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Abstract. We consider the initial boundary value problem for the homo-
geneous heat equation, with homogeneous Dirichlet boundary conditions.
By the maximum principle the solution is nonnegative for positive time
if the initial data are nonnegative. We study to what extent this prop-
erty carries over to some piecewise linear finite element discretizations,
namely the Standard Galerkin method, the Lumped Mass method, and
the Finite Volume Element method. We address both spatially semidis-
crete and fully discrete methods.
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1 Introduction

We consider the following model problem for the homogeneous heat equation, to
find u = u(x,t) for x € 2, t > 0, satisfying

u=Au in, wu=0 ondf2, fort>0, withu(-,0)=v inf, (1)

where 2 is a polygonal domain in R?. The initial values v are thus the only data
of the problem, and the solution of (1) may be written u(t) = E(t)v for t > 0,
where E(t) = ¢! is the solution operator. By the maximum principle, E(t) is a
nonnegative operator, so that

v>0 inf2 implies E(t)v >0 1in 2, fort > 0. (2)

Our purpose here is to discuss analogues of this property for some finite
element methods, based on piecewise linear finite elements, including, in particu-
lar, the Standard Galerkin (SG), the Lumped Mass (LM), and the Finite
Volume Element (FVE) method. For general information about these methods,
and especially error estimates, see Thomée [7], Chou and Li [3], and Chatzipan-
telidis, Lazarov and Thomée [1,2]. We consider both spatially semidiscrete and
fully discrete approximations.
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The basis for the methods studied is the variational formulation of the model
problem, to find u = u(-,t) € H = H}(£2) for t > 0, such that

(ug, ) + A(u,0) =0, Vo € Hy, fort >0, with u(0) = v, (3)

where (v, w) = (v,w)1,() and A(v,w) = (Vv, Vw). The finite element methods
are based on regular triangulations 7, = {K} of 2, with h = maxy, diam(K),
using the finite element spaces

Sp={x €C(2): x linear on each K € Tp; x =0 on 9N}.

The spatially semidiscrete SG method consists in using (3) restricted to Sy,
and the corresponding LM and FVE methods on variational formulations in which
the first term (u¢, ) has been modified, or to find uy(t) € Sy, for t > 0, such that

[Un,e, X] + A(un, x) =0, Vx € Sy, fort>0, withu(0)=wvp, (4)

where [, ] is an inner product in S}, approximating (-, ). The specific choices of
[-,-] in the LM and FVE cases will be given in Sect. 2 below.

We now formulate (4) in matrix form. Let Z;, = {P; }évzl be the interior nodes
of T, and {®;}_, C Sj, the corresponding nodal basis, with &;(P;) = d;;. Writing

N N
uh(t) = Zaj(t)@j, with Vp = Zgj@j’
j=1

j=1
the semidiscrete problem (4) may then be formulated, with a = (g, ..., an)7,
Ma' +8a =0, fort >0, with a(0) =7, (5)

where M = (my;), mij; = [D;,9;], S = (s45), sij = A(P;,P;), and v = (vy,...,
on)T. The mass matrix M and the stiffness matrix S are both symmetric, positive
definite. The solution of (5) can be written, with £(¢) the solution matrix,

aft) =E(t)v, where E(t) =e ™, H=M"1S. (6)

We note that the semidiscrete solution up(t) € Sy, is > 0 (> 0) if and only if,
elementwise, a(t) > 0 (> 0).

It was shown in Thomée and Wahlbin [8] that, for the semidiscrete SG method,
the discrete analogue of (2) does not hold for small ¢ > 0. However, in the case
of the LM method, it is valid if and only if the triangulation is of Delaunay type;
it had been shown already in Fujii [5] that nonnegativity holds for triangulations
with all angles < %Tl’. For the FVE method we will show here that the situation is
the same as for the SG method, i.e., that £(t) > 0 does not hold for small ¢ > 0.

In cases where the solution operator is not nonnegative for all positive times,
we shall also discuss if it becomes nonnegative for larger time, or if £(¢) > 0 for
t > to > 0; the smallest such #g, if it exists, will be referred to as the threshold of
positivity. Clearly, this is particularly interesting if ¢y is relatively small.
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We also study fully discrete schemes based on time stepping in the spatially
semidiscrete methods. With £ a time step, we consider approximations of the solu-
tion matrix £(t) = e~ in (6) at t,, = nk of the form &£, where & = r(kH),
with r(€) a rational function satisfying certain conditions. We will be particularly
concerned here with the Backward Euler and (0, 2) Padé time stepping methods,
corresponding to r(£) = 1/(1 + &) and 7(£) = 1/(1 + £ + 3£2), respectively.

