Chapter 2

Thermodynamic Concepts—Equilibrium
and Nonequilibrium During Solidification

Thermodynamics is a useful tool for the analysis of solidification. It is used to eval-
uate alloy phase constitution, the solidification path, basic alloy properties such as
partition coefficients, slopes of liquidus, and solidus phase boundaries.

2.1 Equilibrium

The free energy of any phase is a function of pressure, temperature, and composi-
tion. Equilibrium is attained when the Gibbs free energy is at a minimum (equivalent
to mechanical systems for which equilibrium exists when the potential energy is at
a minimum). Thus the condition is:
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where n; is the number of moles (or atoms) of component i. The partial derivatives
of the free energy are called partial molar free energies, or chemical potentials:

G
Wi = (—) (2.2)
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At equilibrium, and assuming 7, P = constant,
dG = pidn; +pjdnj+... =0 (2.3)

For a multiphase system, a condition for equilibrium is that the chemical potential
of each component must be the same in all phases (for derivation see inset):

we = pf (2.4)
where the superscripts and 8 stand for the two phases.
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Derivation of the Equilibrium Criterion

Consider two phases, « and B, within a system at equilibrium. If an amount
of dn of component A is transferred from phase « to phase g at 7, P = ct.,
the change in free energy associated with each phase is dG* = ufdn and

dGP = —uidn. The total change in free energy is dG = dG* + dGP =
(8 — phydn.
Since at equilibrium dG =0, it follows that % — Mﬁ = 0.

Although equilibrium conditions do not actually exist in real systems, under the
assumption of local thermodynamic equilibrium, the liquid and solid composition of
metallic alloys can be determined using equilibrium phase diagrams. Local equilib-
rium implies that reaction rates at the solid/liquid interface are rapid when compared
to the rate of interface advance. This concept has been shown experimentally to be
true up to the solidification velocities of 5 m/s.

Equilibrium phase diagrams describe the structure of a system as a function of
composition and temperature, assuming transformation rate is extremely slow, or
species diffusion rate is very fast. Two-component phase equilibrium in a binary
system occurs when the chemical potentials of the two species are equal.

Phase diagrams were originally obtained from experimental cooling curves. The
progress in thermodynamics and computational thermodynamics developed the
method of constructing phase diagrams with the help of the Gibbs free energy
curves. A simple example for the case of nonideal solution is given in Fig. 2.1.
G, is the Gibbs free energy of mixing, which for nonideal binary solutions is given
by:

Gm = xaG% +xpG% + RT(xalnxs + xplnxpg) + GE (2.5)
where

by Molar faction of components A or B
G°  Free energy of the pure component A or B
R Gas constant
GEx = gnon—ideal _ Gideal — pymix(| _ AT)  Excess free energy

A Constant to be evaluated through experiments
In Fig. 2.1, at temperature Tj, the energy of the liquid, G%, is smaller than that
of the solid, Gﬁl, and the liquid phase is the stable phase at all compositions. At
temperature 7> < T1, the free energy curves intersect. A tangent to the two curves
gives the region where the two phases, L and a-solid, coexist. At temperature 73 <
T,, the tangent construction produces two two-phase regions, L + « and L + .
At temperature Ty, the tangent is in contact with the three phases, L, «, and B,
corresponding to a triple point, which is the eutectic point on the phase diagram. At
temperature 75, G,I;l is above the tangent, which means that there is no liquid. The
central region is a mixture of the two phases o and S.

For an in-depth discussion of the thermodynamics of solidification the reader is
referred to Fredriksson and Akerlind (2012).
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Fig. 2.1 Use of Gibbs free energy curves to calculate a binary phase diagram (Fredriksson and
Akerlind 2012). With permission from Wiley

2.2 The Undercooling Requirement

The driving force of any phase transformation including solidification, which is a
liquid-to-solid phase transformation, is the change in free energy. The Helmholtz
free energy per mole (molar free energy) or per unit volume (volumetric free energy)
of a substance can be expressed as:

F=E+P-v—T-S§ (2.6)

E Internal energy, i.e., the amount of work required to separate the atoms of the
phase to infinity

P Pressure

v Volume

T Temperature
S Entropy

Thermodynamics stipulates that in a system without outside intervention, the free
energy can only decrease.

