
Chapter 2
Designing Societies of Robots

Pablo G. Esteban and David Ríos Insua

Abstract We provide a framework to model competition and cooperation within a
group of agents. Competition is dealt with through adversarial risk analysis, which
provides a disagreement point and, implicitly, through minimum distance to such
point. Cooperation is dealt with through a concept of maximal separation from the
disagreement point. Mixtures of both problems are used to refer to in-between behav-
ior. We illustrate the ideas with several experiments in relation with groups of robots.

2.1 Introduction

Personal robots are becoming increasingly present in our daily lives, helping us at
museums, airports or even at work and home as personal assistants and companions.
The long-term aim of this work is to design an autonomous emotional decision
making agent capable of interacting with several persons and agents. This means
that our agent will learn the appropriate behavior based on its own experience and
the interactions with users and other agents. It will decide its actions based on its
system of values, incorporating emotional elements, and on the impact it has on its
surrounding environment. Such agents may be used e.g. as interactive robotic pets,
robotic babysitters and teaching assistants or cooperative care-givers for the elderly.

In [21], we described a behavioral model for an autonomous decision agent
which processes information from its sensors, facing an intelligent adversary using
multi-attribute decision analysis at its core, complemented by models forecasting the
decision making of the adversary. We call this the basic Adversarial Risk Analysis
(ARA) framework, see [19].
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In this chapter, we refer to multi-agent systems, see [27], exploring the social
needs of our agent and how it handles interactions with several agents, both human
and robotic ones, considering competitive as well as cooperative scenarios. Within
competitive scenarios, the agent faces conflicts through ARA models (and implicitly
minimizes the distance to the ARA solution). Conversely, within cooperative sce-
narios, we use maximum separation from the disagreement point. As agents may
evolve from a cooperative to a competitive attitude, and vice versa, we introduce a
parametric model that mixes both models allowing for such evolution.

The chapter is structured as follows. In Sect. 2.2 we consider a case in which a
decision agent identifies several users and agents and competes with these in their
interaction with humans. In Sect. 2.3, we present a method to compute cooperative
solutions within a society of agents. Then, we describe the evolution from a compet-
itive to a cooperative attitude, see Sect. 2.4. Finally, we provide some computational
experience with a set of robots in Sect. 2.5 and end up with a discussion.

2.2 Supporting a Competing Agent

We assume that several agents compete to accomplish a certain goal involving users
in a scene. Traditionally, the favored solution within such environments is Nash equi-
libria and related concepts, see [8, 15] or [14], but this typically requires too strong
common knowledge assumptions. We shall rather use ARA concepts, which avoid
such assumption through an explicit Bayesian model of the capabilities, probabilities
and utilities of the adversaries.

In ARA, we aim at supporting one of the agents who will use a decision analytic
approach to solve its decision-making problem. It will aim at maximizing expected
utility, taking into account a random model over the probabilities and utility functions
of its opponents. This is developed using a hierarchy of nested models of decision
processes, following a Bayesian version of level-k thinking, see [22]. This level-k
hierarchy is indexed by how deep the player thinks its opponents’ decision-making
processes are. If the agent behaves randomly, it is a level-0 thinker; if the agent
behaves as its opponents are level-0 thinkers, it is a level-1 thinker; and so on. For this,
it needs to forecast the actions of the other agents and, consequently, the outcomes
which it and its opponents will receive as a result of their interaction. This can be
viewed as a Bayesian approach to games, as initiated, in non-constructive ways, by
[12, 16, 17]. The approach has been criticized in [10] or [15], among others. The
main obstacle to operationalizing such analysis has been the lack of mechanisms
that allow the supported decision maker to encode its subjective probabilities about
all components in its opponents’ decision making. We described a first approach to
such problem within a robotics context in [7]. Here we extend such approach. Other
ideas may be seen in [19, 20].

Consider a set of r agents A1, A2, . . . , Ar , possibly in presence of a set of q users
B1, B2, . . . , Bq , within an environment E . At each planning instant t , the agents will
perform their respective actions at = (a1t , a2t , . . . , art ), all of them in a finite setA ,
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Fig. 2.1 Agent loop with adversary recognition

whereas users will implement their corresponding actions bt = (b1t , b2t , . . . , bqt ),
all of them in a finite setB. BothA andB will typically include a do nothing action.
The (multi-attribute) utilities that the r agents will obtain will be, respectively:

u1(at , bt , et ), u2(at , bt , et ), . . . , ur (at , bt , et ).

Thus, each agent receives a utility which depends not only on what it has imple-
mented, but also on what the other agents and users have done, as well as on the
resulting environmental state et ∈ E , which we also assume to be finite.

