Chapter 2
Solving Rate Equations

The rate equation gives the rates of concentration change as a function of the
concentrations themselves. A rate equation is said to be solved if a suitable function
is found that satisfies the equation and gives the concentrations for each reaction
time. It is trivial but not always clearly recognized that time can be the only
independent variable in this solution: the time-dependent concentrations of other
species cannot appear in it. The parameters of this function are usually the rate
constants and initial concentrations. A common, but more confusing convention
calls the rate equation differential rate equation, whilst the solution is termed
integrated rate equation. Although the rate equation is certainly a differential
equation and integration is typically needed to solve it, this wording does not do
justice to the mathematical efforts needed to find the solution. In addition, this
alternative convention also confuses equations with function definitions, which are
usually separate concepts in mathematics and computation science.

The rate equation is always a first order differential equation, i.e., only first
derivatives of the functions appear in it. It also has the important property of being
autonomous: the independent variable (time) never appears directly in the rate
equation, it exerts its effects exclusively through the concentrations. This is usually
a favorable property from a mathematical point of view but also a very obvious
one in a physical sense as it basically expresses the fact that the laws governing
concentration changes (similarly to other laws of nature) do not depend on time.
A further characteristic of the structure of the rate equation is that it gives the
derivatives as an explicit function of the concentrations. Finally, a rate equation
is typically nonlinear because the functions f; ([A1], [Az], ..., [A,]) are nonlinear.

An analytical solution is a function that satisfies the rate equation and the initial
conditions, which are given by the concentration values at f = 0. In contrast,
a numerical solution is usually a huge collection of discreet time-concentration
points that is estimated based on the rate equation. It is not uncommon to speak of
approximate analytical solutions for cases when a function is found that is not the
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22 2 Solving Rate Equations

solution of the rate equation, but is close to it in some sort of measure. To avoid
confusion, it would be best to drop the word “analytical” in this case and stick to the
term approximate solution.

An analytical solution can typically be found only for relatively simple cases.
However, when such an analytical solution is found, it clearly takes precedence over
any numerical solution. This is why the following sections devote a lot of space to
known analytical solutions.

2.1 Analytical Possibilities

2.1.1 Single-Concentration Rate Equations

The simplest possible class of rate equations only contains the concentration of
a single species. In this case, function fi([A{]) also only has one independent
variable. There is quite a good chance that a rate equation in this class can be solved
analytically. At first sight, this class might seem utterly insignificant as no chemical
process can be imagined that only contains a single species. Yet, a surprisingly high
number of more complicated (and, of course, more realistic) rate equations can be
transformed into a single-concentration variant using the law of mass conservation.
As a consequence, single-concentration rate equations have a dominant role in
classical chemical kinetics.

A general method to solve the differential equations in this class is called
separation of variables. Variables in this phrase mean concentration (dependent)
and time (independent). Separation is particularly easily achieved as time does not
even appear in the equation explicitly: all that needs to be done is to divide both
sides of the rate equation by fi([A;]). Subsequent integration of both sides gives
rise to a form of the solution':

[A1]r 1 A )
= 1
/[AI]O A =1 @.1)

To calculate [A], from this equation, one first needs to find the definite integral
on the left-hand side, then rearrange the resulting equation so that it gives an explicit
formula for the concentration (in mathematics, this is called function inversion).

Tn a common description of this technique, the equation is said to be “multiplied” by the term
dt and then “integrated.” This method is often ridiculed by mathematicians, who point out that dt
is part of a symbol on the left side, which does not have anything to do with division. Instead of
joining the laughter, it is probably better to think a little bit about the fact that the method always
gives the correct solution of the problem. In fact, this method also has rigorous mathematical
background. It is called nonstandard analysis [16], where derivatives can be defined as a ratio of
two infinitesimal quantities. But it is true that those who practice this method rarely have any ideas
of the existence on nonstandard analysis.
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If the first step (integration) cannot be completed, the rate equation cannot be solved
analytically. However, failure to accomplish the second step means only that the
solution found is implicit. In this case, as Eq. (2.1) is already explicit for #, swapping
the independent and dependent variables is a useful trick. If concentration and
time are swapped, the time passed to achieve a predetermined concentration can be
calculated instead of determining the concentration at a given time.

The simplest member of the simplest class of rate equations is the power law
rate equation with a single concentration:

diA] _ «
20— kAl 22)

Because of traditions, some confusion may arise about the values of k for positive
integer values of «. The source of this confusion is that such « values make it
possible to give this rate equation in a kinetic mass action form:

ki
Ay — .- (2.3)

In this case, a consistent use of the conventions results in the appearance of «
as a stoichiometric coefficient in the rate, so that k = «k;. Yet, this convention is
often forgotten. Therefore, when reading the literature, it is imperative to check the
definition of the rate constant, especially for o = 2.

It must not be left without notice that this rate equation does not give a zero rate
at [A1] = 0 for non-positive orders of reaction (i.e., « < 0). This should be kept in
mind when using the general solution of Eq. (2.2), which is given as follows:

1
[A1] = ([Ailg™ + (@ — Dkt) ™ for o #1 (2.4)
For o = 1, the solution has a different form:
[All, = [Afloe ™" for a=1 (2.5)

For o > 1, the solutions tend to 0 asymptotically, so they decrease monotonously
without ever reaching 0. For @ < 1, however, the concentrations reach the value of
0 at finite time, which gives rise to a critical time:

A
fot = (T ok (2.6)

The source of this criticality is the fact the derivation of Eq.(2.1) involved a
division by fi([A]), which takes the value of 0 at the critical time. At this point, the
function [A,], does not have a second derivative if 0 < o < 1 (break point occurs
on the first derivative of the kinetic trace). For &« = 0, the curve does not have a first
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derivative (break point on the kinetic trace) at this point. For o < 0, the critical time
represents a point of singularity at which the derivative is undefined.

Among the possible values of «, 1 is the most common by far. The curve itself is
called a first order curve or exponential curve, its equation is given separately in
Eq. (2.5). A further case of high importance is the second order trace at ¢ = 2:

_ (Ao
(A1l = m 2.7

Furthermore, zeroth order traces with « = 0 are sometimes found:
[A1]l: = 0.5[[A4]o — kt| + 0.5([A1]o — k1) (2.8)

The reader may be surprised to see absolute value signs (|) appear in this
equation: it is some resourceful use of mathematics to ensure that the formula can
be used for any value of ¢ including those after 7.

Finally, half-order traces with « = 0.5 might have occasional significance, and
can be written using the trick with absolute values again:

A = (o.5| VAo — 0.5k1] + 0.5(/[ATo — O.5kt))2 2.9)

The kinetic curves given in Eq. (2.4) have two parameters, k and [A;]o. Both of
these are scaling parameters, which define the concentration and time scales, but
do not influence the shapes of the kinetic curves. So, all exponential curves have the
same shape, the only difference is the scaling. The same is true for any other single-
concentration power law kinetic curve. Figure 2.1 shows the shapes of these kinetic

2 3
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Fig. 2.1 Scaled kinetic traces of power-law rate equations in Eq. (2.2) with various values of the
order of reaction «
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curves for five different values of «. The characteristic shapes of these traces can be
recognized by just looking at them. Scaling could be done in many different ways.
Figure 2.1 uses what could be considered natural: the concentration unit is [A{]o,
whereas the time unit is k™' ([A]o)' ™. This scaling ensures that all the different
curves shown have identical initial rates. This is a useful convention for preparing
such comparative graphs, and can always be attained by setting the time unit to
[A1]o/ f1([A1]o) in single-concentration rate equations.

The natural time unit does not depend on the initial concentrations for ¢ = 1.
Knowledge of the initial concentration is not necessary to determine the rate
constant k in this case, the reciprocal of which is also called lifetime. Moreover,
a shift in time (for example 1t = ¢’ + A) does not influence the determination
of the rate constant, it merely gives a different value for the initial concentration
(= [A1]oe™*4). Therefore, the rate constant can be determined for an exponential
curve for which neither the initial concentration nor the initial time is known
precisely.

It is usually advisable to fit the measured signal directly rather than calculating
concentrations first from the signal. If a signal Y is a linear combination of the
concentrations, then the exponential curve for the observed signal is as follows:

Y, =Xe M+ E (2.10)

In this equation, X is termed the amplitude, & is the first order rate constant,
whereas E is called the endpoint. The initial reading is simply A + E.