The entropy is a measure of the amount of disorder in the arrangement of atoms
in a phase. In the solid phase, the disorder results from the thermal vibrations of the
atoms around their equilibrium position at lattice points. In the liquid phase, addi-
tional disorder comes from structural disorder, since the atoms do not occupy all
the positions in the lattice as they do in solids. Indeed, the greater thermal energy at
higher temperatures introduces not only greater thermal vibrations but also vacan-
cies. Immediately below its melting point a metal may contain 0.1 % vacancies in its
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Fig. 2.2 Schematic represen- long-range order in short-range order in
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lattice. When the vacancies approach 1 % in a closed-packed structure, the regular
12-fold coordination is destroyed and the long-range order of the crystal structure
disappears. The number of nearest neighbors decreases from 12 to 11 or even 10
(the coordination number (CN), becomes smaller than 12, as shown in Fig. 2.2).
The pattern becomes irregular and the space per atom and the average interatomic
distance are increased. Short-range order is instated. In other words, the liquid pos-
sesses a larger degree of disorder than the solid. Thus, the entropy of the liquid is
higher than the entropy of the solid. The disorder resulting from melting increases
the volume of most materials.

A certain amount of heat, the heat of fusion, is required to melt a specific mate-
rial. Since the heat of fusion is the energy required to disorganize a mole of atoms,
and the melting temperature is a measure of the atomic bond strength, there is a
direct correlation between the two.

Let us start our analysis of solidification by introducing a number of simplifying
assumptions:

a. Pure metal

b. Constant pressure

c. Flat solid/liquid interface, i.e., the radius of curvature of the interface is r = co
d. No thermal gradient in the liquid.

For constant pressure, Eq. 2.6 becomes the Gibbs free energy equation:
G=H-TS 2.7

where H = E + P - v is the enthalpy.

Eq. 2.7 is plotted in Fig. 2.3. Since the slope of the line corresponding to the
liquid free energy is higher (i.e., S > Sgs), the two lines must intersect at a temper-
ature T,,. This is the equilibrium temperature at which no transformation (melting
on heating or solidification on cooling) can occur. Under normal nucleation con-
ditions, when the temperature decreases under 7.y, a-stable solid will form. If
nucleation of « is suppressed, B-metastable solid will form at a lower temperature,
under 7,g. If nucleation of both & and f is suppressed, then metastable glass forms.
The metastable y solid can only be produced by vapor deposition.

The equilibrium condition Eq. 2.4 can be written for the case of solidification as:

ur—pus=0 or Gp—Gs=0 (2.8)
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Fig. 2.3 Variation of the free A
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where the subscripts L and S stand for liquid and solid, respectively. This means
that at equilibrium the change in chemical potential or in free energy is zero. At the
equilibrium temperature, if the two phases coexist:

AGy=Gp —Gs=(HL — Hs) = To(SL — Ss) =0
Thus, one can further write:
AHy =T,ASy or ASy=AH¢/T,

Here, AHy = H; — Hy is the change in enthalpy during melting, or the volumetric
latent heat. ASy is the entropy of fusion (melting). At a temperature lower than 7,:

T,

AHy T
AG, = AH; —T—L = AH; = AS;AT (2.9)

T, T,
AT is the undercooling at which the liquid-to-solid transformation occurs. From
this equation the undercooling is defined as:

AT = AG,/ASf (2.10)

Note that if AT =0, AG, =0. This means that, if there is no undercooling under
the equilibrium temperature, the system is at equilibrium, and no transformation can
occur.

Thermodynamics does not allow further clarification of the nature of undercool-
ing. It simply demonstrates that undercooling is necessary for solidification to occur.
Kinetics considerations must be introduced to further understand this phenomenon.

This analysis has been conducted under the four simplifying assumptions (a—
d) previously listed. The analysis states that the only change in free energy upon
solidification is because of the change of a volume of liquid into a solid, AG,.
However, when the four assumptions are relaxed the system will increase its free
energy. This increase can be described by the sum of the increases resulting from
the relaxation of each particular assumption:
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The four positive right hand terms are the increase in free energy because of cur-
vature, temperature, composition, and pressure variation, respectively. Let us now
evaluate the terms in this equation.

2.2.1 Curvature Undercooling

In the evaluation of the equilibrium temperature presented so far, it has been
assumed that the liquid—solid interface is planar (flat), i.e., of infinite radius
(assumption c). This is seldom the case in real processes, and never the case at
the beginning of solidification, because solidification is initiated at discrete points
(nuclei) in the liquid, or at the walls of the mold that contains the liquid. As the
volume of a solid particle in a liquid decreases, its surface/volume ratio increases
and the contribution of the interface energy to the total free enthalpy of the particle
increases. Thus, when the particle size decreases in a liquid—solid system, the total
free enthalpy of the solid increases. The curve describing the free energy of the solid
in Fig. 2.3 is moved upward by AG,. This results in a decrease of the melting point
(equilibrium temperature) as shown in Fig. 2.4.