With respect to the agent’s decision model, we assume that the agent faces just
one adversary at each of the time steps of the scheme described in Fig. 2.1, which
we detail in later sections.

Using some identification method, e.g. based on voice and/or vision, the agent will
guess which is the user/agent it is dealing with and adapt its behavior accordingly.
The difference between facing another agent or a user would essentially be the set
of actions available for the corresponding adversary forecasting model. We assume
that agent Ai computes the probabilities pi (Bx |Dt ) of various adversaries Bx faced,
both users or agents, given the data Dt available.

Assume we support agent A1. For computational reasons, we limit the agent’s
memory to only the previous two periods, i.e. at (t − 1) and (t − 2). Then, the
forecasting model will be of the form

p1(et , bt , a−1t | a1t , (et−1, at−1, bt−1), (et−2, at−2, bt−2), Dt ), (2.1)

where a−1t would be the actions of all agents performed at time t , excluding that of
our supported agent action a1t . Thus, it aims at forecasting the reaction bt of users,
the evolution et of the environment and the actions a−1t of the other agents, given
the action of the supported agent a1t and the recent history (et−1, at−1, bt−1) and
(et−2, at−2, bt−2). We shall drop the Dt dependence from now on to simplify the
notation.
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We shall condition (2.1) on the faced adversary through

p1(et , bt , a−1t | a1t , (et−1, at−1, bt−1), (et−2, at−2, bt−2)) =
=

∑

Bx

[
p1(et , bt , a−1t | a1t , (et−1, at−1, bt−1), (et−2, at−2, bt−2), Bx ) × p(Bx )

]
.

(2.2)

From now, we refer to each of the terms in the summation in (2.2) dropping the
dependence on Bx , except when convenient for expository reasons. By standard
computations, each term p1(et , bt , a−1t | a1t , (et−1, at−1, bt−1), (et−2, at−2, bt−2))

in (2.2) becomes

p1(et | bt , at , (et−1, at−1, bt−1), (et−2, at−2, bt−2))×
× p1(bt , a−1t | a1t , (et−1, at−1, bt−1), (et−2, at−2, bt−2)).

We assume that the environment remains exclusively under the users’ control who
may solely manipulate light, sound, temperature and other environmental variables.
Then, this becomes

p1(et | bt , et−1, et−2) × p1(bt , a−1t | a1t , (et−1, at−1, bt−1), (et−2, at−2, bt−2)).

(2.3)
The second term in (2.3) may be decomposed taking into account the forecasting
models for the adversaries involved in the scene. Note that when our supported agent
A1 faces a robotic agent A j , the forecasted action a jt of such agent, will depend on
the last action of agent A1, since we consider the agents to act simultaneously. On
the other hand, the users’ actions will depend on all of the incumbent agent’s actions
at . Thus, (2.3) is decomposed as

p1(et | bt , et−1, et−2) ×
q∏

k=1

p1(bkt | at , bk(t−1), bk(t−2))×

×
r∏

j=2

p1(a jt | a j (t−1), a j (t−2), a1(t−1)), (2.4)

where we remove dependence on (et−1, et−2) in the last two groups of factors because
we assume adversaries prioritize making their decisions given others’ actions, rather
than reacting to environmental changes. When forecasting the k-th user action the
supported agent will maintain several models Mk

i with i ∈ {0, . . . , r}, in connection
with the second group of factors in (2.4). The first model, Mk

0 , describes the evolution
of the user by herself, assuming that she is in control of the whole environment and
is not affected by the agent actions. The rest of them, Mk

i with 0 < i ≤ r , refers
to the user reactions to the various agents’ actions. We combine them using model
averaging, see [5, 11]:
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p1(bkt | at , bk(t−1)bk(t−2)) = p(Mk
0 )p1(bkt | bk(t−1), bk(t−2))

+
r∑

j=1

p(Mk
j )p1(bkt | a jt ), (2.5)

with
∑r

i=0 p(Mk
i ) = 1, p(Mk

i ) ≥ 0.
Similarly, when forecasting the j-th agent actions, j ∈ {2, . . . , r}, the supported

agent will maintain two models N j
i with i ∈ {0, 1}, in connection with the third

group of factors in (2.4). The first model, N j
0 , describes the evolution of the incumbent

robotic agent, assuming that it is not affected by any other agent’s actions. The second
one, N j

1 , refers to the j-th agent’s reaction to the agent A1’s actions. Again, they are
combined through model averaging:

p1(a jt | a1t−1 , a jt−1 , a jt−2) = p(N j
0 )p1(a jt | a jt−1 , a jt−2)

+ p(N j
1 )p1(a jt | a1t−1), (2.6)

with p(N j
0 ) + p(N j

1 ) = 1, p(N j
i ) ≥ 0, for each agent j �= 1.