Furthermore, exponential curves are also easily handled for cases when the
observed signal is integrated in time or space (or both). Integration in time
(in interval 7) is often a key question when the response time of the monitoring
method is not much faster than the process studied. The integrated observation is
described as:

1 —kt

t+1 1l—e
Y: = —/ (Xe ™ + E)ds = ——Xe ™™ + E (2.11)
T J, kt

Despite some apparent complexity, it must be recognized that Eq. (2.11) is still
an exponential curve with rate constant k and endpoint E, it is only the amplitude
that is influenced by the integration in time.

These facts make the kinetic methods based on exponential curve fitting highly
robust. This robustness is the primary reason why kineticists, whenever possible,
prefer finding conditions under which (pseudo-)first order kinetic curves are
detected. Unfortunately, this strong preference is sometimes even driven to absur-
dity: a great many published works attempt to evaluate obviously non-exponential
kinetic curves using first order fitting. Needless to say, no valid conclusions can be
drawn from force-fitting first order rate constants to a non-exponential experimental
trace.
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Turning to a bit more complicated, but still single-concentration rate equations
now, the following one, in which the rate is described by a rational function of the
concentration, has high practical importance:

diAll _ ka[Al]
dt kp + [A]]

(2.12)

This is called the Michaelis—-Menten rate equation and is often used in
describing catalysis, especially in the field of enzyme kinetics [13]. The rate
constants k, and k; are both positive (if k;, = 0, the equation would reduce to a
zeroth order rate equation). The exact solution is surprisingly seldom used in the
literature:

A, = k,W (_[ilb]oe([/\l]o—kat)/kb) 2.13)

The solution uses the Lambert W function (denoted W), which is the inverse
of the xe* function. This is a three-parameter curve (k,, k», [A1]o), S0 even when
scaling is taken into account, curves may look different. A convenient scaling is
[A1]o as the concentration is unit and (k;, + [A{]o)/ k. as the time unit. A third,
dimensionless parameter combination [A]y/k, characterizes the shapes of the
curves. Figure 2.2 gives examples of the kinetic curves with different shape
parameters.

These curves are often described to change their order of reaction from O in the
beginning to 1 at the end. The rationale in this characterization is that at high values
of concentration [A], the rate does not depend on this concentration, whereas the
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Fig. 2.2 Scaled kinetic traces based on Michaelis—Menten rate equation in (2.12) with different
shape parameters, whose values are shown within the graph
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rate is directly proportional to [A,] if its value is close to zero. The Lambert W
function is not very commonly implemented in scientific softwares. In its absence,
the trick of swapping time and concentration can still be used:

p o Ao —Alde k(Ao
B kq ka [Al]t

(2.14)

In a similar, and sometimes significant rate equation, the order of reaction
changes from 0.5 in the beginning to 1 at the end:

d[Aq] _ ka[A1] 2.15)

dt ko VIAi]

The solution of this rate equation also uses the Lambert W function:
2
A1l = |:ka (—M)e(V([AI]O—kal/z)/kh)] (2.16)
ky

Further notable rate equations arise if terms of different power rate laws are
summed. These are often called processes with parallel reaction paths, but their
significance goes way beyond that, as will be shown later. A common and important
case is when a first order and a second order term is summed:

d[A
e RN 2.17)

As usual, separation of variables gives a straightforward solution:

ka [Al]Oe_k“[

A =
(Al ka + kp[Ai]o — kp[A]ge ke

(2.18)

This is a three-parameter curve, similarly to Eq. (2.16). The scaling parameters
are best selected to be [A1]y as the concentration unit and |1/(k, + kp[A1]o)]| as the
time unit. The dimensionless shape parameter is k,[A1]o/ k.. This formula reduces
to a first order reaction by setting k;, = 0. However, k, = 0 and k>[A ]y = —k, are
not possible. Figure 2.3 gives 12 characteristic curve shapes.

The traces with positive shape parameters in Fig.2.3 are straightforward, they
are cases when both k, and k;, are positive. Interestingly enough, one of the
two rate constants can be negative without rendering the rate equation physically
meaningless. Furthermore, the absolute value sign in the convenient time scale
is not accidental, as (k, + k,[A;]o) may also be negative. The condition —1 <
kp[Ailo/ ks < O and (k, + kp[Ai]o) > O gives rise to curves that are often
called autocatalytic: these curves are denoted by a + sign in the superscript after
the parameter value in Fig.2.3. For —1 < kp[A]o/k, < —0.5, the traces have
accelerating time intervals. If (k, 4+ k3[A1]o) < O, any negative value for the
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Fig. 2.3 Scaled kinetic traces based on rate Eq. (2.17) with different shape parameters, whose
values are shown within the graph

shape parameter is meaningful. The solutions in this case do not tend to O final
concentration values. The curves with —1 < k,[A]o/k, < O describe an increase
in concentration and are denoted by a — sign in the superscript after the parameter
value in Fig. 2.3.
A logical extension of the rate equation (2.17) is the addition of a third, zeroth
order term:
d[A
e AT 219
The solution breaks down to several different possibilities depending on the
values of the parameters. If 4kpk. > kg, the solution is:

VAoke k2 [ Jakpk. —k2 holAilo + ke ka

Al = — oyl e - ==

(A1l % tg 5 t + arctg 5 %
(2.20)

On the other hand, if 4k k. < k(f, the solution takes the following form:

_ ka(Xe—ta/k,%—ztkbk(- —1) + k2= 4kbkC(Xe_“/k3_4kbkc +1)

(2.21)
2k (Xe ™! VRi—Hoke 1)

(A1l
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In this equation, X is an auxiliary variable defined as:

kp[Ailo + ko — k2 — dkpk.
X = (2.22)
kp[Ailo + ko + kg — 4kpk,

Finally, if 4kpk. = k2 (or k. = k2/(4ky)), the solution assumes a simpler form:

[Atlo + ka/(2kp) — ka
kp[AiJot + kot /2 +1 2k

Al = (2.23)

These curves generally have four parameters, but the individual combinations
that could serve as two scaling and two shape parameters are not obvious. If k, = 0,
the given solution is still useful, but the same is not true for k;, = 0. The solution of
the case with k. = 0 is already given in Eq. (2.18). The two-term rate equation that
combines a zeroth and a first order term is handled separately:

diA] _ _
_dl - ka[Al] kc (224)

The solution is stated in a relatively simple form:

ke _ k.
[Al]lr = ([AI]O + k—) e ket o (2.25)

A closer look at this formula will reveal to the reader that this is actually an
exponential curve that is shifted along the concentration axis. Negative values of k.
also make sense in this case, especially for describing reversible reactions. There
is also a critical time for positive values of k. when the concentration assumes O,
leric = (1/ka)In(ka[Ar]o/ ke + 1).

Notably, some rate equations containing more than one concentration can be
rewritten into single-concentration equations. A prime example is the so-called
mixed second order equation:

A+ Ay 4, Az(+---) (2.26)
The rate equation is:
dA] d[A)]
TR TR —k1[A1][A:] (2.27)

Mass conservation ensures that [A;]; = [A1]; — [A1]o + [Az]o holds. Therefore,
the rate equation can be rewritten into a single concentration form:

d[A] _ d[A)]
dt  dt

= —ki[A1]* + ki([Az]o — [Ar]o)[A1] (2.28)
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This is the same rate equation as shown in Eq.(2.17) with k;, = k; and
ke = ki([Ai]Jo — [Aolo). Yet, as the mixed second order rate equation is very
important, some further considerations will be presented about it. If it also involves
a stoichiometric ratio different from 1:1, the process itself is usually represented as
follows:

U]A] =+ V2A2 —> A3(+ .. ) (229)
The rate equation corresponding to this process is then given as:

Ld[A)] _ 1d[A)]
Tdl v ki[A1][A2] (2.30)

Combining the general strategy outlined above and the solution already given in
Eq. (2.18) yields the following final formula for the concentration of A;:

Al — (n1[As]o — v2[A1]o)[A1]oe K1 (11Alo—v2lA o)
(Al = V1[Az]o — v2[Ai]oe 1 (vilAlo—valAdo)

(2.31)

A notable exception is the case v;[A]o = vi[Az]o. This is fully analogous to the
o = 2 case in Eq. (2.2), and the corresponding solution is very similar to the one
given in Eq. (2.7) except the presence of the stoichiometric coefficient:

[A1]o

A = — 2
[ l]t 14+ Uz[Al]okll

(2.32)

The reader can test her or his own understanding of the kinetic background of
this formula by thinking about the question why the stoichiometric coefficient v;
does not appear in it.