If solidification begins at a point in the liquid, a spherical particle is assumed
to grow in the liquid, and an additional free energy associated with the additional
interface, different than AG,, must be considered. This additional energy results
from the formation of a new interface and is a function the curvature of the interface.

In two dimensions, the curvature of a function is the change in slope, §6, over a
length of arc, §I, (Fig. 2.5):

K =80/81 = 80/(r80) = 1/r 2.12)
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Fig. 2.5 Definition of curva-
ture

In three dimensions, the curvature is the variation in surface area divided by the
corresponding variation in volume:

K =dA/dv=1/r1 +1/r (2.13)

where | and r; are the principal radii of curvature (minimum and maximum value
for a given surface).

For a sphere ri=nr and thus K=2/r

For acylinder r; =00, =r and thus K=1/r.

General Definition of Curvature

In general, if a curve is represented by r(z), where ¢ is any parameter, the
curvature of that curve is:

K(t) = YO0 here r = dr/dt and r = d2r/df®. In Cartesian

(l‘/~l‘/)3/2
coordinates, for a curve y = y(x):

K(x) = aliﬁ where y = dyldx, etc.

Assuming that the radius of the spherical particle is r, when the particle increases
by dr, the work resulting from the formation of a new surface, d(47tr2y) /dr, must
be equal to that resulting from the decrease of the free volumetric energy, i.e.,
f—r (%nr3AGv). Equating the two, after differentiation, the increase in free energy

is:
AG, =2y/r or,more general AG, =yK (2.14)
where

y  Liquid-solid surface energy
K  Curvature
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Fig. 2.6 Bulk thermal under-
cooling Thune

Thermal undercooling

Then, from the definition of undercooling, Eq. (2.9), we obtain:
ASyAT, =yK orATrzTg—Te’:(y/ASf)KzFK (2.15)

where AT, is the curvature undercooling, 7, is the equilibrium (melting) tem-
perature for a sphere of radius r, and I" is the Gibbs—Thomson coefficient. The
Gibbs—-Thomson coefficient is a measure of the energy required to form a new
surface (or expand an existing one). For most metals I' = 10"’ K m. In some cal-
culations, molar AHy and ASy are used, for which the units are J mole~! and J
mole™ 'K, respectively. Then the Gibbs—Thomson coefficient becomes:

['=uv,y/ASy (2.16)

where v,, is the molar volume in m3/mole.

For a spherical crystal AT, =2 I'/r. Using this equation it follows that for
AT, =2°C, r =0.1 wm, and for AT, =0.2°C, r =1 wm. Thus, the S/L interface
energy is important only for morphologies where » < 10 wm, i.e., nuclei, interface
perturbations, dendrites, and eutectic phases.

2.2.2 Thermal Undercooling

Let us now relax assumption (d), and allow a thermal gradient to exist in the lig-
uid (Fig. 2.6). As long as nucleation of solid and subsequent growth of these nuclei
is rather fast, the only S/L interface undercoolings for the pure metal are kinetic
and curvature. However, if nucleation difficulties are encountered, or if growth of
the solid lags heat transport out of the liquid, an additional undercooling, thermal
undercooling, ATr, occurs. When ignoring kinetic undercooling, this additional
undercooling is simply the amount the liquid is under the equilibrium temperature
of the pure metal solidifying with a planar interface (no curvature). Thus, the bulk
thermal undercooling is:

AT =T, — Toun (2.17)
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Fig. 2.7 Interface thermal N
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where Tp,x is the bulk liquid temperature (temperature far from the interface that
can be measured through a thermocouple).

At the S/L interface the rejection of latent heat must also be considered. As shown
in Fig. 2.7, a boundary layer of height A Hy/c, and length §7 will form at the inter-
face (position x =0), because of heat accumulation at the interface. The interface
thermal undercooling can be calculated as:

AT}k =T* — Tpuk (2.18)

The corresponding increase in free energy is AGr = ASp(T* — Tpuii). Some-
times, metals can undercool considerably before solidifying. For example, pure iron
can be undercooled under its melting (equilibrium) temperature by 300 °C, or even
more, under certain controlled conditions.