In Schatz, Thomée and Wahlbin [6] some positivity results were obtained for
fully discrete schemes related to those for the spatially semidiscrete SG and LM
methods, and some of these are extended here to include also the FVE method.

After the introductory Sects. 1 and 2, the positivity properties of the spatially
semidiscrete methods are analyzed in Sect. 3, and then, in Sect. 4, of the fully dis-
crete methods. In Sect. 5 we give a concrete example, with {2 the unit square, using
the most basic uniform triangulation 7}, with the stiffness matrix corresponding
to the 5-point finite difference Laplacian. Computations in MATLAB are used to
elucidate our theoretical results, and to determine actual positivity thresholds.

The author gratefully acknowledges the help of Panagiotis Chatzipantelidis
with the computer experiments and the figures.

2 The Spatially Semidiscrete Methods

We begin our discussion of the semidiscrete problem (4), or (5), by observing that
for the stiffness matrix S = (s;5), which is common to all cases of (4), simple
calculations show, see, e.g., [4],

ZKCSUPP(‘?z‘)hi_QlK" ifi =3,
sij = (V9;, VP;) = _% sin(a + )/ (sin asin 3), if P;, P; neighbors, (7)
0, otherwise.

Here h; is the height of K with respect to the edge opposite the vertex P;, and «
and (3 are the angles opposite the edge P; P;, see Fig. 1. We assume throughout that
the triangulations 7} are such that the corresponding S are irreducible matrices.

We now turn to the three different semidiscrete versions of (4) mentioned above,
and specify the corresponding discrete inner products [+, -] on Sp.

[

Fi ]

Fig. 1. An interior edge e = P; P;.
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The Standard Galerkin (SG) method is defined by (4) with [-,-] = (-,-) =
(*s*)Lo(02), and we find for the mass matrix, with V| = area(V),
§lsupp(®;)], if i = j,
mj = mSG (Pi, ;) = { & [supp(@:P;), if P;, P; neighbors,  (8)
0, otherwise.
The Lumped Mass (LM) method uses (4) with [-,-] = (-, ), where the latter

is defined by quadrature: with { Pk ; }?:1 the vertices of the triangle K, we set

3
@ X)n = Y Qraldx), with Qua(f) =KD f(Pk;) = /K fdz.
j=1

KeT,

In the matrix formulation (5), this means that M = D = (d;;), with d;; =
(@i, ;) = 0 for j # 4, so that D is a diagonal matrix.

To define the spatially semidiscrete Finite Volume FElement (FVE) method,
following [2], we note that a solution of the differential equation u; = Aw in (1)
satisfies the local conservation law

ou
udxf/ —dst fort > 0, 9
/v ' av On ©)

for any V' C (2, with n the unit exterior normal to V. The semidiscrete FVE
method is then to find uy(t) € Sy, for t > 0, satisfying
8uh .

/ up ¢ dz— ds=0, forj=1,...,N, t >0, withup(0)=wvp, (10)
where the Vj are the so called control volumes, defined as follows, see Fig. 2. For
K € T3, let by beits barycenter, and connect by with the midpoints of the edges of
K, thus partitioning K into three quadrilaterals K;, [ = j, m,n, where P}, P, P,
are the vertices of K. The control volume V; is then the union of the quadrilaterals
K, sharing the vertex P;. The equations (10) thus preserves (9) for any union of
control volumes.

To write (10) in weak form, we introduce the finite dimensional space

Y ={ne€ La: n|y, = constant, j =1,...,N; n = 0 outside UN:1 Vit
For n € Y}, we multiply (10) by n(P;), and sum over j, to obtain the Petrov—
Galerkin formulation
(un,e,m) + ap(un,m) =0, VYneY, t>0, withup(0)=uv, (11)

where
N

Zn de Vx € Sy, n €Yy, (12)
av; On
In order to rephrase thls as a pure Galerkin method, we shall introduce a
new inner product on Sp. Let J, : C(£2) — Y} be the interpolant defined by
(Jpv)(Pj) =v(P;), j=1,...,N. The following lemma then holds, see [3].
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Fig. 2. A triangle K € 7}, and a patch II; around a vertex P;

Lemma 1. The bilinear form (x, Jpt) is symmetric, positive definite on Sy, and

ah(Xﬂ]hw) = (VX7V’(/}) = A(X71/1)7 VX71/} S Sh’ (13)

We now define the inner product (x,v) = (x, Jpt), for x,¢¥ € Sy. By (13),
the Petrov-Galerkin equation (11), (12) may then be written in the Galerkin for-

mulation (4), with [,] = (-,-), and the mass matrix M = (m;;) in (5) is
£ |supp(@;)], if i = j,
mi; = mf;VE =(P;,P;) = W78|supp(q5i(ﬁj)|, if P;, Pj neighbors,  (14)
0, otherwise.