In summary, the components of the forecasting model for agent A1 are: the first
term in (2.4), called the environment model, and the rest, which are models to forecast
the adversaries’ (agents and users) actions. The environment model is described in
[21] and comprises variables referring to the battery level, temperature, inclination,
sound, presence of an identified adversary, light and being touched. Regarding fore-
casting of adversaries’ actions, we consider that each opponent may be reactive or
independent to our supported agent A1: each adversary forecasting model will be
decomposed into the adversary and the classical conditioning models, respectively.

As we are in a competitive scenario, each agent aims at maximizing its expected
utility. When the agents implement at = (a1t , a2t , . . . , art ), agent A1’s expected
utility will be:

ψ1(at ) =
∫

. . .

∫
u1(at , bt , et )

× p1(et | bt , et−1, et−2) ×
q∏

k=1

p1(bkt | at , bk(t−1), bk(t−2)) db1t . . . dbqt det .

The agent will aim at maximizing its expected utility based on forecasts of the other
agents defined through

max
a1t

ψ1(a1t ) =
∫

. . .

∫
ψ1(at )

⎡

⎣
r∏

j=2

p1(a jt | a1(t−1), a j (t−1), a j (t−2))

⎤

⎦ da2t . . . dart .

(2.7)
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The relevant probability models regarding users’ and agents’ actions are described
in (2.5) and (2.6), respectively.

The solution of this problem provides the maximum expected utility f ∗
1t that the

agent A1 may achieve by thinking about itself and forecasting what the other agents
would do, as well as the corresponding optimal action a∗

1t , which is the one that the
agent should implement.

2.3 Supporting Cooperative Agents

We focus now on cooperative cases: several agents collaborate to find out the solution
that best satisfy them when interacting with users in achieving a specific task. We
assume that a Computerized Trusted Third Party (CTTP) plays the role of an arbitrator
solving the cooperative game. There will be communication among the agents and
with the arbitrator. Each agent individually aims at maximizing its expected utility
as in (2.7), which would be sent to the CTTP.

Once the CTTP has received ψ j , for each agent j , we may use cooperative game
theory, to find the solution within this scenario. There are different methods within
that framework, see [24, 25] for reviews, including the Nash Bargaining and the
Kalai-Smorodinsky solutions. We shall use a method that finds a solution maximizing
the distance to the ARA solutions or, more generally, to a disagreement point.

A cooperative game is defined by a tuple (F, d). F is the set of attainable
(expected) utilities by the agents. In our case, F = {x ∈ Rr : x = (ψ1(a), . . . ,

ψr (a)), for a ∈ A r }, thus being finite. The set F will be changing over time since it
depends on the forecasting models of the agents, which evolve dynamically, therefore
modifying the expected utilities. d = (d1, . . . , dr ) is the disagreement point, i.e. the
pre-specified utilities obtained when there is no agreement among the agents. d will
also typically change over time, as F does. By repeating the procedure in Sect. 2.2
for each participant, we obtain f ∗

j , j = 1, . . . , r . If f ∗ = ( f ∗
1 , . . . , f ∗

r ) belongs to
F , then f ∗ will play the role of disagreement solution d. Note, however, that since
f ∗

j is solved unilaterally, it could be the case that f ∗ �∈ F . In such case, we could
solve the problem d = arg minx∈F (L p(x, f ∗)) for some L p distance, and use d as
the disagreement point.

If, otherwise, an agreement is reached, the alternative chosen is the solution con-
cept of the game, defined by φ j (F, d), for each agent j . For our approach, we stem
from the classic cooperative game solution in [28], which looks for minimizing an
L p distance to an ideal point. Based on that idea, given the disagreement point d, we
shall look for a point x ∈ F , with x ≥ d, which maximizes an L p distance from the
disagreement point.

φ(F, d) = arg max
s.t. x∈F

x≥d

L p(x, d) = arg max
s.t. x∈F

x≥d

⎡

⎣
r∑

j=1

(x j − d j )
p

⎤

⎦
1/p

.
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Note that the set F ∩{x ≥ d} will be non-empty, since, at least, d belongs to such set.
Therefore, the solution is well defined. Note that, intuitively, since d is a disagreement
solution, and we are promoting agreement, we want to separate as much as possible
from it.

Note that when p = 1, the optimization problem is equivalent to

arg max
s.t. x∈F

x≥d

r∑

j=1

x j ,

which corresponds to the utilitarian solution, see [23]. When, p = ∞, the optimiza-
tion problem is

arg max
j∈R

max (x j − d j ),

thus aiming at maximizing the maximum payoff for the agents. A validation of this
solution concept in axiomatic terms may be seen in [6], in which we compare it with
the Nash Bargaining and Kalai-Smorodinsky solutions.