2.2.3 Constitutional Undercooling

Up to this point, only pure metals have been considered (assumption a). For alloys,
the solutal field introduces an additional change in the free energy, which corre-
sponds to an additional undercooling. Fig. 2.8 shows the left corner of the phase
diagram of a hypothetical alloy solidifying to form a single-phase solid solution. 77,
is the liquidus temperature, T* is the interface temperature at some arbitrary time
during solidification, and T is the solidus temperature. Note that for alloys, 7 is
the equilibrium temperature 7,. At temperature T*, the composition of the solid at
the interface is C%, while the composition of the liquid is C} . The bulk composition
of the alloy, at the beginning of solidification, is C,. The ratio between the solid
composition and the liquid composition at the interface is called the equilibrium
partition coefficient, k:

k=(Cs/Cpr.p (2.19)

The indices 7 and P mean that calculations are made at constant temperature
(isotherm) and at constant pressure (isobar). Note that at the end of solidification,
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Ts, it can be calculated that the last liquid to solidify should be of composition
C,/k. For the particular case described in Fig. 2.8, there is more solute in the lig-
uid than in the solid at the interface. This partition is the cause of the occurrence
of macrosegregation and microsegregation in alloys, to be discussed later in more
detail.

The partition coefficient is constant only when the liquidus slope, m, is constant.
Since for most of the alloys m is variable, so is k. Nevertheless, for mathematical
simplicity, in most analytical calculations m and k are assumed constant. Note that
k <1 when the left-hand corner of a phase diagram is considered. However, k& > 1
when the slopes of the liquidus and solidus lines are positive.

The following relationships exist between various temperatures and composi-
tions in Fig. 2.8:

AT, =T, —Ts = —m - AC,and AC, = Co(1 — k)/k (2.20)

where AT, is the liquidus—solidus temperature interval at C,, and AC, is the
concentration difference between liquid and solid at 7.

For dilute solutions, the Van’t Hoff equation for liquid—solid equilibrium,
d(Ink,)/dT = AHy/ RT?, holds and can be used to calculate k. Integrating
between the melting temperature of solute B, T3, and solvent A, TJ‘Z‘, gives:

k = exp [(AH}?/R) (I/Tf - 1/T;‘)] 2.21)

In addition, k£ and m relate as:
A n%
k=1-mAH] /[R(Tf) } (2.22)

Here, AH' is the latent heat of phase i, T} is the melting temperature of phase i,
and R is the gas constant. The index i stands for the pure solvent, A, or the solute, B.

The difference between the solid and liquid solubility of the alloying element is
responsible for the occurrence of an additional undercooling called as constitutional,
or compositional, or solutal, undercooling (AT,). The concept was first introduced
by Chalmers (1956). Consider the diagrams in Fig. 2.9. The first diagram in the
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upper left corner is a temperature—composition plot, that is, a phase diagram. C,
is the composition of the solid at temperature Ts, while C,/k is the composition of
the liquid at the same temperature. These compositions have been translated onto the
lower diagram, which is a composition—distance (x) diagram. A diffusion boundary
layer, 8., is shown on the diagram. This layer occurs because at the interface the
composition of the liquid is higher (C,/k) than farther away in the bulk liquid (C,),
and consequently, the composition of the liquid, Cy,, decreases from the interface
toward the liquid.

The third diagram, on the upper right, is a temperature—distance diagram. It
shows that the liquidus temperature in the boundary layer is not constant, but
increases from T at the interface, to 77, in the bulk liquid. This is a consequence of
the change in composition, which varies from C,/k (at temperature 7) at the inter-
face, to C, (at temperature 77) in the bulk liquid. A liquidus (solutal) temperature
gradient, G, can now be defined as the derivative of the 77 (x) curve with respect
to x at the temperature of the interface, 7* (Fig. 2.10).