It is not very trivial to see, but Eq.(2.31) actually describes curves with three
essential parameters. Two of these are scaling parameters: initial concentration [A]y
serves as the concentration unit, whereas the reciprocal of the composite parameter
k1(v1[Az]o — v2[A1]o) is a time unit. The third parameter, which is best selected as
the dimension-free ratio vi[Az]o/(v2[A1]o) is a shape parameter. Figure 2.4 displays
a few examples of curves with different shape parameters (Fig. 2.3 already shows
some relevant curves, but the rate equation there is more general and the scaling is
somewhat different). From a practical point of view, it is also sufficient to limit
the considerations to vi[Az]o/(v2[A1]lo) > 1 so that A; is the limiting reagent
that is completely used up, and the concentration of A, can be calculated form
mass balance. In the opposite case, swapping A; and A, would lead back to this
mathematical description.
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Fig. 2.4 Scaled kinetic traces based on Eq. (2.31) with different shape parameters

Another example in which a multiple-concentration rate equation can be sim-
plified using mass balance is provided by the simplest autocatalytic rate equation
including a direct term:

Al — Ay (2.33)

The rate equation of this process is given as:

AL A - kolaniad 2.34)

Mass conservation ensures that [Az]; = [A1]o + [Az2]o — [A1];. Therefore, the rate
equation can be rearranged into the following form:

d[A
ML s + kol + kalAA] + Kol 239)
Again, this is the same as the rate equation shown in Eq. (2.17) with k, = —k;

and k, = ki + kz[A1]o + k2[Az]o. Some sample solutions are given in Fig. 2.3.
The following rate equation is the simplest photochemical rate equation, but
receives very little attention in practice:

dizl] = k(1 — ol (2.36)

This describes a purely photochemical process for a case when the reaction is
induced by monochromatic irradiation at which only the photoactive component
absorbs light. These conditions are not uncommon in photochemistry. The term
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showing the concentration in the exponential function stems from Beer’s law, which
generally describes light absorption (see Eq. (1.21)). An analytical solution can be
found for this case as well:

Al = ki In[1 4 e ekt ehsltib (1 — g=hslAilo)] (2.37)
b

This is again a three-parameter curve, where k,k;, and [A;]y are scaling
parameters, whereas kp[A1]o is a shape parameter. More complicated cases are also
frequently encountered in photochemistry, but analytical solutions are typically very
difficult, if not impossible to find because the concentration appears simultaneously
in the exponential functions and their multiplication terms.

All the rate equations dealt with thus far were valid for irreversible reactions,
although allowing negative values for the formal rate constant values also accommo-
dates reversible cases, as will be shown later in this section. In reversible reactions,
the initial substance A; can also be formed, and not only consumed.

Before dwelling on truly reversible chemical reactions, exchange reactions will
be discussed at some length. An exchange process is commonly represented in the
form of the following chemical scheme:

AT + A, = A+ A (2.38)
The sign * indicates some sort of a label, which is usually assumed not to
interfere with any of the reactions of the chemical species. In the case of isotopes,
a modifying influence of the label is usually called isotope effect (see Sect. 4.4),
and it is negligible except when hydrogen isotopes are substituted. Because of
the negligible effect of the label, R.x, the rate of exchange, can be interpreted as
a single, time-independent quantity in such an experiment as the rate itself does
not differentiate between A} and A;. It is usually useful to work with isotopic
abundances x; and x, in molecules in this scheme, which can be defined as:

[AT]  _ [A]] _ ] A

e - T IAH (A [Aa

AT+ [A] (Al (2.39)

Concentrations [A{]r and [A;]r are the total concentration of species A; and
A, which remain unchanged in time. The differential equation governing the time
evolution of isotopic abundance x; is:

dx1
W[AI]T = —Rexx1(1 = x2) + Rexx2(1 — x1) = —RexX1 + RexX2 (2.40)
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A similar equation for x; is:

dx
d_tz[AZ]T = —ReXXZ(l - -xl) + Rex-xl(l - )Cz) = Rexxl - Rexx2 (241)

Surprising as it may be, this is not a true rate equation as the exchange rate
Rex appears in it without giving the concentration dependence. The rationale in this
formulation is that the quantity R does not change during the course of a single
kinetic experiment.

Adding Egs. (2.40) and (2.41) shows that x{[A{]r 4+ x2[Az]r is independent of
time, which is actually mass conservation for the label. This enables calculation of
X, from the value of x:

[A1]r
[As]r

X2 = (x10 = x1) + X290 (2.42)
The equation can thus be restated with a single dependent variable, and then the
equation is solved to yield:

[Ai]T + [As]r

— Rex o 2.43
[Ai]T[Az]T t) T 49

X1; = (X1,0 — Xoo)EXp (

The final value of the isotopic abundance is common to the two species:

X10[AtlT + x20[A2]T
o = 2k : 2.44
* [Az]r + [Atlr (249

A fully symmetric equation gives the solution for x, ;. Equation (2.43) means that
the time dependence of isotopic abundance is always described by an exponential
curve, no matter what the rate equation of the exchange process is. The rate
equation itself can be established by determining the first order rate constants
of the exponential curves and studying their dependence on the concentration of
the species. The approach presented here and specifically Eq.(2.43) are typically
referred to as the McKay equation [11, 12].

This exchange example leads further to the discussion of single-step reversible
reactions. The general strategy is to use the conservation of mass to give all
concentrations as a function of a single selected concentration. The simplest
example is a reaction that is first order in both directions:

k
A=A, (2.45)
ko

The rate equation of such a process is:

diAl] _ d[A)] _
dt —  dt

—k1[A1] + k2[As] (2.46)
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Despite the fact that two concentrations appear in it, this is a single-concentration
rate equation as [A;] and [A;] are connected through mass conservation: [A;], =
[A1]o + [A2]o — [A1];- With this conservation equation, it is a matter of very simple
algebra to derive the following form:

dgtl] = —(ki + k) [A1] + k2 ([Ar]o + [Az]o) (2.47)

This rate equation is identical to the one given in Eq.(2.24) with k, = k| + k;
and k, = k,([A1]o + [Az]o). The solution is therefore an exponential function with
a nonzero final value.

Another reversible process involves a first and a second order reaction:

k
A f As + Ay (2.48)
2

The rate equation describing this scheme is:

diA] _ d[Ar] _ d[As] _
dt —  dt  dt

—ki[A1] + ka2[A2][As] (2.49)

The analytical solution of this equation is the same as given after Eq.(2.19)
with k, = ki + k2(2[A1]o + [Az]o + [As]o), ky = —ka, and k. = —ky([A1]o +
[A2]o) ([A1]o + [As]o)-

Another significant reversible process is when both the forward and reverse
reactions are second order overall:

k
Al A = A+ A, (2.50)

k>
The rate equation is given as follows:

dia] _ d[A)] _ d[As] _ d[Ad]

= 7 7 e —k([A1][Az] + ka[Asz][A4] (2.51)

Similarly to the previous reversible scheme, the analytical solution given after
Eq. (2.19) can be used here with k, = k1([A2]o—[A1]o) +k2(2[A1]o+[A3]o+[Adlo),
ky = k1 — ka, and k. = —k>([A1]o + [As]o)([A1]o + [Adlo)-

One more trick should be introduced for reversible reactions at this point using
the process shown in Eq.(2.50) as an example. Reversible processes lead to an
equilibrium, in which all of the components reach a nonzero final concentration.
It leads to considerably simplified algebra if the differential equation is stated
using a new variable, which is the distance from equilibrium. In the example of
Eq. (2.50), these equilibrium or final concentrations are designated [A{]oos [A2]cos
[A3]oo, and [A4]oo. For these, k1[A1]oo[A2]co = k2[A3]00[A4]oo holds. The distance
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from the equilibrium is introduced as time dependent function x, and the individual
concentrations can be given at any time with the following equation:

[A1]lr = [At]oo + X [A2]r = [A2)oo + X; (2.52)
[Asl = [As]loo — X [Asli = [Adloo — X;
Substituting these functions into Eq. (2.51) and rearrangement yield the follow-
ing differential equation for x:

d
d—f = —(k1[At]oo + k1[Acloo + Ka[Asloo + k2[Addoo)x + (ks —kp)x?  (2.53)

Therefore, the introduction of the distance form equilibrium (x) offers the
advantage that the differential equation describing it, which is identical to Eq. (2.17)
with k, = ki[Ailleo + k1[A2]loo + k2[A3]ec + k2[Adloo and ky, = ky — ky, is
simpler. The price of this (relative) simplicity is that the equilibrium concentrations
have to be obtained in independent equilibrium calculations. On a conceptual level,
this method fully separates the equilibrium information and the kinetic information
available from the concentration data.