We note that the FVE mass matrix is more concentrated on the diagonal than
that of SG. In fact, with D the diagonal mass matrix of LM, we have

MFVE = 2p 4 TM5C, (15)

3 Positivity Preservation in the Spatially Semidiscrete
Methods

In this section we shall consider the general spatially semidiscrete problem (4), in
matrix form (5), where S is the stiffness matrix, and M = (my;), m;; = [@;, D;],
is the mass matrix. We assume that [-, -] is such that either m;; > 0 for all neigh-
bors F;, P;, or such that m;; = 0 for all neighbors P;, P;. In the former case M
is a nondiagonal matrix, and in the latter diagonal. We shall make the technical
assumption that 7j, has a strictly interior node, P; say, such that any neighbor of
P; has a neighbor which is not a neighbor of P;; we shall refer to such a triangula-
tion as normal. Note that 7}, is normal if it has a strictly interior node P;, with all
its neighbors strictly interior, such that the associated patch I7; is convex. In the
case of a nondiagonal mass matrix we have the following negative result, which
was shown in [8] for the SG method.
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Theorem 1. Assume that 7y, is normal and that M is nondiagonal. Then the
solution matriz E(t) = e~ for (5) cannot be nonnegative for small t > 0.

Proof. Assume that £(t) > 0 for small ¢ > 0. Then h;; < 0 for ¢ # j since
Ety=e M =T -Ht+O(*) >0, ast— 0.

Let P; be the strictly interior node in the definition of a normal 7. We shall show
that h;; = 0 for ¢ # j. If this has been proven, then

N

Sij =Zmilhlj :hjjmi]’, 1= 1,...,N, (16)
=1

with h;; # 0, and hence the j*' columns of S and M are proportional. Since
P; is strictly interior, we have Zf\il @; = 1 on supp (¥,) and hence Zf\il Sij =
SN (V®;, V;) = (V1,VP;) = 0. Together with SN | m,; > 0, this contra-
dicts (16) and thus shows our claim.

It remains to show that h;; = 0 for ¢ # j. Consider first the case that P;
is not a neighbor of Pj, so that m;; = s;; = 0. Since S = MH, we find s;; =
Zl# myhy; = 0, and since hy; < 0 for [ # j, we have m;hy; < 0 and hence
myhy; = 0 for I # j. In particular, h;; = 0. When P; is a neighbor of P, it has a
neighbor P, which is not a neighbor of P; and hence s;; = Zl# mqrh;; = 0, now
implying h;; = 0 since mg; > 0 (where we have used that M is nondiagonal).
This completes the proof.

This result thus covers the SG and FVE methods, but not the LM method, which
has a diagonal mass matrix. We recall that an edge e of 7}, is a Delaunay edge if the
sum of the angles o and 3 opposite e is < 7 (see Fig. 1), and that 7}, is a Delaunay
triangulation if all interior edges are Delaunay. Using (7) this shows that 7}, is
Delaunay if and only if s;; < 0 for all 7 # j. But this is equivalent to S being a
Stieltjes matrix, i.e., a symmetric, positive definite matrix with nonpositive off-
diagonal entries. The following result was shown in [8].

Theorem 2. The LM solution matriz £(t) = e, H = D~'S, is nonnegative
for allt > 0 if and only if Tp, is Delaunay.

Proof. As in the proof of Theorem 1 we find that £(t) > 0 for ¢ > 0 implies
h;j < 0 for i # j, and hence, since S = DH, that s;; < 0 for ¢ # j, so that 7
Delaunay.