Since heat is flowing out from the liquid through the solid, there is also a thermal
gradient in the liquid, G, which is determined by the evolution of the thermal field.
The two gradients are compared in Fig. 2.10. If G < G, the temperature of the
liquid ahead of the interface is above the liquidus temperature of the alloy. If on the
contrary, G; > G, over a certain distance ahead of the interface, the liquid will
be at a temperature lower than its liquidus. Thus, while the bulk liquid may be at a
temperature above its liquidus, the liquid at the interface may be at a temperature
below its liquidus, because of the solute concentration in the diffusion layer. This
liquid is constitutionally undercooled. The undercooling associated with this liquid
is called constitutional, or compositional, or solutal, undercooling, AT,. Based on
Fig. 2.9 it can be calculated as:
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AT, =Ty — T* = —m(C} — C,) (2.23)

Note that the sign convention here is that m is negative. The corresponding increase

in free energy is:

AG. = —AS;m(Ci —Cy) (2.24)

2.2.4 Pressure Undercooling

Let us now relax assumption (b) and consider that local pressure is applied on the
S/L interface, or that pressure is applied on the whole system. The change in free
energy of the liquid and solid with small changes in pressure and temperature can

be calculated from Eq. 2.6 as:
AFp =v AP — S AT and AFs = vsAP — SsAT

This is true assuming that the internal energy, the volume, and the entropy of the

condensed matters (liquid and solid) change little under the proposed conditions.
Then, from the equilibrium condition, AF; = AFjg, the change in equilibrium
temperature because of the applied pressure is:

ATp = APAv/AS; (2.25)

This equation is known as the Clapeyron equation. During solidification, the change
in volume Av is positive. Thus, an increase in pressure (AP > 0) will result in an
increase in undercooling.

For metals, the pressure undercooling is rather small, of the order of 1072
K/atm. Hence, pressure-changes typical for usual processes have little influence on
the melting temperature. However, in certain applications, such as particle engulf-
ment by the S/L interface, the local pressure can reach relatively high values, and
ATp may become significant. Furthermore, starting again with Eq. 2.6, and using
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differential notations, at constant temperature d7 =0, and the equation becomes
(0G /0 P)r = v. This means that at constant temperature, the free energy of a phase
increases with the increase in pressure, and a new phase with a smaller molar volume
may form.

The Clapeyron equation also implies that a change in pressure will impose a
change in the equilibrium temperature. Most metals and alloys expand upon melting
so that in Eq. 2.25, ATp /AP > 0. Consequently, a pressure increase will lead to an
increase in melting temperature (see example in Fig. 2.11). Exceptions include Bi,
Sb, Si, and graphitic cast iron, all of which expand upon solidification resulting in a
decrease of the melting temperature.

For other effects of pressure on solidification phenomena the reader is referred to
the review paper by Sobczak et al. (2012).

2.2.5 Kinetic Undercooling

The concept of undercooling can also be understood in terms of atom kinetics at
the S/L interface. While this analysis is done at the atomic scale level, and a more
in-depth discussion of this subject will be undertaken in Chapter 3, some concepts
will be introduced here for clarity. When an S/L interface moves, the net transfer
of atoms at the interface results from the difference between two atomic processes
(Verhoeven 1975):

The rate of these two processes is:

Rate of melting (S — L) = (dn/dt)p = prnsvsexp(—AGL/(kgT)) (2.26)
Rate of solidification (L — S) = (dn/dt)s = psnpvp exp(—AGs/(kpT)) (2.27)
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Fig. 2.12 Requirement of
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where ng, ny are the number of atoms per unit area of solid and liquid interface
respectively, vg, vy are the vibration frequencies of solid and liquid atoms, respec-
tively, AG e, AG s are the activation energy for an atom jumping through the inter-
face during melting and solidification, respectively, and pjs, ps are probabilities
given by:

pPm.s = fm.s-Am.s (2.28)

Here fy s is the probability that an atom of sufficient energy is moving toward the
interface, and Ay s is the probability that an atom is not kicked back by an elastic
collision upon arrival.

At equilibrium, the flux of atoms toward and away from the interface must be
equal, that is, (dn/dt)y = (dn/dt)s. Thus, the two curves must intersect at T,
(Fig. 2.12). For solidification to occur, more atoms must jump from L to S than from
S to L. Consequently, the solidifying interface must be at lower temperature than 7,
by an amount that is called as kinetic undercooling , ATy.

