
1Introduction

To determine specific contents of area and volume as well as integrals is a very
old theme in mathematics. Unsurpassed are the achievements of Archimedes, in
particular his computation of the volume of the unit ball as 4 =3 and of the area of
the unit sphere as 4 . Starting from Euler, problems like determining the value ofR 1

0
sin x

x dx (which is  =2) have kept the analysts busy.
To the end of the nineteenth century, this subject became less and less important,

as there was not much left to be discovered. At that moment, measure and integration
theory entered the stage. It, too, deals with contents or (as we will call it in the
following) measures of sets, as well as with integrals of functions, but the question
has changed. It no longer reads “what is the measure of this or that set?” but rather
“which sets can be measured, which functions can be integrated?”. To which sets
one thus can assign a measure, to which functions an integral? Their specific value
becomes secondary, general rules of integration come to the fore. The relation to
differential calculus, which for a long period since Newton and Leibniz was in the
foreground, loses its dominant role.

Such a change of perspective is not uncommon in mathematics. In our case, it
arose in the context that one no longer considered integrals on their own, but rather
needed them as tools in other mathematical investigations. Historically one should
mention in particular the Fourier analysis of functions, the decomposition of real-
valued functions into sinusoidal oscillations. Their coefficients (amplitudes) can be
expressed by certain integrals—soon, one realized that for this purpose one needed
properties of integration which could not be provided by the notions of integrals
being available at that time.

Measure and integration theory according to Lebesgue arose by and large
between the years 1900 and 1915, based on essential preliminary work of Borel1

1ÉMILE BOREL, 1871–1956, born in Saint-Affrique, active in Paris at the École Normale
Supérieure and the Sorbonne. He significantly contributed not only to the foundations of measure
theory, but also to complex analysis, set theory, probability theory, and to applications of
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from 1894. Right from the start, the pioneers during that time directed their attention
towards the fundamental properties of measure and integral. Borel was the first
to demand that measures should be not only additive, but also ¢-additive. This
means that not only for finitely many disjoint measurable sets B1; B2; : : : � R

d

with measures œ.B1/; œ.B2/; : : : the union B D B1 [ B2 [ � � � is measurable and has
measure

œ.B/ D œ.B1/ C œ.B2/ C � � � ;

but that moreover this property holds for every infinite sequence B1; B2; : : : of
disjoint measurable sets. Borel realized that only under this assumption a fertile
mathematical theory arises. Particular cases like the circle in the figure

of course do not yield anything new. Lebesgue,2 the founder of modern integration
theory, in his fundamental treatise on integration from the year 1901 started from
six properties that integrals should reasonably satisfy.
Measure and integration theory is based on set theory and cannot dispense with
its ways of reasoning. Only with the aid of set theory a path was found leading to
the full system of measurable subsets of Rd and of other spaces. Yet this approach
is comparatively abstract and indirect. To realize that it is justified, for a start it is
perhaps appropriate to take a look at other more descriptive approaches, even though
they finally were not conclusive.

mathematics. He combined this work with a political career as member of the parliament, minister
of the navy, and finally member of the Résistance.
2HENRI LEBESGUE, 1875–1941, born in Beauvais, active in Paris at the Sorbonne and the Collège
de France. His foundation of integration theory is a landmark in mathematics, he could resort to
preliminary work of Borel and Baire. With his methods he then obtained results on Fourier series.
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Let us look at the approach due to Jordan.3 His idea is intuitively appealing: Let
V D Sk

jD1 Ij be a union of finitely many disjoint d-dimensional intervals Ij � R
d,

thus Ij D Œaj1; bj1/ � � � � � Œajd; bjd/ (it turns out to be useful, though not strictly
necessary, to work with semi-open intervals). One obtains its measure œ.V/ by
adding the products of the edge lengths of the individual intervals:

œ.V/ WD
kX

jD1

.bj1 � aj1/ � � � .bjd � ajd/ :

Following Jordan, the exterior and the interior measure of a subset B � R
d result

from covering resp. exhausting B by a union of intervals:

Expressed in formulas,

œ�.B/ WD inffœ.V/ W V � Bg ; œ�.B/ WD supfœ.V/ W V � Bg :

If both expressions have the same value, then the set B is called a Jordan set, and
œ.B/ WD œ�.B/ D œ�.B/ is called the Jordan measure of B. This definition is
analogous to that of the Riemann integral of a function.

