simulation, applicability, etc.) of the theory of M&S must be brought in to fully

consider the best practices for M&S and offer normative views on how to formulate

the knowledge needed to make them better.

Table 2.2 DEVS-enabled frameworks

Application area Novel feature Unique capability

Components: processing

units, conveyor belts

New framework for carrying

out simulations of continuous-

time stochastic processes

Keeping track of parameters

related to the process and the

flowing material (tempera-

ture, concentration of pollut-

ant) is also considered. Since

these parameters can change

over time in a continuous

manner, the possibility to

transmit those laws as func-

tions is introduced in the

model

Development of DEVS

models for building energy

design

Allow different professions

involved in the building

design process to work inde-

pendently to create an inte-

grated model

Results indicate that the

DEVS formalism is a prom-

ising way to improve poor

interoperability between

models of different domains

involved in building perfor-

mance simulations

Components: occupants,

thermal network points, win-

dows, HVACs, etc.

Quantum key distribution

(QKD) system with its com-

ponents using DEVS

DEVS assures that the devel-

oped component models are

composable and exhibit tem-

poral behavior independent of

the simulation environment

Enable users to assemble and

simulate any collection of

compatible components to

represent complete QKD

system architectures
Components: classical pulse

generator, polarization mod-

ulator, electronically variable

optical attenuator, etc.

DEVS framework for trans-

portation evacuation integrat-

ing event scheduling into an

agent-based method

This framework has a unique

hybrid simulation space that

includes a flexible-structured

network and eliminates time-

step scheduling used in classic

agent-based models

Hybrid space overcomes the

cellular space limitation and

provides flexibilities in simu-

lating evacuation scenarios

Model is significantly more

efficient than popular multi-

agent simulators. Keeps high

model fidelity and the same

agent cognitive capability,

collision avoidance, and low

agent-to-agent communica-

tion cost

Components: vehicles, agents
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Ören TI (2005) Toward the body of knowledge of modeling and simulation (M&SBoK). In:

Proceeding of I/ITSEC (Interservice/Industry Training, Simulation Conference), Orlando,

28 Nov–1 Dec, paper 2025, pp 1–19

42 B.P. Zeigler and L. Zhang

http://cell-devs.sce.carleton.ca/devsgroup/?q=node/8
http://cell-devs.sce.carleton.ca/devsgroup/?q=node/8
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