An archetype of two parallel processes is the first order formation of two different
products from the same initial substance. The scheme can be given as follows:

A 25 A,
(2.54)

k
Al —> A;
It may be surprising, but this scheme also belongs to the group of single-

concentration rate equations as A, and Aj are only involved in the reaction as
products:

DAL - e+l
dgjﬂ = ki[A] (2.55)
MR bota)

The solution is quite straightforward:

[A], = [A]pe~F1Hh!

k
[A2] = lelkz[Al]oe*(kﬁkZ)z (2.56)
[As], = ka [A]ge K1tk
ki + ks
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2.1.2 Multiple-Concentration Rate Equations

Multiple-concentration rate equations are those which cannot be simplified to a
differential equation using only a single concentration, so they remain systems of
simultaneous, coupled equations.

The end of the previous subsection showed that the simplest case of parallel
processes, although involves two reactions with two rate constants, is in fact a
single concentration rate equation as the reagent is common to the two irreversible
processes. Therefore, the simplest multiple-concentration rate equations arise from
consecutive processes.

A consecutive zeroth order process would be characterized by kinetic curves that
are combinations of straight lines. Zeroth order kinetics is rare, so a case of two
consecutive reactions both with zeroth order kinetics would be an extreme rarity,
although still not without an experimental example. In some cases, the multistep
oxidation reactions of the dithionate ion produce this unique phenomenon [8].

The class of first order reaction networks is among the few multiple-
concentration rate equations for which the analytical solution can be given. The
simplest such system is composed of two consecutive irreversible first order
processes:

AL A, 2 A, 2.57)
The rate equation is:

d[Aq]
—— =-kA

dt 1A
d[A

EhZ] — Ki[A)] = ka[As] (2.58)
d[A;]

= ky[A
di 2]

This scheme has two concentrations that should be handled in differential
equations as [As] can always be calculated from mass balance. The solution can
be stated in terms of combinations of exponential functions. The formula for A; is a
single exponential function, it is the solution of a single-concentration rate equation.
The concentrations of A, and Aj, on the other hand, are described by functions
called biexponential or double exponential functions:

(A1l = [Ai]pe ™™

_ [Ad]oky

(A2l = p— (eket — ™Rty 1 [A,]ge R (2.59)
1 — R2

[Atloka i/

[As], = [Ai]o + [A2]o + [As]o + ———e ([Al]okl

ki — ko

A —kot
K —k + [ 2]0) e



2.1 Analytical Possibilities 37

The formulas given for A, and Az cannot be used if k, = k; (= k). In this case,
the solutions take the following forms:

[Azle = ([Alokt + [Azl)e™
[As]: = [Ai]o + [Az2]o + [As]o — ([Arlokt + [Ai]o + [Az]o)e—kt (2.60)

The concentration profile of A, shows a maximum in certain cases. The time at
which this maximum occurs is given as:

1 —]z[é}io + [A2]o

fmax = In
mx = Tk, l;{b [é]]c ]ho

2.61)

If this formula gives a negative value for 7., the concentration profile of
A, decreases monotonously. In real experiments, typically [Az]g = [Az]o = O
holds, which simplifies the solution somewhat. When the initial concentration of
A, is zero, the concentration of this species is guaranteed to have a maximum and
Eq. (2.61) is greatly simplified to assume the following form:

_ In(ky/kp)

max = 2.62
ko — Ky (2.62)

In this example, species A, is the archetype of an intermediate, and the whole
reaction is understood as a transformation of A; into Aj through intermediate A,.
This scheme is used very often, so it will be dealt with in some more detail. The
kinetic curves have two scaling parameters: an advantageous time unit is k; !,
whereas [A1]o is a suitable concentration unit. It is usually a good choice to select the
dimensionless combination k,/k; as a shape parameter. Figure 2.1 shows how the
kinetic traces for A, and Az depend on this shape parameter. A; is not displayed as
its dependence is single exponential. In fact, it does not have a shape parameter and
unlike for the other two species, selecting k! as the time unit is more advantageous.

Curves in Fig.2.5 show that the maximum concentration of the intermediate
decreases as k,/kj increases. This is understandable as the rate constant of the
process consuming the intermediate becomes larger with the increase of this ratio.

Another phenomenon to be noted is that the concentration profile of species Aj
features a region where the rate of formation increases. This is often referred to as
an induction time (or incubation time or even lag phase). Autocatalytic curves for
the formation of a product often have similar features, but the induction period is
also observed there in the concentration of initial substance A;. Strictly speaking,
the initial rate of the formation of Aj; is zero as A, is not present at t = 0.

The double exponential function is very commonly used in experimental kinetics.
Its form for an instrumental reading is:

Y, = Xie ™M 4 Xpe ™' + E (2.63)
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AL/ IA),

Fig. 2.5 Scaled kinetic traces based on Eq.(2.59) with different k,/k; shape parameters, the
values of which are shown in the figure

In this equation, X and X are referred to as the first and second amplitudes (they
can be positive or negative), k1 and k, are the first and second rate constants, usually
the higher given first (but that does not imply that the faster is always the first in the
scheme!), whereas E is the endpoint. The initial reading is simply X; 4+ X, + E.

A series of n irreversible first order reactions is represented by the following
scheme:

k k kn
Al —> Ay —> - —>A, —> Ay (2.64)

The concentration of A; (i < n) in this scheme can usually be given as a
combination of i exponential functions:

(Al =) Cije ™! (2.65)
i=1

The coefficients C; ; can be calculated recursively in the following manner for
any i <n:

Cii=[Ailo

C kioe o P> (2.66)
ij=————0(Ci—1 l .
\J k; —k; Lj J

i—1
Cii=[Ado—) Ci;
=
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For the final product, species A+, mass conservation gives a convenient way to
calculate the concentration once the concentrations of the previous components are
known:

[An+1l = [Antilo + Z([AJ]O —[A]) (2.67)
j=0

As in the case of single concentration rate equations, allowing the processes to
be reversible will not change the double exponential nature of the solution, but
will make the calculations more laborious. The most general case is when two
consecutive reversible first order reactions follow each other, this is represented by
the following scheme:

k k
A= A = A, (2.68)
ko kg

The solution is given by double exponential functions:
[Ail; = [Ailoo + Cite ™" + Cipe™ (2.69)
In this equation, A; and A, are the nonzero eigenvalues of a 3x3 matrix composed

of the rate constants ki, k,, ks, ks (see later paragraphs about compartmental
processes) and are given as follows:

A = _k1+k2-;-k3+k4 + \/(k1+k24;k3+k4)2 — kiky — kikg — koky
(2.70)

2
Ao = oty | JOuthotba bk _ ks ek — koky

The equilibrium values of the concentrations can be given independently of the
solution of the differential equation:

([Aio + [Az]o + [As]o)kaky _ ([Aio + [Az]o + [As]o)kiks

A = A =
(Ao kiks + koky + kiks [Aa)oc kiks 4 koky + kiks
_ ([A1]o + [Az]o + [As]o)kiks

A =
[Asleo kiky + koky + kiks

2.71)

The constants appearing in Eq. (2.68) (which are the amplitudes of the double
exponential functions) are given as follows:

Cii = t t;fll ([A1]o — [A1]oo) + /\zk—zkl ([A2]oo — [A1lo)
A k k
Cia = T (AT = [Aido) + 55 (Aaleo — (A1)
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A+ k k

Cur = A (A — [Addo) + =5 (Ao~ (ALl 2.72)
A+ k k

Crz = §5A (Al = [Aske) + 75 (Aaleo — (A1)

G =—-Ci1— Gy Cop=—Cip—Cs

Compartmental processes [4, 9] are usually general networks of first order
reactions in a closed system, which involve n different chemical species
(A1, Ay, ..., A,), every one of which can convert to any other, i.e., chemical
reactions are possible for all pairs of species present:

/(,‘,j

This sort of reaction is sometimes termed conversion to distinguish it from other
types of possible processes in compartmental systems. For easy symbolic handling,
the rate constant of the “self-conversion” of species A; is also defined but is set to
zero (k;; = 0).