On the other hand, if 7}, is Delaunay, then S, and hence also D+kS, is Stieltjes,
which implies (Z + kH) ™! = (D + kS)~'D > 0 for all k > 0, where we have used
the fact that if A is a Stieltjes matrix, then A~ > 0. Hence

E(t) = lim (Z+ EH)*” >0, forall t > 0.
n

n—oo

We recall that if A is a Stieltjes matrix which is also irreducible, then A~! > 0.
In particular, if 7}, is Delaunay, we have S~! > 0. Returning to the general case,
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we then also have H~! = S7'M > 0. Since G = H~! = S~' M is symmetric and
positive definite with respect to the inner product Mv-w = vazl (Muw);w;, it has
eigenvalues {x; };V:l, with 0 < ;41 < k;, and orthonormal eigenvectors {; };V:l,
with respect to this inner product. Recall that by the Perron-Frobenius theorem,
if G > 0, then @1 > 0 and k; < £ for j > 2. Note that {¢;}}_, are then also the
eigenvectors of H, with corresponding eigenvalues A\; = 1/k;, j =1,..., N, and

thus A; > Ay for j > 2. We may write

N

EW =3 e (M- 1) g1 (17)

=1

We now return to the general semidiscrete problem (4), or (5), and show that,
if G = H~! > 0, then there exists to > 0 such that £(¢) > 0 for ¢t > to. This result
was incorrectly stated in [6], without the positivity assumption.

Theorem 3. IfG = H~! > 0, then there is aty > 0 such that the solution matric
E(t) = e Mt for (5) is positive fort > tg.

Proof. Tt suffices to show that £(t)e; > 0 for large ¢, for the finitely many unit
vectors {e; }7_,. But, since 1 > 0 and Me; - o1 > 0, we find by (17), for ¢ large,

N
Et)e; =Y e M (Me;-@1) i = e M ((Mej - 1) 1 + O(e” P27 2h)) > 0,
=1

4 Fully Discrete Methods

In this section we study time discretizations of the semidiscrete problem (4), or
(5). We thus consider approximations of the solution matrix £(t) = e~*** in (6)
at t, = nk, with k a time step, of the form £, where &, = r(kH), with 7(£) a
rational function satisfying certain conditions.

We begin with the Backward Euler (BE) method, to find U™ € Sy, U™ =
up(ty), for n > 0, such that

Un — Un—l

[ . x| AU, X) =0, Vx€Sh, forn>1 withU®=uv,. (18)

In matrix formulation, with U™ = Zjvzl a®;, this takes the form

(M+ES)a™ = Ma"™ ' or a"=&a" !, forn>1, witha®=7,
where & the time stepping matrix
Er=M+ES) M= T +kH) ' =ro(kH), H=M"1S, (19

using r(§) = r01(§) = 1/(1 + &). The fully discrete solution is thus a™ = EJ'v.
We first have the following time discrete analogue of Theorem 1, see [6].
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Theorem 4. Assume that Ty, is normal and M nondiagonal. Then the BE time
stepping matriz &, = (Z + kH) ™! cannot be nonnegative for small k > 0.

Proof. If we assume &, > 0 for k > 0 small, we would have, for any ¢t > 0,

E(t) =7 = lim (T+ -H)™" = lim_ £}, >0, (20)

n—oo

in contradiction to Theorem 1.

For the Backward Euler Lumped Mass method the mass matrix is diagonal, and
the following analogue of Theorem 2 was shown in [6].

Theorem 5. For the BE LM method, &, > 0 for all k > 0 if and only if 7y,
Delaunay.

For the nonnegativity of & for larger &, the following holds, where, as in the semi-
discrete case, positivity properties of H~! enter.

Theorem 6. For &, = (T + kH)~! to be nonnegative for k large, it is necessary
that H=1 > 0. If H~' > 0, then there exists ko > 0 such that &, > 0 for k > ky.

If &k, > 0, then &, > 0 for k > ko. Thus {k : & > 0} is an interval [ko, 00).

Proof. We write &, = e(eZ + H) ™!, with ¢ = 1/k, and note that thus & > 0 for
k large implies (eZ+H)~! > 0 for ¢ > 0 small. But (¢Z+H) ' — H lase — 0,
and hence H~! > 0. On the other hand, if = > 0, then (¢Z +H)~! > 0 for ¢
small, and hence & > 0 for k large.