2.4 Competition or Cooperation?

As described above, agents may compete or cooperate among them to reach their
objectives and goals. As we are referring to autonomous agents, we expect them to
choose when and how to cooperate or compete, forming an autonomous society.

To model this possibility, each agent j would have two parameters λ j1 and λ j2,
with λ j1, λ j2 ≥ 0 and λ j1+λ j2 = 1. The parameter λ j1 refers to the cooperativeness
of the agent, whereas λ j2 refers to its competitiveness. Such parameters may be
influenced by different factors, including the agent’s experience, as in Sect. 2.5.5.
Depending on such factors, the agent will modify its behavior. Let us imagine a
scenario in which the parameters depend on the opponents’ actions. Suppose that
most agents are attacking or ignoring the j-th agent. Then, A j will not likely want to
behave cooperatively, but competitively, so that λ j1 will be close to 0 (and λ j2 will
be close to 1).

As there is communication between the agents and the CTTP, each agent j will
send its parameters λ j1 and λ j2. We assume that the agents operate under the FOTID
(Full, Open, and Truthful Intermediary Disclosure) framework in [18]. The CTTP
would compute an average value of those parameters to find the society’s attitude
towards cooperation, e.g. through

λk = 1

r

r∑

j=1

λ jk, k = 1, 2.
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Note that λ1, λ2 ≥ 0 and λ1 +λ2 = 1. As we are interested in combining cooperative
and competitive behavior, we propose the following solution concept

φ(F, d) = arg max
s.t. x∈F

x≥d

(
λ1 L p(x, d) − λ2 Lq(x, d)

)
, (2.8)

for given L p and Lq distances, with p �= q.1 Depending on these parameters, λ1 and
λ2, the proposed method shall allow the agents to modify their social behavior. The
CTTP will compute the solution concept of such game, sending back the suggested
agreement to the involved agents in the game, which would accept it in an arbitration
sense.

Indeed, under a fully cooperative environment, λ j1 = 1 for each agent j , the
society will have parameters λ1 = 1 and λ2 = 0, and (2.8) becomes:

φ(F, d) = arg max
s.t. x∈F

x≥d

L p(x, d),

corresponding to the solution concept in Sect. 2.3. Similarly, under a fully competitive
environment, λ j1 = 0 for each agent j , the society parameters will be λ1 = 0 and
λ2 = 1. The arbitrator would then solve

φ(F, d) = arg max
s.t. x∈F

x≥d

(− max Lq(x, d)
) = arg min

s.t. x∈F
x≥d

Lq(x, d),

whose solution is the disagreement point d.
When at least one of the agents is not fully cooperative, neither fully competitive,

0 < λ j1 < 1, and 0 < λ1, λ2 < 1. We then have a mixed behavior as we illustrate
through an example, see Fig. 2.2. Given the set F of alternatives, marked by white
points, and the disagreement point d = (0.3, 0.3), in red, we look for the solutions
of the game (represented in green and pointed by an arrow) when we change the
cooperativeness and competitiveness parameters. Points attaining objective function
level 1 in (2.8) are shown in grey. We distinguish three cases: in Fig. 2.2a, the solution
is x∗ = (0.7, 0.6), and this happens whenever the cooperativeness parameter is
λ1 ≥ 0.5; in Fig. 2.2b, the solution is x∗ = (0.55, 0.55), and this happens whenever
0.3 < λ1 < 0.5. Finally, in Fig. 2.2c, the solution is x∗ = d = (0.3, 0.3), which
happens whenever λ1 ≤ 0.3.

1 This is made to allow for behavior in between cooperation and competition. If p = q, then
φ(F, d) = arg max(λ1 − λ2)L p(x, d) which leads to the fully competitive or the fully cooperative
solution, depending on the sign of (λ1 − λ2).
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Fig. 2.2 The compromise solution varies when a λ1 ≥ 0.5; b 0.3 < λ1 < 0.5; c λ1 ≤ 0.3

2.5 Computational Experience

In this Section, we assess the solution concepts presented in Sects. 2.2, 2.3 and 2.4,
using simulations with the robotic platform AiSoy1, see [1]. This platform includes
as sensors a camera to detect objects or persons within a scene; a microphone used
to recognize when the user talks and understand what she says, through an ASR
(Automatic Speech Recognition) component; several touch sensors to interpret when
it has been stroked or attacked; an inclination sensor so as to know, whether or not,
the robot is in vertical position; a light sensor and a temperature sensor. As actuators,
it includes several servos that allow it to move some parts of its body, but it mostly
uses a text-to-speech system (TTS) combined with a led matrix to simulate a mouth
when talking. Using an RGB led in the middle of its body, it is capable of showing
different colors that symbolize the predominant emotion at that moment. It is based
on a Raspberry Pi board.