From a chemist’s point of view, a reactor can be made open with inflow and
outflow by including processes that produce or consume A; molecules without
consuming or producing any other molecules. The outflow process, sometimes
termed degradation, is still within the general framework of first order reaction
networks. The same is not true for the inflow process, which would be represented
by a constant term that does not depend on any of the concentrations (see later). The
degradation process is typically represented by the following notation:

out
k i

A -0 (2.74)

The notation @ is used to mean the absence of species on the product side, or,
more precisely, the fact that molecule A; leaves the reactor. There is also a whole
family of steps, termed catalytic production from a source, in which species A ;
is produced with a rate that is proportional to number of A; molecules:

KA
0 L5 A (2.75)

The notable case of i = j here could be considered self-reproduction or
autocatalytic formation. It should be noted that catalytic degradation, which would
be a sort of equivalent of catalytic production, is not possible because a species
cannot be degraded in a manner that is independent of its own presence.

Although the outflow process is often included in schemes as written in
Eq.(2.74), this is not a conceptual necessity. In fact, in any system involving
outflow, defining a (n + 1)th reservoir species, and including it as a common
product of all outflow processes, will lead to a mathematically equivalent scheme.
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In the absence of production steps, such an equivalent system will be closed. Open
chemical reactors are sometimes conveniently formulated without the inflow or
outflow processes described here in order to keep the number of molecules in the
reactor finite. In this case, the flow reactions replace the contents of the reactor by
the contents of the feed.

Another question arises about stoichiometry. All equations here are written with
a set 1:1 stoichiometry for each process (meaning that for each molecule of reactant
produced, there is one molecule of product formed) in the compartmental network.
This is not necessarily the case in all examples and including stoichiometric
coefficients may be needed. For 1:1 stoichiometry in a closed system without
inflow and outflow, conservation of matter ensures that the sum of concentrations is
always the same. With different stoichiometries but still in closed systems, a similar
conservation relationship can be defined by using a suitable linear combination of
concentrations.

A compartmental system is best characterized by matrix algebra and the rate
constants are conveniently arranged in a form of a matrix, which is denoted k here:

K=ok ke kS e kK
‘o kip+ kS kS =3 ko e kna HESY 276
b bR R RS k= Y
If the concentrations [A1], [Az], ..., [A,] are arranged into a vector (c), the rate
equation of a first order reaction network is simply given as follows:
dc
— =kc 2.77
dt = @77
The solution of this equation is most conveniently given in a matrix form:
¢, = expm(kt)c, (2.78)

In this formula, expm stands for the matrix exponential function, which is defined
in a fashion that is fully analogous to the definition of the exponential function of
real numbers. For any matrix M, its exponential is given as follows:

o0
1
expm(M) = — M’ (2.79)
i=0

In Eq. (2.78), ¢, represents the initial conditions, i.e., the values of concentrations
att = 0. The individual [A;] functions can be given using the eigenvalues of matrix
k. Let m be the number of different eigenvalues of matrix k, A;,A;,...,4,, the
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eigenvalues themselves, and /1, [, .. ., [,, the multiplicities of these eigenvalues, in
order. The following equation holds for the multiplicities:

n=>1 (2.80)

If the system is closed, the sums of all columns in matrix k are zero, and the
matrix itself is singular: at least one of its eigenvalues is zero. The solution can also
be given without using the matrix exponential function, based on a combination of
exponential functions and polynomials:

m
A=) > Cijnt" e 2.81)

j=1h=1

Complex numbers may arise as eigenvalues, but as all the elements of matrix
k are real, they can only appear in conjugate pairs. In this case, it is always
possible to reformulate the solution using the real sine and cosine functions only,
thus eliminating the need for using the complex exponential function. The values of
constants C; ;, can be given based on the initial conditions.

In the reactions representing the inflow, molecules are produced. These processes
are sometimes termed production from a source:

Kin
3 — A; (2.82)

This will lead to a first order, inhomogeneous linear system of differential
equations. The solution of this is relatively easily stated in a matrix form if the
k!™ values are arranged into a vector k" as:

¢, = expm(kt)(co —k~'k™) + kK" (2.83)

Consecutive processes containing higher order reaction steps seldom have known
analytical solutions. When the number of consecutive steps is only two, suitable
analytical formulas can sometimes be found, but they often contain mathematical
functions that are not generally preferred by chemists. Nevertheless, some of these
analytical solutions will be given here.

A second order reaction followed by a first order process is described by the
following scheme [10]:

2A; 5 A, 25 A, (2.84)
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The concentration of A; is obtained easily from a single-concentration rate law.
The concentration of the intermediate is a more delicate matter:

4k1[As]o + 2k1[A]o — kpe 2/ CRiIAIOE; (Zkl’;;l]o) o
4k,

Az]z =

—2k1[Ar]o — kpe R R/ @RIAI (1 2k [A]o)Ei (kzl + yc.lf—/ll]o)
4k1 (1 —+ Zkl [A]]())

+

(2.85)

In this formula, Ei(x) is the exponential integral function, which is defined by
the following integral:

Ei(x) = _/00 %Zdz (2.86)

The scheme involving a mixed second order reaction and a subsequent first order
process can also be solved analytically [10]:

k k
AL+ A —5 Ay —> Ay (2.87)

The concentration of A; and A, is obtained readily from a single-concentration
rate law and is given in Eq.(2.31). The general solution for intermediate Aj is
given as:

_ —k —k ka[Alo([A2lo—[A1])) H(0) ,—k
[As]; = [As]oe ™" + [Aj]oe ™" — [Ai]o(lkj)[Al]zoo—kl[/1\201f)+k2)e 8

o([Azlo—[A1]o)eAtlo—tA2lodkit ey [A1]o ([Azlo—[A1]o)e A0 —A2l0k17 fy 4

A
(A Joe TRl — [ o) TAslo (iAo —K1 Aslo F52) (2.88)

— ko ko [Atlo ,([A1]Jo—[A2]o)k1t
H() =2F1 (1’ ' @ 2 T G el )

In this formula , F} means the first hypergeometric function, which is defined as
follows:

2Fi(a,b,c,x) =1 +Z“("+1)"'(a+n—1)b(b+1)--~(b+n—1)x_v

— cc+1)---(c+n—-1) n!
(2.89)
If [AiJo = [Az]o, the solution can be obtained by the previously stated

case of the second order-first order process (Eq.(2.85)). In the case where
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ky = jki(JA1]o — [Az]o) is true (where i is a positive integer), special solutions
arise. For j = 1, the solution takes the following form:

_ —k —k [Al] [Azloek2 —[A]
[As)y = [Asloe ™2 + e~ [A]o (1 — [ ) Inlighe= b

(2.90)
(A (1—ek2r)
[AzJoek2" —[A1]o

For j > 1, there are also special forms for the solution that can be obtained in an
analogous manner.

A logical next possibility is a third order reaction followed by a first order
process, which is represented as follows [10]:

k k
3A; — Ay — A (2.91)
The concentration of A; is obtained easily from a single-concentration rate law

as in the previous cases, whereas the concentration of A, is given by the following
expression:

[As], = [As]oe 2 + Me—kzt i [A1]o

3 34/1 + 6ki[A]2

Y L PN Yy L (2.92)
54k, 6k1[A1]3

o TRttt g (R SRiTAG)
54k, 6k1[A1]

In this expression, erfi(x) refers to the imaginary error function, which is most
easily defined through the complex error function erf(x), using the imaginary unit
i = +/—1 as follows:

erfi(x) = —i xerf(i X x) (2.93)

The next consecutive process for which the analytical solution can be given is
composed of a first order reaction followed by a second order process:

k
Al —5 A,

. (2.94)
2A2 —> A3
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Again, the concentration of A; can be determined from a single-concentration
rate law and follows single exponential decay. [A,] is given as:

A = o [A Joe =11 2K1(\/8k2[A1]06’_k”/k1) —wll(vgkz[Al]oe_k"/kl)
TV e ok (VBT k) + of(VERTATe R

VBRTA T/ Ko K (VBRaTA T/ K1) — 4lAcloKo( VBR[Ao/ 1)

W= (2.95)
ViAo K (VERIAT K1) + 2[Aslolo( VERIA T/ K1 )

Here, I; and [, are the modified Bessel functions of the first kind, K; and K, are
the modified Bessel functions of the second kind.