Another approach to this problem (e.g., Biloni and Boettinger 1996) would be to
consider that the overall solidification velocity is simply:

V = Rate of solidification — Rate of melting = V., — V. exp(—AG/RT;)

where AG is expressed in J/mole. V. corresponds to the hypothetical maximum

growth velocity at infinite driving force. Then, using series expansion for the expo-
nential term (1 — e~ & x), neglecting 2" and higher order terms, and assuming
that Eq. 2.10 is valid near equilibrium we obtain:

AHy ATy
RTe2

RT? V
AHy Ve

V=V ATy = (2.29)

Two hypotheses have been used to evaluate V.. The first one (e.g., Turnbull 1962)
assumes that the rate of forward movement (atoms incorporation in the solid) is the
same as the rate at which atoms can diffuse in the melt. Thus, V. = Dy /a,, where
a, is the interatomic spacing. The second one, the so-called collision limited growth
model (Turnbull and Bagley 1975), assumes that the solidification event may be
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Table 2.1 Hierarchy of equilibrium. (Boettinger and Perepezko 1986)

Increasing undercooling | I. Full diffusional (global) equilibrium

or solidification velocit . . . -
L ¥ A. No chemical potential gradients (composition of phases are

uniform)

B. No temperature gradients

C. Lever rule applicable

II. Local interfacial equilibrium

A. Phase diagram gives compositions and temperatures only at
liquid—solid interface

B. Corrections made for interface curvature (Gibbs—Thomson
effect)

III. Metastable local interface equilibrium

A. Stable phase cannot nucleate or grow sufficiently fast

B. Metastable phase diagram (a true thermodynamic phase
diagram missing the stable phase or phases) gives the interface
conditions

IV. Interface nonequilibrium

A. Phase diagram fails to give temperature and compositions at
the interface

B. Chemical potentials are not equal at the interface

C. Free energy functions of phases still lead to criteria for
impossible reactions

limited only by the impingement rate of atoms with the crystal surface. Then V., =
V,, where V,, is the speed of sound. Note that V,, is approximately three orders of
magnitude higher than Dy /a,. Experimental analysis of rapidly growing dendrites
in pure melts (Coriell and Turnbull 1982) has confirmed the collision limited growth
model. Typically, for metals the kinetic undercooling is of the order of 0.01-0.05 K.

2.3 Departure from Equilibrium

We have demonstrated that for solidification to occur a certain amount of under-
cooling is necessary. Solidification cannot occur at equilibrium. Depending of the
amount of undercooling different degrees of departure from equilibrium may occur,
following a well-defined hierarchy. As shown in Table 2.1, as the undercooling or
the solidification velocity increases, the liquid-to-solid transformation changes from
fully diffusional to nondiffusional.

Global equilibrium, (I), requires uniform chemical potentials and temperature
across the system. Under such conditions, no changes occur with time. In solidifica-
tion processing such conditions exist only when the solidification velocity is much
smaller than the diffusion velocity. Such conditions truly exist only when solidifi-
cation takes place over geological times (Biloni and Boettinger 1996), or after long
time annealing (see Application 2.1). When global equilibrium exists, the fraction
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of phases can be calculated with the lever rule, and the phase diagram gives the
uniform composition of the liquid and solid phases.

During solidification of most castings, both temperature and composition gradi-
ents exist across the casting. Nevertheless, in most cases, the overall kinetics can
be described with sufficient accuracy by using the mass, energy, and species trans-
port equations to express the temperature and composition variation within each
phase, and equilibrium phase diagrams to evaluate the temperature and composition
of phase boundaries, such as the solid/liquid interface. This is the local equilib-
rium condition, (IT). Most phase transformations, with the exception of massive
(partitionless) and martensitic transformations can be described with the conditions
present under (I1).

Metastable equilibrium, (III), can also be used locally at the interface. The most
common case is the gray-to-white (metastable-to-stable) transition in cast iron that
occurs as the cooling rate increases. The stable eutectic graphite-austenite is grad-
ually substituted by the metastable iron carbide-austenite because of difficulties
in the nucleation of graphite and the higher growth velocity of the metastable
eutectic. Metastable transformation can occur at solidification velocities exceeding
0.01 m/s. Usually, solidification occurring at rate above this value is termed rapid
solidification.

For both stable and metastable local equilibrium, the chemical potentials of the
components across the interface must be equal for the liquid and for the solid. How-
ever, at large undercooling, achieved for example when using high-solidification
velocities, this condition ceases to be obeyed. The solidification velocity exceeds
the diffusive speed of solute atoms in the liquid phase. The solute is trapped into the
solid at levels exceeding the equilibrium solubility. These conditions, (IV), corre-
spond to rapid solidification. Typically, for solute trapping to occur, the solidification
velocity must exceed 5 m/s (Boettinger and Coriell 1986).