42 P.G. Esteban and D.R. Insua

2.5.1 Basic Setting

We simulate an environment in which a user (B1) is simultaneously interacting with
two robotic agents (A1 and A2). Both agents make their decisions based on the
ARA framework described in Sect. 2.2 considering their opponents as non-strategic
thinkers. Thus, they are in a first level of the level-k thinking hierarchy, as in [22].
We assume that the user interacts with both agents simultaneously. They will start
with the same level of battery and environmental conditions.

The agents have fifteen available alternatives for implementation at each time step
with A = {a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15} = {ask for
help, salute, ask for charging, complain, play, speak, ask for playing, ask for shutting
down, tell jokes, tell events, obey, flatter, offend, apologize, do nothing}. On the user’s
side, based on the sensor readings, the agents are able to infer sixteen user act-
ions with B = {b1, b2, b3, b4, b5, b6, b7, b8, b9, b10, b11, b12, b13, b14, b15, b16} =
{recharge, stroke, flatter, apologize, attack, offend, move, blind, shout, discharge,
speak, ignore, order, play, update the robot software, do nothing}.

To simulate the user’s behavior we make the following assumptions:

• Whenever an agent asks for charging, the user will actually recharge it.
• At least, the user will perform update once per 10,000 iterations, to simulate

periodical software updates.
• To simulate a user which pays some attention to the robot, 50 % of time the user

will behave reactively to our agents’ actions. For example, if the agent performs
a4 = complain, the user would randomly choose an action among the set {flatter,
speak, play, stroke, apologize, recharge, ignore, do nothing}, probably looking for
cheering the agent up.

• Otherwise, the action performed by the user will be randomly generated as
explained below.

2.5.2 Forecasting Models

As the agents are performing at level-1, we may use matrix-beta models with prior
and posterior Dirichlet distributions for the adversary and the classical conditioning
models in Sect. 2.2.

Assume that we are supporting agent A1, which will face user B1 and agent A2.
For the adversary models we have, for user B1, a posterior Dirichlet distribution

p1(b1t = bk | b1(t−1) = b j , b1(t−2) = bi , Dt ) ∼ Dir(ρB1
i j1 + hB1

i j1, . . . , ρ
B1
i jn + hB1

i jn),

with b1t ∈ B, and hB1
i jk designating the number of occurrences in which B1 performed

b1t = bk after having implemented b1(t−1) = b j and b1(t−2) = bi ; and ρ
B1
i jk are the
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prior parameters with ρ
B1
i jk > 0 for i, j, k = 1, . . . , n. In case the adversary is

agent A2,

p1(a2t = ak | a2(t−1) = a j , a2(t−2) = ai , Dt ) ∼ Dir(ρ A2
i j1+h A2

i j1, . . . , ρ
A2
i jm +h A2

i jm),

with a2t ∈ A and h A2
i jk designating the number of occurrences in which agent A2

performed a2t = ak after having implemented a2(t−1) = a j and a2(t−2) = ai ; and

ρ
A2
i jk are the prior parameters with ρ

A2
i jk > 0 for i, j, k = 1, . . . , m. The required data

will be stored in a three-dimensional matrix, where the last row accumulates the sum
of row values for each column. See [21] for additional explanation.

For the classical conditioning models, we have, for the human opponent B1, a
posterior Dirichlet distribution

p1(b1t = bi | a1t = a j , Dt ) ∼ Dir (β
B1
1 j + hB1

1 j , . . . , β
B1
nj + hB1

nj ), b1t ∈ B,

where, similarly, hB1
i j designates the number of occurrences when the user imple-

mented b1t = bi after having observed our supported agent A1 performing a1t = a j ;

and β
B1
i j are the prior parameters with β

B1
i j > 0 for i = {1, . . . , n}. The classical

conditioning model for agent A2 would be, analogously,

p1(a2t = ai | a1t = j, Dt ) ∼ Dir (β
A2
1 j + h A2

1 j , . . . , β
A2
mj + h A2

mj ), a2t ∈ A ,

where h A2
i j designates the number of occurrences when the opponent performed

a2t = ai when our supported agent implemented a1 = a j ; and β
A2
i j are the prior

parameters with β
A2
i j > 0 for i = {1, . . . , m}. In these cases, the required data will

be stored in a two-dimensional matrix.