I,(x) = (%); j!(n1+j)! (%)I

Ka(x) = x" ]‘[(2]— )/ %dw (2.96)

j=1

Finally, the case of a second order reaction followed by a second order process
can also be handled in this way:

ki
2A1 —> A2

o (2.97)
2A2 —> A3

The concentration of A; follows second order decay in this scheme. The
concentration of A, is obtained as follows:

(A, = ki[Ailo (1 + &)(V/T + 2ki[Ar]or) ™1 + o(1 — £) (/1 + 2k [Ar]or) ™16
20T 2k, (VT T 201000+ + o(/T + 2k [Ar]or) '

_ k(1 + &) — 2ka[As]o/[Ad]o
SVirARb e e/ Ao+ ki E— ) 229

Figure 2.6 displays some example curves for the concentration of the interme-
diate in the schemes discussed in the previous paragraphs. The parameters of all of
the shown curves were selected so that the initial rate of the formation of A, is the
same.

Among the single-concentration rate equations, the one describing isotope
exchange in Eq.(2.38) might have been the most unusual. This process can be
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AL/ IA),

Kkt or kALt

Fig. 2.6 Scaled kinetic traces for consecutive reactions. Formulas used: Eq.(2.95)
ki/(ka[A1]lo) = 1 (a), Eq.(298) ki/ka = 1 (b), Eq.(2.60) k;/k, = 1 (¢), Eq.(2.85)
ki[Ailo/k2 =1 (d), Eq.(2.92) ki[A1]g/ k2 = 1 (e)

coupled to first order decays in the number of labels, which gives rise to the
following scheme:

A’lk + A=A+ A;
« ki
AT — A (2.99)

ko
A; — Az

This seemingly artificial scheme actually has immense importance in the field
of medical diagnostics, and it also forms the basis of measuring exchange rates
in nuclear magnetic resonance spectroscopy. The labeling in these cases, rather
than isotope substitution in Eq.(2.38), arises from the magnetization of nuclei.
The quantities x; and x, are defined as given in Eq. (2.39) earlier. The differential
equations describing the change in these abundances are as follows:

LA ] = —(Rex + ki[Ai]D)x1 + Rewts

(2.100)

2 [Ay)r = —(Rex + ka[As]1)X2 + Rexx
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The solution of this system of linear homogeneous differential equations is given
by double exponential functions as follows:

_ [ G2.0=x1.0) Rex Aotk At
e = ((M—lz)[Al]T + X107 )Hl)e 1
(2.101)
(x2,0—x1,0) Rex Atk \ Aot
+ ((M*M)[AI]T T X103 )nz)e ’
_ [ GLo—x2.0) Rex Aotk At
X = ((M—Az)[Azh T X20 Ai—ﬁ) e
(2.102)

(¥1,0—x2.0) Rex Al +ka \ Aot
+((xz—m[Ale T X055, )€

The values A; and A, are the eigenvalues of a matrix similar to lé given in
Eq. (2.76):

_ k k _Rex Rex
A= ( STt @Rt z[Ale)

2
Mok R Re ) g kiRe _ kRs
JF\/(z1 T8 o ) Rk — e - Rl
(2.103)

— k k REX RPX
Az__(71_|_72_|_2[A1]T +m>

2
k k _Rex X _ _ kiRex _ koRex
\/ ( 2Tt an t 2[Az]T) kil = GGl — Tl

The usual significance of these equations is that Ry can be calculated from A4
and A,, which can be obtained directly from the detected kinetic curves.

As already pointed out, multiple-concentration rate equations often do not have
known analytical solutions. Yet, it is difficult to predict the cases in which the
solution can actually be given and some surprises may await the researchers.
Usually, manual attempts at solving a rate equation are very time-consuming, but in
all cases, trying to find the analytical solution using the differential equation solver
of a symbolic software such as Mathematica is usually short, and may actually find
the solution for most of the cases where it is available.

In multiple-concentration rate equations, it is possible that an explicit solution as
a function of time cannot be given for the concentrations, yet an explicit formula
connecting the concentrations to each other can be obtained. If concentration data
are available for these components, this limited analytical formula provides some
possibility to test adherence to the assumed rate equation. Two examples will be
given in the following paragraphs.
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The first example is the scheme where a reactant is transformed into a product in
a first order step, then this product reacts with a second molecule of the reactant in
a second order step. The scheme is given as follows:

A5 A
1 —> A2
(2.104)
A+ A R Az
The corresponding rate equation is:
d[ﬁ,]] = —ki[A1] — kz2[A1][A2]
(2.105)

A2 = jy[A1] - ka[A][A]

As the concentration of component A; decreases monotonously, it makes sense
to seek a function that describes the concentration of A, as function of the
concentration of A; and not time. The concentration of A, changes monotonously:
Eq. (2.105) shows that [A;] > k;/k; would be needed for a decrease, yet the
initial concentration is zero, which guarantees that this state can never be reached.
The mathematical background of the technique employed here is the derivation of
composite functions, but an often useful shortcut is simply to think that two lines of
Eq. (2.105) are “divided” by each other (see the footnote for the paragraph before
Eq. (2.1)). The result is a differential equation without time derivatives:

d[Aq] _ ki + ks [As]
d[Ar]  kafAs] =k

(2.106)

The concentration of component A; does not appear on the right-hand side of
Eq. (2.106), so it is clearly a separable differential equation, which can be solved
readily. The typical case is when [A;]o = 0, for which the solution is:

(Al = [Ar]o + [A2] + zk—k'ln (1 - @) (2.107)
2 1

This formula connects the concentrations of A; and A,, which might be useful
even without an analytical formula for the time dependence. This technique might
also aid finding an analytical solution, as substitution of the formula gained here into
the original rate equation will lead to a separable single concentration rate equation.

The second example is a competition reaction, where two reactants react with a
common material in a pair of second order processes:

k
AL+ Ay —5 Ay

ks (2.108)
Ay + A3 — A;
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The rate equation is given as follows:

d[Ai]
dt

d[As]
dt

—k1[A1][As]
(2.109)
—k>[As][As]

Although further equations would describe the rates of change for the other
components, these two suffice for our present purposes. Both [A{] and [A;] decrease
monotonously. Therefore, they can be described by changing the independent
variable from time to a concentration. The resulting differential equation is:

d[As] _ ka[As]
dlA]  ki[A]

(2.110)

Again, the solution this separable differential equation is readily obtained:

ky
)kl

Curves in Fig. 2.7 show the two concentrations as a function of each other. The
first model has one scaling parameter ([A;]o) and one shape parameter (k>[A1]o/ k1)
as the typical initial concentration of A; is zero. In fact, it could be shown with two
scaling parameters and no shape parameters, but for this, [A;] — [A2] would need

[A];
[A1]o

[Az]: = [As]o ( (2.111)

1.00
S
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Fig. 2.7 Scaled concentrations as a function of each other in two mechanisms. Solid lines:
Eq. (2.104) with k,[A]o/ k, as the shape parameter. Dotted lines (also marked with P): Eq. (2.108)
with k| / k, as the shape parameter
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to be plotted as function of [A;], which would make an unusual representation, the
utility of which is not obvious. The second model has two scaling parameters ([A;]o
and [Ag]o) and one shape parameter (k;/ k»).

2.2 Numerical Methods

A numerical solution of a rate equation usually gives a collection of numbers rather
than functions. The process is also called numerical integration, which generates
approximate values of concentrations at predetermined time intervals.

The simplest numerical integration method is called the Euler method, in which
the product of a preselected small time step (7) and the derivative given in the rate
equation is simply added to the concentration of A; to obtain the new concentration
value at the later time:

[Aili+: = [Ailr + fi([Allr, [A2]rs .. [AG]DT (2.112)

The additive term f; ([A1];, [Az2];, - - ., [An];) T on the right is called a concentra-
tion increment. This method is applied in a progressive manner, giving approximate
concentrations at gradually increasing times.