For the last statement in the theorem we show that if (9Z + H) ™! > 0, with
g0 > 0, then (¢Z +H)™! > 0 for € € [0,&0]. With § = &g — & > 0, we may write

(T4+H) " = (o +H—0I) " = (oI +H) (ZT-K)™', where K =08(oZ+H) "

Here K > 0, by assumption, and, if § is so small that, for some matrix norm
|- 1, IK| = 8|(e0Z + H) ™| < 1, then (Z — K)~" = 372 (K7 > 0, and therefore
(eZ +H)™' > 0. But if (¢Z + H)~! > 0 for ¢ € (e1,&0], with &1 > 0, then
(e1Z+H)~! > 0. Hence, by the above, (¢Z +H)~! > 0 for some ¢ < &1, and thus
the smallest such €1 has to be ey = 0.

When & > 0 for large k, we refer to the smallest kg such that & > 0 for k > kg
as the threshold of positivity for &,. Thus, by the last statement of Theorem 6, in
the BE case the positivity threshold is the smallest k for which & > 0.

The following result from [6] gives precise values of k for & to be guaranteed
to be nonnegative, under a sharper conditions than H~! > 0, namely if s;; < 0
for P;, P; neighbors, or a + 8 <  for each edge e = P;P; of 7}, (see Fig. 1).

Theorem 7. If s;; <0 for all neighbors P;P;, then £, > 0 if
klsij| > mi;, Vj#i. (21)

Proof. (21) implies that m;; +ks;; < 0 for all j # 4, so that M 4 kS is a Stieltjes
matrix. Hence (M + kS)™! > 0, and thus &, > 0 by (19).
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Thus & > 0 if k > max(m;;/|s;;|), with max taken over all neighbors P;, P;.
If {7} is a quasiuniform family, and o + 8 < v < « for all P;P;, then & > 0 if
k > ch? with ¢ = ¢({7,}). Note that since mfjg = %mZVE for P;, P; neighbors,
by (15), the above lower bound is smaller for FVE than for SG, by a factor 7/9.

Now consider, more generally, a fully discrete solution o™ = Evp, n > 0,
of (5) defined by a time stepping matrix & = r(kH), where r(§) is a bounded
rational function for £ > 0 approximating e~¢ for small &, so that

r(€) =1-£+0(&%), as¢—0. (22)
We may write

N
Exv = r(kH)T Z (kX)) (M- @) 1.

As in Theorem 4, &, cannot be nonnegative for small k£ and M nondiagonal [6].

Theorem 8. Assume that Ty, is normal and M nondiagonal. Let &, = r(kH),
with (&) satisfying (22). Then & cannot be nonnegative for small k.

Proof. Using (22), the result follow as in Theorem 4 from

2 \n
lim &), = lim (I— “H 0( )) — e £(1), for any ¢ > 0.

n—oo

For nonnegativity of & = r(kH) for larger k we first show that if H=! > 0, this
requires that r(£) > 0 for large €.

Theorem 9. Let H™ > 0 and let & = r(kH). Then a necessary condition for
Ex to be nonnegative for large k is that r(&) > 0 for large &.

Proof. With A1, @1 the first eigenvalue and the corresponding eigenvector of H,
we have g1 = (kA1 )1, and thus, since Ay > 0, 1 > 0, for Exp; to be nonneg-
ative for large k it is necessary that r(kA;) be nonnegative for large k, showing
our claim.

A typical and interesting example is the (0,2) Padé approximation rg2(§) =
1/(1+ €&+ %fQ) However, the Padé approximations r11(£) = (1 — 75)/( %f)
and r12(§) = (1 — 75)/(1 + %5 + %52) are negative for large &, and hence the
corresponding &, cannot be nonnegative for large k when H~' > 0.

We now assume that r(co) = 0. If 7(£) > 0 for large &, we may then write

r(€) =cE 1+ 0(E 1Y), asé — oo, withg>1, ¢> 0. (23)
We show the following result, generalizing the first part of Theorem 6.

Theorem 10. Assume that (23) holds. Then H™9 > 0 is a necessary condition
for & =r(kH) > 0 for large k. If H™% > 0, then & = r(kH) > 0 for large k.

Proof. Both statements of the theorem follow since, by (23),

Ep=ck U (H 94+ 0(k™")), ask — oco. (24)
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The result shows, in particular, that & = rg2(kH) > 0 for large k if H=2 > 0.
We complete this section by showing that for this method, the negative conclusion
of Theorem 8 holds also for the LM method, even though M is then diagonal,
under the not very restrictive assumption that 7; is 4-connected in the following
sense: There exists a path P in Zj consisting of four connected edges P,, P,,, with
Smn # 0, and such that the endpoints P;, P; of the path cannot be connected by
a path with fewer than four edges.