Without a doubt, this approach assigns to a Jordan set its “correct” measure.
The deficiency of this approach lies elsewhere, on the structural level. Indeed, finite
unions, finite intersections, and complements of Jordan sets are again Jordan sets.
But it turns out that, in general, a countable union of Jordan sets is not necessarily
a Jordan set. One easily sees, for example, that every set which consists of just a
single element is a Jordan set of measure 0, while the set of rational numbers in
Œ0; 1� is not a Jordan set (its inner and outer measures are 0 resp. 1). The ¢-additivity
is lacking.

This deficiency is fatal. All attempts to modify Jordan’s definition in order to
remove this deficiency have failed.
But perhaps it is not really necessary to define measurability of sets through an
explicit construction. Is it maybe possible to assign a measure to each subset of

3CAMILLE JORDAN, 1838–1922, born in Lyon, active in Paris at the École Polytechnique and
the Collège de France. Better known than his contributions to measure theory is his work on
group theory. The Jordan normal form of matrices as well as Jordan curves demonstrate his wide
mathematical interests.
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R
d in a reasonable manner, no matter whether in a direct or an indirect fashion?

Already Lebesgue posed that question. The answer is negative, as was discovered
by Vitali4 and Hausdorff.5 Later, Hausdorff’s result was extended by Banach6 and
Tarski.7 It is somewhat perplexing and thus nowadays known as the Banach-Tarski
paradox. These two mathematicians proved in 1924: Any two bounded subsets B
and B0 of Rd, d � 3, with nonempty interior, for example two balls of different radii,
can be decomposed into an equal number of disjoint subsets B D C1 [ � � � [ Ck

and B0 D C0
1 [ � � � [ C0

k such that all the parts C1; : : : ; Ck; C0
1; : : : ; C0

k are pairwise
congruent, that is, they can be transformed into each other by translations, rotations
and reflexions. One then is inclined to conclude that all parts have the same measure
due to congruency, and therefore B and B0 have the same measure by virtue of
additivity. This would be paradoxical. How can one realise such decompositions?
Intuitively this is inconceivable.

The answer is the following: The theorem of Banach-Tarski is a result of set
theory, and set theory (in particular, when the axiom of choice is employed) admits
the formation of rather exotic subsets of Rd which are no longer accessible through
imagination. This is the meaning of the theorem: The system of all subsets of Rd

is so extensive that it is impossible to assign measures to every subset such that
they are invariant under congruency as well as additive. Therefore, the conclusion
mentioned above cannot be drawn. Thus the paradox dissolves. These results due to
Vitali, Hausdorff, Banach and Tarski are significant in the history of measure theory;
nowadays they rather are a special theme.
Let us record: Attempting to view measurable subsets as single items does not lead
to a sound mathematical theory. Therefore, we no longer look at individual subsets,
but focus instead on systems B of measurable subsets. Their properties are simple.
Following Borel, two properties are indispensable:

B 2 B ) Bc 2 B and B1; B2; : : : 2 B )
[

n�1

Bn 2 B

4GIUSEPPE VITALI, 1875–1932, born in Ravenna, active in Modena, Padova and Bologna. He
provided distinguished contributions to measure theory, but also to complex analysis.
5FELIX HAUSDORFF, 1868–1942, born in Breslau, active in Leipzig, Greifswald, and Bonn.
Hausdorff made fundamental contributions to set theory, topology, and measure theory. His
monograph on set theory had enormous influence. Under the alias Paul Mongré he published
essayistic and literary works. Due to his Jewish origin, Hausdorff was forced to retire in 1935.
To escape deportation he took his own life in 1942.
6STEFAN BANACH, 1892–1945, born in Krakow, active in Lemberg. He established modern
functional analysis. The Lemberg school of mathematicians formed around him and Hugo
Steinhaus.
7ALFRED TARSKI, 1902–1983, born in Warsaw, active in Warsaw and Berkeley. He is regarded
as one of the most famous logicians due to, for instance, his papers on model theory. He also
contributed to set theory, measure theory, algebra, and topology. Because of his Jewish origin,
after the German invasion of Poland he remained in the United States.
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must hold for the complement Bc of B and for finite as well as infinite sequences
B1; B2; : : : Such systems of sets are of fundamental importance in measure theory;
following Hausdorff, they are called ¢-algebras. Now the task arises to exhibit a
¢-algebra which is large enough and is such that ¢-additivity holds when assigning
a measure to its elements.