2.5.3 Preference Model

Each agent will aim at satisfying five objectives as in [21], slightly modified here to
account for social interactions. We assume that the agents use a multi-attribute utility
function, see [4], adopting an additive form. In qualitative terms, the objectives are
ordered in hierarchical importance for the robot (1) to achieve a sufficiently high
energy provision; (2) to ensure that it performs under safe conditions; (3) to be
considered as a member of the society; (4) to be accepted as such; and, finally (5) to
achieve complete functionality by having its software updated to the latest version.
Utility weights were assessed initially with the constraint wi > wi+1 to take into
account the objectives hierarchy and tested for the sensibility of behavior of the robot.
The first objective u1(energy), as well as u22 (temperature), u23 (light), u24 (noise),
u315 (being touched), u32 (detection) and u52 (being updated), remain unchanged
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from [21] as none of them depend on the interaction with other participants. The
other sub-objectives will be extended as follows:

u21(attack) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if no attack from any user or agent is inferred at t

or at t − 1,

0.5, if after an attack at t − 1, there was no attack at t,

0, otherwise,

where attack refers to actions b5 = attack, b6 = offend and a13 = offend.

u311(not ignored) =

⎧
⎪⎨

⎪⎩

0, if the agent is ignored by any user at t

0.5, if it was ignored at t − 1, but was not at t

1, otherwise,

u312(being spoken) =

⎧
⎪⎨

⎪⎩

1, if an agent performs action speak at t

0.5, if an agent performed action speak at t − 1

0, otherwise,

where performing action speak refers to detecting the user, or another agent, initiating
a dialogue (i.e. b10 = speak or a6 = speak).

u313(asked to play) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if the robot is asked to play by the user

or by another agent at t,

0.5, if the robot was asked to play at t − 1,

0, otherwise,

where asked to play refers to detecting a request to play from the user (b13 = play),
including the game’s title, or by another agent (a7 = ask for playing).

u314(being ordered) =

⎧
⎪⎨

⎪⎩

1, if the robot receives an order from any user at t,

0.5, if the robot received an order at t − 1 but not at t,

0, otherwise,

where being ordered consists of detecting an order among a catalogue of verbal
actions (b12 = order).

u41(play) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if the robot inferred a user or another agent

playing around at t,

0.5, if the robot was playing with somebody at t − 1,

0, otherwise,
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where playing around is referred to actions b13 = play and a5 = play, respectively.

u42(flatter) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1, if the robot is flattered by a user

or by another agent at t,

0.5, if the robot was flattered by a user

or by another agent at t − 1,

0, otherwise,

being b3 = flatter and a12 = flatter, the incumbent actions.

u43(stroke) =

⎧
⎪⎨

⎪⎩

1, if the robot receives a stroke from a user at t,

0.5, if the robot received a stroke from a user at t − 1,

0, otherwise,

u44(apologize) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1, if the robot receives an apology from a user

or an agent after an attack,

0.5, if the robot received an apology from a user

or an agent at t − 1 after an attack,

0, otherwise,

being b4 = apologize and a14 = apologize the incumbent actions.
For its fifth objective, the robot considers its social adaptation. To do so, it evaluates

whether it is considered as socially useful by its peers, and whether it has been updated
recently. We represent this through

u5(social adaptation) = w51 × u51(socially useful)

+ w52 × u52(being updated),

with
∑2

i=1 w5i = 1, and weights ordered in importance as follows: w51 
 w52 > 0.
The aim of u51 is two-folded: on one hand, we want to evaluate whether the agent
is somehow recognized as a member of the society, inferring the reactiveness of its
opponents to its actions; on the other, we want to measure how good the reaction of
its opponents is. Our implementation of these ideas is

u51(socially useful) =
∑q

k=1 p(Mk
j )

q
× inter,

where p(Mk
j ) is the probability used to represent the j-th agent estimation of how

reactive the human opponents Bk were, see (2.5); and inter is the impact of the
reaction of opponent Bk at t , with
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inter =

⎧
⎪⎨

⎪⎩

1, if bt ∈ affective actions,

0.5, if bt �∈ affective actions and �∈ aggressive actions,

0, otherwise,

where the set of affective actions is {b1 = recharge, b2 = stroke, b3 = flatter,
b4 = apologize}, and the aggressive actions set is {b5 = attack, b6 = offend,
b7 = move, b8 = blind, b9 = shout, b10 = discharge, b12 = ignore}.

As explained in [21], agents operating in this way may end up being too pre-
dictable. This may be a shortcoming in certain applications leading to repetitive
interaction with the agents and, consequently, it losing interest in the users. We may
reduce such effect by choosing the next action in a randomized way, with probabili-
ties proportional to predictive expected utilities. However, there are certain rules that
must be satisfied before the randomization. For example, the action ask for help will
be performed only if the robot feels insecure, implemented through the component
utility function of the second objective being below 0.5; action salute will be per-
formed only if the robot detects a new user in the scene; action ask for charging will
be performed only if the battery level is below 20 %; and so on.