Theorem 11. Assume that 7;, is Delaunay and 4-connected. Then, for the LM
method, E; = ro2(kH) cannot be nonnegative for small k.

Proof. We have, by Taylor expansion of rgs(£),
& =roa(kH) =T — kH + LK°H* — 1k*H* + O(K®), ask — 0.

We shall show that if P,P,P,P,P; is a path P as above, then (£;);; < 0 for
small k. For this we write H = D~'S = V — W, where V is a positive diagonal
matrix and W has elements W, = —Smn/dmm > 0 when P, P, are neighbors
with Sy, # 0, with the remaining elements 0. (Recall that since S is Stieltjes,
W > 0.) It follows that (H*);; = Zh,lz,la hity hay 1, higis b, and, by our assump-
tion on the path P connecting F; and P;, none of the nonzero terms have factors
from V. Hence (H*);; > wipwpqwgrwy; > 0. In the same way, since P; cannot
be reached from P; in less than four steps, (H!);; = 0 for | = 0,1,2,3. Hence
(gk)ij = _ik4(H4)ij + O(k‘s) < 0 for k small.

5 A Numerical Example

In this final section we present a numerical example to illustrate our theoretical
results. For a family of uniform triangulations of the unit square 2 = (0,1) x
(0,1), we study the positivity properties of the spatially semidiscrete, the Back-
ward Euler, and the (0,2) Padé methods, using the SG, FVE and LM spatial
discretizations. The triangulations 7; of {2 are defined as follows: Let M be a
positive integer, h = 1/(M +1), and set x; = y; = jh, for j =0,..., M +1. This
partitions {2 into squares (x;, Z;+1) X (Ym, Ym+1), and we may define a triangula-
tion 7p, by connecting the nodes (2, ¥m), (€j4+1,Ym—1). The number of interior
vertices is N = M?, and maxy, diam(K) = v/2h. We note that 7, is normal,
Delaunay, and 4-connected (if M > 3).

To determine the stiffness and mass matrices, let (o = (z;, ym) be an interior
vertex of 7, and let {(; }?:1 be the surrounding (including possibly boundary)
vertices, numbered counterclockwise, with ¢1 = (41, ym), and {¥; }?:0 the cor-
responding basis functions, see Fig. 3. The contributions corresponding to (y to
S are then given by (cf. (7))

4, 7 =0,
(VWO,VW]) = _17 j = 15274757
0, Jj=3,6,
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Fig. 3. Left: The unit square {2 with the symmetric triangulation 7j.Right: The patch
at Co.

and to the mass matrices M for the SG and FVE methods by

11
and (¥, ;) = $h? { 2
54

1, j=0,
1 s
6 j_]-v"‘767

112 y J 07
(%0, 75) = 3h { . j=1,....6.
Note that since the sum of the angles opposite a diagonal edge is m, the corre-
sponding elements s;; of the stiffness matrix vanish. We observe that S is an irre-
ducible Stieltjes matrix, so that S~! > 0, and hence the matrices H~! = S~ M
for the SG, FVE and LM methods are all positive. Thus the results of Theorems
3, 6, 9, and 10 concerning positivity for large ¢ and k all apply. However, since

some s;; = 0 for P;, P; neighbors, this does not hold for Theorem 7.

Table 1. Positivity thresholds for the numerical example in Sect. 5.

Semidiscrete | Backward Euler | (0,2) Padé

h SG |FVE |SG FVE SG |FVE LM
0.10 |0.046 | 0.043 | 0.0053 | 0.0045 |0.0250.024 | 0.020
0.05 |0.035|0.031 |0.0013|0.0011 |0.023|0.023 | 0.021
0.025]0.021 | 0.019 | 0.0003 | 0.0003 |0.022|0.022 | 0.022

In Table1 we show some computed positivity thresholds ¢y for £(t), and ko
for & = ro1(kH) and & = roa(kH), for the SG, FVE, and in the case of ro2(kH)
also the LM method. The numbers indicate that for the spatially semidiscrete
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problem, the positivity thresholds diminish with h, and are smaller for the FVE
than for the SG method. For the BE method the thresholds are small, with the
ratio ko/h? approximately 0.54 for SG and 0.45 for FVE, even though Theorem 7
does not apply. For the (0, 2) Padé method the thresholds do not appear to dimin-
ish with A, and also to be independent of the choice of the spatial discretization
method.
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