A more advanced method is called the fourth order Runge-Kutta method [7,
17]. The term “fourth order” refers to the fact that four different approximations of
the concentration increment are estimated with the following formulas:

hi,l = fi([Al]t» [Az]t» R [An]t)

hio = fi([Ail + hiat/2, (A2l + haat/2, ... [Anls + huwat/2)

hiz = fi([Al: + hi2t/2, [As]y + hopt/2, .. [Ag]e + hupT/2)

hia = fi([All + hist [Ao]e + hoaT, . [An]e + B 37) (2.113)

Finally, the concentration increment actually used for a given species is calcu-
lated as the weighted average of the four different approximated terms.

hiy +2his 4+ 2h; 3 + hi,4f
6

[Aili+: = [Ai] + (2.114)

A still more advanced method is dependent of the use of Taylor series. According
to the Taylor theorem, the concentration [A;],+. can be calculated from concentra-
tion [A;]; using the derivatives at time ¢ by the following infinite sum:

o 1 d/[A]

j
T (2.115)

[Aili+r = [Ai]: +

Jj=1
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The first derivative (j = 1) is already known from the rate equation to be
Ji((A1], [Az], . .., [Ays]). The higher order derivatives can be calculated from the
rate equation by successive differentiation:

d[Ak]/ !

d] A] n ad[Al/;]/l d[Ak] n Il
Z TARET Z Sa AL AL A

(2.116)

The sum is calculated to a finite number of terms in the series. The higher the
number of terms considered, the better the approximation becomes. It should be
noted that the Euler method is the same as the Taylor series method truncated to a
single additive term (i.e., stopping at the first derivative).

The Taylor series method can sometimes provide analytical solutions as well if
the resulting infinite sum is recognized as the exact Taylor series of a particular
function. For the simple first order rate equation, this is a very spectacular way
of proving that the solution is the exponential function. In this case, fi([A;]) =
—k[A1], and the derivatives at t = 0 can all be calculated quite simply:

(dj[Al]

— ) = (-k)’[A 2.117
20t = oA 117)

Substituting these derivatives into Eq. (2.115) with ¢t = 0 gives the following
formula:

(A = [+ 3 5 0 TAe = [ 3 0 @.118)
j=17" j=0 :

The infinite sum on the right of this equation is exactly the value of e ¥’ by the
definition of the exponential function.?

The key question in using numerical integration is the selection of suitable t
time step values. Too small a value requires a lot of computational power, whereas
the numerical calculations do not approximate the solution well if t is too high.
In addition, it often happens that at the beginning of the process, very low values
of 7 are needed, but later on, the time steps can be increased significantly without
any loss in accuracy. A numerical instability arising from this sort of sensitivity
to the time step is called stiffness [2]. When stiff differential equations are solved
numerically, it is imperative to use variable time steps. The Gear algorithm, also
called predictor-corrector method [5] provides a common way of solving stiff
systems in chemical kinetics.

2Hungarian-born mathematician P4l Erdés often told his audience that God has a book for
recording the most elegant proofs of all theorems. As he used to say, mathematicians need not
believe in God, but all of them must believe in the book. The author is sure this proof is from
God’s book.
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In all of these numerical methods, there are two conceptually different sources of
error, which cause the differences between the results of the numerical calculations
and the actual solution. The first is called formula error, which originates from the
approximate nature of the formulas used to calculate the concentration increment.
The second kind of error is called propagating error, which is caused by the fact
that the value [A;]; used in calculating the next value [A;],+, is imprecise except in
the case of t = 0.

There are a number of different softwares that can solve almost any rate equation
numerically. Here is a list of softwares this author has some familiarity with:
COPASI [1], KINSIM [6], Pro-Kineticist [15], Scientist [14], SPECFIT [18], ZiTa
[19]. All of these softwares can solve kinetic differential equations numerically,
some of them even contain a least squares minimizing algorithm that is suitable for
finding the combination of parameters that best fit a set of experimentally measured
data.

2.3 Fitting to Measured Data

Fitting to measured data is a very common problem in chemical kinetics. It serves
two different purposes, the more important of which is to test whether detected
data follow some sort of theoretical function or not. The second purpose is to
determine the values of the parameters appearing in the theoretical function, which
are often used to draw further conclusions. It should be emphasized that checking
the quality of the fit takes precedence over determining the parameter values. The
usual mathematical procedures used in fitting yield parameter values even if the
measured data do not resemble the theoretical function at all. However, if the quality
of the fit is not sufficient, the determined parameters do not contain any physical
information. Unfortunately, this sort of force fitting, i.c., using theoretical functions
that do not describe the measured data well is very common today’s science (e.g.,
exponential curves are used to fit kinetic traces even if the curves are spectacularly
far away from being exponential). This is often caused by an insufficient knowledge
of possible theoretical functions describing the phenomenon and the belief that one
of a very narrow selection of functions must describe the results for theoretical
reasons. It cannot be emphasized strongly enough that no scientific conclusion can
be drawn from the values of such force-fitted parameters. The primary objective
of fitting is to learn whether the theoretical function describes the data well, and
the determined parameter values only make sense if this first question is answered
positively.

There are a huge number of scientific softwares that use built-in algorithms to
carry out fitting and statistical analysis. These algorithms could even be used as a
black box (without any knowledge of the principles on which they are based), but
for scientific users, it is highly advisable to get familiar at least with the basics of
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the mathematical background. It is also a good idea to test computer softwares used
for such statistical analysis before first use and compare their results against some
sort of standard, well-known data set.

The most common mathematical method used in fitting is called least squares
fitting. The term “least squares” refers to the fact that those parameter values are
determined for which the square of the difference between the measured points and
the theoretical function is minimal. The procedure is also often called nonlinear,
which should be interpreted not in the context of the independent variable, but
with respect to the parameters. For example, consider the following second order
polynomial:

g(t) = Cit* + Cat + G5 (2.119)

This is a nonlinear function with respect to the independent variable ¢, but it is
linear for the parameters C;, C;, and Cj.

Let g(¢) be the theoretical function of interest, N the number of measured points,
g1, 82, ...,8gn the values of the dependent variable experimentally determined for
the independent variables #;,1,,...,fy. Some of the values t;,1,...,fy may be
equal to each other, this means that the dependent variable was measured multiple
times at a certain independent variable.

The difference g; — g(#;) is called a residual. The sum of the squares of the
residuals is calculated and minimized in the fitting procedure. This sum is handled
as a function of the parameter values that must be determined. If function g(¢) has
m different parameters, the sum of squares is defined as follows:

N
S(C1,Coev s Cp) = ) (g — g (1)) (2.120)
i=0

In the process of fitting, those parameter values are sought for which the function
S(Cy,Cy,...,Cy) is at minimum. The process is also called optimization. From
time to time, the physically meaningful values of the parameters may be limited,
these limitations can be built into the optimization procedure.

In real-life applications, the different measured points may not be equally
important or not equally reliable (these concepts are usually connected). These
differences can be taken into account in the fitting procedure by defining weights
(w1, wa,...,wy) for each measured point. In this case, the function to be minimized
involves multiplication of each residual with its individual weight.

N
S(C1,Ca, .., Cp) = D wi (g — g(1))’ (2.121)
i=0

If all weights are equal, that will lead to the same result as no weighting at all
(wi = wp = .-+ = wy = 1) as given for the function in Eq.(2.120). This is
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called uniform weighting. Uniform weighting assumes that the absolute errors of
the measured points are constant, so their reliability is independent of their value.

Another common case is when the relative errors of measured points are constant,
i.e., their reliability is directly proportional to their value. The weights for this case,
called proportional weighting, are the squares of the reciprocals of the measured
values (w; = 1/g7).

If the individual standard deviations of all measured points (o1,07,...,0y)
are known, the squares of their inverse reciprocals are best used as weights
(w; = 1/0?). This basically means that each point is weighted according to their
reliability. However, it is not typical to measure experimental points together with
their standard deviations.

Kinetic and rate data are often determined from light absorption measurements.
Absorbance is defined as the logarithm of the ratio of two light intensities (one
measured in the sample and a reference value). The detectors used in instruments
used for measurements (spectrophotometers) typically have an error in the mea-
surement of light intensity that is close to independent of the light intensity. High
absorbance values mean low intensity, which is not measured reliably. One solution
of this problem is to exclude the use of absorbance values above a cut-off limit
(most often absorbance 2, which means that 99 % of the incoming light is absorbed,
so 1 % reaches the detector), and use uniform weighting for lower values. Another
possibility, which is by no means in widespread use, is to employ special weights
based on the assumption of uniform error in intensity measurements. This might
be referred to as absorbance weighting and takes the following mathematical
following form:

w; = 10728 (2.122)

Whatever procedure is used, the weights in such a procedure should be defined
independently of the results of the fitting. The reliability or importance of the
individual data points should not be assessed based on how well they fit to the
theoretical equation. Unfortunately, weighting in a way that gives the best fit to the
theoretical equation is not unknown in practice. However, this is a highly prejudiced
procedure that is a mere mathematical trick to make fitting statistics look good. In
fact, this sort of weighting is equivalent to gradually erasing the experimental points
that do not fit the theory.