The preceding analysis is useful in attempting to classify practical solidification
processes based on the degree of equilibrium at which they occur as follows:

e Processes occurring with local interface equilibrium : shape casting, continuous
casting, ingot casting, welding (arc, resistance), directional solidification.

e Processes occurring with interface nonequilibrium : welding (laser), melt spin-
ning, atomization, surface remelting.

2.3.1 Local Interface Equilibrium

For the time scale (cooling rates) typical for solidification of castings, the assump-
tion of local interface equilibrium holds very well. However, the interface tempera-
ture is not only a function of composition alone, as implied by the phase diagram.
Interface curvature, as well as heat and solute diffusion, affects local undercooling.
Accordingly, to express the condition for local equilibrium at the S/L interface all
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Fig. 2.13 The various
components of interface
undercooling with respect

to the bulk temperature under
the condition of local inter-
face equilibrium

the contributions to the interface undercooling must be considered. The total under-
cooling at the interface with respect to the bulk temperature, Tp,, is made of the
algebraic sum of all the undercoolings previously derived (see Fig. 2.13):

AT = ATy + AT, + AT, + ATr + ATp (2.30)

Ignoring the kinetic and pressure undercooling, and since Ty, = Ty + m C,, the inter-
face undercooling under the condition of local equilibrium for castings solidification
can be written as:

AT = ATy + AT, + AT, = (T* — Tpup) + (Tp — T*)+TK
=Tr+mCy +TK — Ty (2.31)

where T is the melting point of the pure metal (see Application 2.2).

In practical metallurgy, the solidification velocity is increased by increasing the
cooling rate. As the cooling rate increases the length scale of the microstructure
(e.g., dendrite arm spacing (DAS)) decreases. For cooling rates up to 103 K/s, local
equilibrium with compositional partitioning between the liquid and solid phases at
the solidification interface is maintained. The interface undercooling is small. How-
ever, when the cooling rate increases above 103 K/s nonequilibrium solidification
occurs.

Local equilibrium can occur even at significant undercooling under the equilib-
rium temperature if nucleation is avoided. In this case, the liquidus and solidus lines
can be extended as metastable lines, as shown in Fig. 2.14.

2.3.2 Interface Nonequilibrium

It has been shown that for a multiphase system a condition for equilibrium is that the
chemical potential of each component must be the same in all phases, as stated by
Eq. 2.4. This is shown graphically in Fig. 2.15. It is noticed that, while the chemical
potentials in the liquid and solid are equal, the compositions are not. The necessary
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Fig. 2.14 The stable Pb—Sn
phase diagram (solid line)
with superimposed calculated
metastable extensions (dotted
lines) of the liquidus and
solidus lines, and measured
data. (Fecht and Perepezko

1989)
0 ) : : :
0 20 40 60 80 100
Tin, mol%
Fig. 2.15 Interface compo- C
sition and chemical potential L
for equilibrium and diffu- /
sionless solidification (solute Cy Y 4 Cy C
trapping) R
My My Us
N Hy
» 5 |-
interface equilibrium solute trapping

condition for interface equilibrium is V < < D;/§;, where V is the solidification
velocity, D; is the interfacial diffusion coefficient, and §; is the atomic jump dis-
tance. Note that D; is smaller than the bulk liquid diffusion coefficient, Dy . The
equilibrium partition coefficient is calculated from the phase diagram with Eq. 2.19.
If the ratio between the two velocities is reversed, that is V > > D;/§;, as shown in
Fig. 2.15, the equality between the chemical potentials is lost, but the composition
becomes uniform across the interface. The partition coefficient becomes one. Solute
trapping occurs. Using the typical values of D; =2.5 10™° m?/s and 8; =0.5 10~
m, the critical velocity for solute trapping is calculated to be 5 m/s.

For solute trapping to occur, the interface temperature must be significantly
undercooled with respect to 77. During partitionless solidification (C§ = C7), a
thermodynamic temperature exists which is the highest interface temperature at
which partitionless solidification can occur. This temperature is called the 7, tem-
perature, and is the temperature at which the molar free energies of the solid and
liquid phases are equal for the given composition. The locus of 7, over a range of
compositions constitutes a 7, curve. The liquid and solid phase compositions are
equal along the T, curve.
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Fig. 2.16 Schematic representation of T, curves for two different eutectic systems. (Perepezko
and Boettinger 1983)

Some examples of such curves are given in Fig. 2.16. They can be used to eval-
uate the possibility of extension of solubility by rapid melt quenching. If the 7,
curves are steep (Fig. 2.16a), single phase « or § crystals with compositions beyond
their respective 7, cannot form from the melt. The solidification temperature in
the vicinity of the eutectic composition can be depressed to the point where an
increased liquid viscosity stops crystallization (glass temperature transition, 7). If
the T, curves are shallow (Fig. 2.16b), for composition below both T, curves, a mix-
ture of o and B crystals could form, each phase having the same composition as the
liquid.