For each of the scenarios considered we performed 20.000 iterations, which took
about 10 min, corresponding to 166 h of actual interaction.

2.5.4 Competitive Scenario

Through this experiment, we want to show how a level-1 agent competes strictly
against a level-0 agent, first, and, secondly, against another level-1 agent. This cor-
responds to λ1 = 0 in our previous discussion. Recall that, in both cases, there is a
user interacting with the incumbent agents. In the first case, only one agent makes
its decision based on the ARA framework considering its opponents as non-strategic
thinkers, whereas in the second one, both of them do. We expect that when all the
decision agents within a society perform a level-1 ARA analysis, they perform as
under a fictitious play model in which players form beliefs about how opponents play
and maximize expected utility, see [2]. This leads them, after a sufficiently long per-
forming period, to a Nash Equilibria. In the experiment, we simulate that each agent
will consider, alternatively, the user and the opposite agent, as its adversary. After
updating their forecasting models, they would choose the action to be implemented
and update their internal clock.

We may appreciate the reaction of a level-0 agent and a level-1 agent (rows in both
cases), respectively, facing a user (columns) while behaving competitively against
each other in Figs. 2.3 (level-0 agent) and 2.4 (level-1 agent), where the size of the
boxes is proportional to the relative frequency of each agent action in response to
the user action. We may appreciate, based on the frequency of the corresponding
actions, that the level-1 agent behaves somewhat more coherently performing more
often actions like apologize, asking for help or complain, when the user has performed
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Fig. 2.3 Level-0 agent reacting to user actions. Box sizes proportional to the relative frequency of
the agent action in response to the user action

Fig. 2.4 Level-1 agent reacting to user actions. Box sizes proportional to the relative frequency of
the agent action in response to the user action

an aggressive action like attack, move or shout, among others. On the other hand, we
may appreciate that the behavior of the level-0 agent does not significantly change
depending on the action of the user, corresponding to a random behavior, with the
same distribution for each agent action given the action of the user.

Given that the user action and the environmental state are perceived simultane-
ously by all agents, any behavioral difference should be due to the strategic capac-
ity of the corresponding agent. Both level-1 agents achieve similar utility levels
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(first quartile ≈ 0.426, median ≈ 0.472, third quartile ≈ 0.527) when competing
against each other, as we expect them to be under a Nash Equilibria if they interact
for a sufficient long time. The level-1 agent reaches approximately the same level
of utilities facing a level-0 agent as before (first quartile ≈ 0.401, median ≈ 0.442,
third quartile ≈ 0.494). However, the utilities obtained by the level-0 agent are lower
(first quartile ≈ 0.343, median ≈ 0.395, third quartile ≈ 0.438). Recall that the utility
function is scaled between 0 and 1.

Similarly, the level-1 agent who competed against a sophisticated agent computed
slightly higher optimal utilities (first quartile ≈ 0.431, median ≈ 0.463, third quartile
≈ 0.507), than when facing a level-0 agent (first quartile ≈ 0.426, median ≈ 0.459,
third quartile ≈ 0.506).

This experiment thus suggests that sophisticated agents obtain approximately the
same utility levels independently of the adversary they are facing, but higher utilities
than less sophisticated ones. Therefore, there is indeed an advantage in performing
strategically.

2.5.5 Cooperative Scenario

Within the cooperative scenario, we assume that whenever the user performs an
action within the user’s interacting group of activities (speak, order and play), we
consider it as a potentially cooperative situation with agents trying to satisfy the
user. Both agents interact with the user and will establish communication through
the CTTP, which collects all the information needed from the agents and compute the
solution described in Sect. 2.4, which depends on the society’s cooperativeness and
competitiveness parameters. Each agent j has its own competitiveness parameter
λ j2. In this experiment, we shall assume that the competitiveness parameter will
depend on the utility level obtained in the previous iteration through λ j2 = 1 −
u j (at−1, bt−1, et−1), with λ j1 = 1 − λ j2. In other words, if the agent satisfies its
objectives, this will contribute positively to the society’s cooperativeness parameter:
the higher values of u j (at−1, bt−1, et−1), the closer it will be to 1, so that λ j2 will
be smaller (and λ j1 bigger).

In this experiment we study which is the solution suggested by the CTTP and
whether that solution improves, in utility and expected utility terms, the ARA level-1
solution, and how the implemented action is affected by the society’s competitiveness
values. For that purpose, we have computed the cooperative and the ARA level-1
solutions at each time-step, although the cooperative one is the only solution applied
during the simulation. We have considered that the disagreement point will be where
both agents implement the ARA level-1 solution, as in Sect. 2.5.4, whenever it is
feasible, and, if not, the closest attainable expected utility vector. Figures within this
Section correspond to agent A1.