This task can be tackled in different ways. One possibility is to start from a
system E of sets to which a measure can be assigned in an obvious manner. For this,
the system of all (semi-open) intervals of Rd qualifies. One then enlarges E to the
system E 0 of all countable unions of sets from E together with the complements of
those unions. Using ¢-additivity, a measure can be assigned to all elements of E 0. If
E 0 is not yet a ¢-algebra, one repeats this step until a ¢-algebraBd has emerged. This
path can be (and initially has been) entered, however it turns out that uncountably
many steps are required to attain the goal. This not only stresses our intuition, but
moreover one has to utilize advanced methods of set theory, namely, the theory
of well-ordered sets and transfinite induction. No view emerges of how a typical
measurable set looks like.

Fortunately, an elementary and much simpler approach was found soon: one
directly focuses on Bd by characterizing it as the smallest ¢-algebra which contains
E . It is called the Borel ¢-algebra, and its elements B � R

d are called Borel sets.
We will see how one assigns a measure to every Borel set so that ¢-additivity holds,
and how an integration theory is established whose rules are transparent and easy to
apply.
One has to pay a price: in order to smoothly manipulate measurable sets and
integrable functions one also has to deal with sets and functions, which in no
way conform to classical perceptions. Back then, leading mathematicians faced this
development in a reserved or even hostile manner, Hermite,8 for example, spoke
about the “deplorable plague” of functions not possessing derivatives. Nevertheless,
the ideas of Borel and Lebesgue prevailed. Their theory is one of the most important
accomplishments of set theory.

As individual elements, measurable sets can hardly be controlled, one gets hold
of them only through their affiliation to systems of sets. This also means that nobody
can say how a “typical” Borel set looks like. In contrast, one may imagine of a
typical Jordan set as the above figure suggests. Nevertheless, in the following we
will no longer bring up Jordan sets, while Borel sets will remain in the focus of
our considerations. In measure and integration theory one has to get used to operate
with systems of sets and of functions, not with individual sets and functions.
Since its emergence, during the age of Newton and Leibniz, the integral has
evolved into a fundamental tool to be employed in many areas within and outside
of mathematics. Among them are the description of processes taking place in
the continuum—e.g. the space-time continuum—in the corresponding areas of

8CHARLES HERMITE, 1822–1901, born in Dieuze, active in Paris at the École Polytechnique and at
the Sorbonne. He significantly contributed to algebra and number theory, orthogonal polynomials,
and elliptic functions.
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(mathematical) analysis, the description of random phenomena in probability
theory, as well as the description of algorithms for computer approximation and
simulation of such processes in numerical mathematics and scientific computing.

In all those contexts the Lebesgue integral has turned out to be the most
adequate notion of an integral. Concerning analysis and numerical mathematics,
the main reason is that the functions whose p-th power possesses a Lebesgue
integral form a complete space (that is, every Cauchy sequence converges) with
respect to the integral norm. In the case p D 2 the integral moreover yields a
scalar product, and we obtain a Hilbert space. These spaces, called Lp spaces,
and their descendants—for example, the Sobolev spaces—provide the predominant
mathematical framework for problems in the continuum.

While Lebesgue integration theory does not concern itself with the computation
of specific integrals, some of its results nevertheless assist this purpose. The results
pertaining to the interchange of integrals and limits (on monotone and dominated
convergence) have manifold applications, for example they clarify under which
circumstances derivatives and integrals can be interchanged. Analogously, this is
true for the theorems of Fubini9 and Tonelli10 concerning interchanging the order
of integration for multiple integrals. Some specific important integrals will be dealt
with in the text.

9GUIDO FUBINI, 1879–1943, born in Venice, active in Catania, Turin, and Princeton. He worked
on real analysis, differential geometry, and complex analysis. 1939 he emigrated to the USA after
he had lost his chair in Turin in the course of the antisemitic politics under Mussolini.
10LEONIDA TONELLI, 1885–1946, born in Gallipoli near Lecce, active in Cagliari, Parma,
Bologna, and Pisa. He worked in many areas of analysis and is known mainly for his contributions
to the calculus of variations.
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