The sum of squares shown in Egs. (2.120) and (2.121) minimize the difference
along the dependent variable and, taken literally, they assume that the values of
the independent variable are known with high precision. Of course, this is a useful
assumption when the error in the independent variable is at least an order of mag-
nitude lower than the error in the dependent variables. Should this not be the case,
different definitions of the sum of squares function may be employed. Statistical
procedures based on this idea are often called Deming regressions [3]. A special
case is orthogonal fitting, which minimizes the sum of squared perpendicular
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distances from the data points to the theoretical function. In chemical kinetics, it is
seldom necessary to use these techniques, but a careful experimenter should know
about their existence and recognize the special cases when they are needed.

Function S(Cy, Cs,...,Cy), as defined in Eq. (2.121), cannot be negative as it
involves summing the squares of real numbers. The minimum of this multivariable
function is found where the partial derivatives are zero:

0S(Cy, Gy, ..., Cp)
aC;

=0 (2.123)

Solving these equations, which are nonlinear if the theoretical function g()
is nonlinear with respect to at least one of the parameters, gives the optimized
values of the parameters. The number of equations in Eq. (2.123) is the same as
the number parameters, so, at least in theory, all parameters can be determined from
this equation. Quite often, Taylor series expansion is used to transform Eq. (2.123)
into a set of linear equations called normal equations using the partial derivatives
of function g(¢) with respect to the parameters. With this technique, Eq. (2.123)
is not solved precisely, but the errors caused by the approximations are usually so
small that they are without any consequence in experimental science.

An often neglected point is that when the values of the parameters are deter-
mined, the reliability of the values must also be assessed. This is done through
estimating the standard deviations of the parameters. The usual course of calcu-
lations involves the definition of a matrix, M, based on the products of partial
derivatives with respect to the parameters as follows:

ZN 0g(ti) 0g(ti) Z | dg(ti) 9g(ti) ZN dg(ti) 9g(ti)
i=

N laaf‘)aaf‘) " 8% TS ma

g(ti) 08 (i L ogli) oglti) ., g(ti) 0g(ti

Dz Wi C, 9C, Zz—l Wi ac2 9Cs Dimy Wi 3C, Cy
M = . .

N 35’(1,) 9g(ti) . 3g(ti) dgti) .. N 0g(ti) 0g(ti)

Do WiSes 3Gy 901 Zl—l Wi, G Dim Wi 9Cn  Cm

(2.124)

This matrix appears to involve a lot of calculations. This is indeed true, but these
are highly routine and in a way simple as they only require the knowledge of the
theoretical function and the values of ¢;. Neither the experimentally measured values
g; nor the optimized values of the parameters are necessary.

As a next step, the inverse of matrix M needs to be calculated. The elements
of this inverse matrix, denoted (M ~!); ; for row i and column j, are essential in
calculating further statistical descriptors. The standard deviation of parameter C; is
given as:

(M™")::S(Cy,Ca,...,Cp)
oG = \| — (2.125)
N —m
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Another highly significant statistical descriptor is the correlation coefficient
between two parameters, which can be defined for any pairs of parameters as
follows:

(M)
ccc, = = (2.126)
\/@“)i,i (M),

There are a number of other statistical descriptors (such as coefficient of
determination, skewness, curtiosis, etc.) that can be used to characterize the quality
of a fit. They rarely have major significance, but from time to time, they may be
useful.

With this mathematical background, the following paragraphs will show specific
examples of fitting through linear and exponential functions.

Fitting a straight line, which is also called linear regression, is identical to fitting
a first order polynomial to measured data. This is a very common problem, and in
earlier times, a ruler and some good judgment in eyesight were enough to obtain
reasonably reliable data. The mathematics behind the fitting procedure was well
known even then, and using the full statistical calculations became very easy after
the personal computers became available for everyday use. The theoretical function
in this case is a linear one with two parameters:

gty =Cit+ G (2.127)

C; is commonly called slope and C, is called intercept, which is the value of
the function at ¢ = 0. Another sort of intercept is when g(t) = 0, which is
not a direct parameter of the function but can be derived from the intercept and
slope as —C,/C,. The equations that arise from setting the partial derivatives of
S(Cy, C,,...,Cy,) to zero are as follows:

XN wilgi—Citi—Ca)> N
= go——— =23 _owi (g —Cit; —C2)t; =0

(2.128)

0L g wi(gi=Citi=Cy)’ N
Lo (§c2 e Yimowi (g —Citi —Cy) =0

This is a system of two simultaneous linear equations. The solution yields the
following parameter values:

(ZfN=1 ngiti)(Z/N=1 Wf)_(ZiN=l Wigi)(va=1 w,-z,»)

Cy =
: (S w2 (2w ) (2 wir)

(2.129)
(ZAN=1 Wif,-z)(ZzN=1 Wigi)—(ZxN=l Witi)(ZIN=1 Wigiti)

C, =
’ (2 w?) (S w) (S0 i)
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The standard errors of the individual parameters are calculated as:

O_Cl — \/ Z,N=1Wi \/Z[ OWl(gx Cltl C2)2

N N 2 N
Zi:l wi Zi:l wit; _( i=1 Wzlr

(2.130)
o Z: 1 Wz T g wilgi—Citi—Ca)*
C2 Zz 1 Wi Zl 1 WI (Zl 1 Wlll)z N-2
The correlation between the slope and intercept is given as:
N
coLe = Lo il (2.131)

N N
\/Zi:l Wi Yoimg Wil?

In chemical kinetics, the most common problem is fitting an exponential function
to measured data. This is a clearly nonlinear problem as one of the three parameters
appears in the exponent. The form already given in Eq. (2.10) is used:

gty =Xe ¥ + E (2.132)
The optimized values for the linear parameters X and E are easily found as:
NYL gre™ = (0 e (E 80)
N Zl{\/:l e—2kti _ (ZINZI e—kii)2

(va=1972kti)(zz{v=1gz (Zz 1€ "")(Zz L gie™ )
NI ek — (L ek

However, for the nonlinear parameter k, the equation remains implicit:

N N N
(N Ze_Zkti - (Ze_kti)2> Zgitie_kli

i=1 i=1 i=1

N N
= (Nzgiekli - Ze Zgl) Ztl 2kt

i=1 i=1 i=1

X =

E =

(2.133)

(Ze‘”"f Zgz (if“")(igie‘k”))iffe_k” (2.134)

i=1 i=1 i=1 i=1

This equation can be solved with a suitable numerical method. Alternatively,
the Taylor series expansion can be used the set up a normal equation instead of
Eq. (2.134). Then the standard deviations and the correlations of the parameters can
be obtained from Egs. (2.125) and (2.126).
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The exponential function is well suited as a probe function to determine
rates of concentration change. For this purpose, a relatively small portion of the
experimentally detected trace is fitted. The selected portion should contain the
time for which the derivative is sought and should be narrow enough so that the
exponential function fits quite well. The rate is then calculated by the following
formula:

dg(t) &
—— = —kXe ™M 2.135
T e (2.135)

If the initial rate of the process is determined by this technique, the probe function
can be re-parametrized so that the initial rate vy (the derivative at # = 0) appears in
it as parameter:

ﬁ —kt

3 e "'+ F (2.136)

g(1) =
Finally, a further phenomenon related to parameter correlation should be men-
tioned here. Consider the following three-parameter equation:

g(t) = (C1 + Ct + G5 (2.137)

In this equation, there is no way of determining C; and C, independently, only
their sum (C; + C,) is available from the fitting. In the results of a fitting procedure,
this would be apparent from a correlation coefficient of 1 between C; and C,. The
example shown here is quite an obvious one as the correlation is caused by the form
of the function. In real life examples, such functions are easily recognized. A lot
more difficult to recognize is the case when the parameter correlation is caused
by the insufficient range of measured data, which cannot be avoided because of
experimental limitations. The phenomenon is detected by large values of standard
errors and correlations between the parameters close to 1.

Another reason why a particular parameter may have very large standard error
as calculated in the fitting is that it does not influence the calculated values of the
theoretical function in the range of independent variables covered by the data. In
this case, the large standard error is only calculated for a single parameter rather
than a pair of C; values.
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