Baker and Cahn (1971) formulated the general interface condition for solidifica-
tion of binary alloys by using two response functions:

T*=T(V,C})—TK (2.32)
Ci = Cik*(V,C}) (2.33)

At zero-interface velocity (equilibrium), the functions 7 and k* are directly related
to the phase diagram. Indeed, 7' (0, CZ) describes the liquidus temperature of the
phase diagram and k*(0, C7) is the equation for the equilibrium partition coefficient,
Eq. 2.19. The dependence of £* on interface curvature is ignored.

Several models have been proposed to describe the dependence of the parti-
tion coefficient on velocity. The most widely accepted is the one proposed by
Aziz (1982). Ignoring the composition dependence of the partition coefficient, its
functional dependence for continuous growth is:

ke +6; - V/D;

K*(V) = T+ VD, (2.34)
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where k, is the equilibrium partition coefficient.

Note that for V =0, k* = k., and for very large V, k* =1. D; is unknown. In some
other models liquid diffusivity rather than interfacial diffusivity is used. The atomic
diffusion speed V; = D;/§;, is usually obtained by fitting Eq. 2.34 to experimental
curves showing velocity dependence on partition coefficients. Some typical values
for V; are 17 m/s for Sn (Hoaglund et al. 1991), 33 m/s for Ni-0.6 at% C (Barth et al.
1999), and 5 m/s for Ag-5at% Cu (Boettinger and Coriell 1986). From this analysis
it follows that for solute trapping to occur two conditions are necessary: k* = 1 and
T < T,.

By evaluating the change in free energy and assuming a linear kinetic law for
the interface velocity (from Eq. 2.29), Baker and Cahn (1971) calculated the two
response functions for a flat interface to be:

nyp, \%4 . nyp, k*

T =T V)C3 — with V)= 1—k*({1—1In—
r+mp(V) L+1_keV0W1 mp(V) 1_ke|: ( nke)i|
(2.35)
C; =k*C}i (2.36)

Boettinger and Coriell (1986) have proposed a slightly different derivation, sub-
stituting the last term in Eq. 2.35 for interface temperature with the kinetic
undercooling given by Eq. 2.29, to obtain:

RT? V
AHy V,
Note that if D;/8; =0 and V,, = 0o, then the conditions for local interface equilibrium
revert to the equations previously introduced:

T* = Ty + m CandC} = k,C} (2.38)

T* =T +my(V)C} — (2.37)

2.4 Applications

Application 2.1 Calculate the time required for the directional solidification of a
rod having the length / =10 cm, so that full diffusional equilibrium operates during
solidification.

Answer Assume Dy =10"° m/s. For equilibrium solidification to occur diffusion
will have to go to completion; that is the solute should be able to diffuse over the
entire length of the specimen. The diffusion velocity for complete diffusion over
the sample of length /is D7/l =107°/10"2 =10~ m/s. The solidification velocity
must be much smaller than the diffusion velocity, i.e., Vs < < Dp/l. Assume Vg
=10~10 m/s. Then, the solidification time is 7 = //Vs =10"2/10"19= 108 s=3.17
years.
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Application 2.2 Consider a Cu-10 %Sn bronze (phase diagram in Appendix C).
Assume solidification with planar S/L interface under local equilibrium conditions.
A thermocouple placed far from the interface reads 950 °C. What is the interface
undercooling at the beginning of solidification? Calculate the change in interface
undercooling when the average (bulk) composition has changed from 10 to 12 %.

Answer The interface undercooling is given by Eq. 2.31. The contribution of curva-
ture is ignored as the interface is planar. From the phase diagram 7y =1085 °C. The
liquidus slope can be calculated using values at the temperature of 798 °C, as fol-
lows: m= AT/AC =(1085 —798)/(— 26) = — 11. C, is given as 10 %. Substituting
in Eq. 2.31 we obtain the initial interface undercooling to be AT =25 °C.

The change in interface undercooling when the bulk composition increases to
12 % is simply m (Cp — Cpyr) = — 11(10 — 12) =22°C.
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