In Fig. 2.5, we may appreciate that the more competitive the society is, the lower
expected utility each agent obtains from the alternatives, as the actions selected
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Fig. 2.5 Impact of society’s competitiveness on agents’ expected utility

Fig. 2.6 Expected utility
attained by a cooperative
(y-axis) and an ARA-based
agent (x-axis)

get closer to the disagreement point, in consonance with now the competitiveness
parameter is chosen.

Figure 2.6 suggests how a cooperative agent tends to achieve higher expected
utilities than an ARA-based agent. Under the ARA framework the attained expected
utilities are: first quartile ≈ 0.472, median ≈ 0.522, third quartile ≈ 0.6. Under a
cooperative attitude they are: first quartile ≈ 0.478, median ≈ 0.53, third quartile
≈ 0.606. Based on this, we suggest that the cooperativeness parameter used within
the solution described in (2.8) impacts (positively) on the agent decision making,
increasing the utility values it expects to reach, outperforming those obtained by the
ARA level-1 agent, without much additional computational load.

In terms of utility, we may observe that under the ARA framework the utilities
obtained from the consequences are lower (first quartile ≈ 0.452, median ≈ 0.513,
third quartile ≈ 0.589) than those obtained under a cooperative attitude, being the
cooperative approach a better solution (first quartile ≈ 0.473, median ≈ 0.53, third
quartile ≈ 0.6).
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Fig. 2.7 Cooperative agent’s actions depending on the user’s action

Fig. 2.8 ARA based agent’s actions depending on the user’s action

Finally, in Figs. 2.7 and 2.8 we may observe the different reaction of an agent
(rows) within a cooperative situation and under the ARA framework, respectively,
while interacting with the same user (columns). We appreciate that under cooperative
situations, see Fig. 2.7, actions are not as uniformly distributed as under the ARA
framework, which can be explained through the competitiveness parameter providing
the cooperative agent with more adaptability to deal with interactive situations. Recall
that in Figs. 2.7 and 2.8, the size of the boxes is proportional to the relative frequency
of each agent action in response to the user action.
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2.6 Discussion

We have described a social behavioral model for an autonomous agent, which imper-
fectly processes information from its sensors, facing several intelligent adversaries
using multi-attribute decision analysis at its core, complemented by forecasting mod-
els of the adversaries. The preference model in [21] has been extended to include
social adaptation. We have also explored the interaction among different agents, and
users, under competitive and cooperative attitudes, depending on the social needs of
our agent.

Regarding competitive attitudes, we have promoted the ARA solution over Nash
equilibria concepts, as it avoids too strong common knowledge assumptions. Within
cooperative scenarios a solution concept which aims at maximizing a distance from a
disagreement point has been presented. The distance function used is parameterized
with two parameters which respectively measure the degree of cooperativeness and
competitiveness of our agent. Based on such parameters, the agent would move
from a cooperative attitude towards a competitive one, or vice versa. Through a
set of simulations performed with the AiSoy1 robot, we have demonstrated that the
society’s competitiveness parameter has indeed an impact on the actions implemented
by the agents, and that, using the cooperative solution, the expected utility and the
utility of the consequences that the agents receive tend to be higher than under the
non-cooperative model.

Our ultimate interest for this type of models is the design of societies of robotic
agents that interact among them and with one or more users. Based on our exper-
iments, the proposed approach is amenable from the computational point of view
and usable in real time applications. Note however, that we have limited memory to
the two last periods and have planned just one period ahead. Longer memories and
planning periods ahead, as well as continuous action spaces, would require much
more powerful processing environments. To achieve such final goal, there are some
open issues that we should still deal with, including those described next.

The implementation of the models presented in this paper corresponds to a first
level, in the level-k thinking hierarchy, in that we only appeal to past behavior of the
adversary, possibly as a response to our previous behavior. As future work, we aim
at facing more sophisticated adversaries climbing up higher in the ARA hierarchy
reaching at least a level-2, where we consider our opponents as level-1 strategic
thinkers.

In order to optimize the models, we should further discuss which averaging pro-
cedure we should use to compute the society’s attitude towards cooperation, and
how those cooperative and competitive parameters would evolve depending on such
procedures.

The field of cognitive processes has recently shown that emotions may have a
direct impact on decision-making processes, see e.g. [3]. Advances in areas such as
affective decision making, see [13], and neuro-economics, see [9], are based on this
principle. Following this, a potential future work, concerning these models will be
addressed towards providing a model for our autonomous agent that makes decisions
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influenced by emotional factors when interacting with humans and other agents, see
e.g. [26]. With this, we aim at making interactions between humans and agents more
fluent and natural.
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