
Chapter 2
Alternative Approaches for Fast Boolean
Calculations Using the GPU

Bernd Steinbach and Matthias Werner

Abstract The growing number of Boolean variables requires very efficient
approaches to solve the given tasks. We explore the utilization of the GPU for fast
parallel Boolean calculations in this chapter. Hundreds of processor cores of the
GPU offer a significant potential for improvements. Constraints in their application
may restrict the achievable speedup. This chapter gives a taxonomy about possible
approaches to solve a problem using a computer. We select one problem from the
Boolean domain and summarize alternative approaches for utilizing the GPU. It will
be shown that the calculation time could be reduced by several orders of magnitudes
for the selected Unate Covering Problem.

2.1 Introduction

The technological progress in micro- and nano-electronics leads to both a strong
extension of applications and growing requirements for the design of digital systems.
Boolean functions are the main instrument for their description. It is well known that
the number of function values of a Boolean function exponentially grows depending
on the number of Boolean variables.

An important source for improvements to solve Boolean tasks is the utilization of
many computer cores for parallel computations. Today’s processors contain a small
number of cores in the Central Processing Unit (CPU), but significantly more cores
are available on the Graphics Processing Unit (GPU). Hence, the utilization of the
GPU to solve exponentially complex tasks of the Boolean domain is an important
challenge for scientists and engineers.

There are several approaches for utilizing the GPU in the Boolean domain. In
this chapter, we give a taxonomy to classify these approaches. Due to the restricted
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space, we select a single Boolean problem, explore different solution methods based
on the mentioned taxonomy, and compare both the necessary effort and the benefit
achieved. The results of these comparisons can guide scientists and engineers who
want to speed up other Boolean problems using a GPU.

2.2 The Explored Boolean Problem: Unate Covering

We select the Unate Covering Problem (UCP) of given Petrick Functions as object
of our exploration. This problem has on the one hand an exponential complexity; on
the other hand it has a high practical significance; e.g., it is needed for circuit design
[3] and data mining [2]. A Petrick Function P(p) depends on non-negated variables
pi within a conjunctive form as shown in the following example:

P(p) = (p4 ∨ p5 ∨ p6 ∨ p8) ∧ (p2 ∨ p3 ∨ p4 ∨ p7 ∨ p8)∧
(p1 ∨ p3 ∨ p4 ∨ p7 ∨ p8) ∧ (p1 ∨ p4 ∨ p5 ∨ p7 ∨ p8)∧
(p1 ∨ p2 ∨ p5 ∨ p6) ∧ (p4 ∨ p5 ∨ p6 ∨ p7 ∨ p8)∧
(p1 ∨ p4 ∨ p5 ∨ p6 ∨ p7 ∨ p8) ∧ (p4 ∨ p6 ∨ p7) = 1.

(2.1)

The aim of the Unate Covering Problem consists in finding a subset of variables pi

such that values 1 of these variables determine the value 1 of the given Petrick Func-
tion P(p). A minimal solution is a subset of variables pi which cannot be reduced
without losing the covering of all disjunctions (also called clauses). The 12 minimal
solutions of 2 or 3 variables pi which satisfy the equation P(p) = 1 given above, are:

p1 p4 ∨ p2 p4 ∨ p4 p5 ∨ p4 p6 ∨ p1 p2 p6 ∨ p1 p3 p6 ∨
p3 p5 p6 ∨ p6 p7 ∨ p6 p8 ∨ p1 p7 p8 ∨ p5 p7 ∨ p2 p7 p8 = 1. (2.2)

Exact minimal solutions of the Unate Covering Problem are minimal solutions con-
sisting of the smallest number of variables. Selected from the set of 12 minimal
solutions, the 7 exact minimal solutions of 2 variables pi are wanted:

p1 p4 ∨ p2 p4 ∨ p4 p5 ∨ p4 p6 ∨ p6 p7 ∨ p6 p8 ∨ p5 p7 = 1. (2.3)

It is our aim to find all exact minimal solutions of a given Petrick Function.

2.3 Advantages and Drawbacks of the GPU

GPUs were basically developed to accelerate the graphical representation of wanted
data on the screen. Hence, GPUs naturally have to transform geometry and tex-
ture data to colored pixels. The mathematical basis for such transformations is the
multiplication of matrices. Such tasks can be efficiently solved in parallel on many
processor cores, because most of the computations are independent of each other
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due to the data locality. GPUs have been heavily optimized for such tasks over the
years. This has been achieved by throughput-oriented, many-core architectures with
hundreds of compute cores. In contrast, modern CPUs have a multi-core architecture
(e.g., 8 cores) where each core has to execute single instructions as fast as possible.

Themain advantage of theGPU is themuch higher number of cores in comparison
with the CPU. Therefore, it is an interesting challenge to port a very computation-
intensive task from the CPU to the GPU.

Drawbacks of the GPU are caused by the differences in the architecture and
programming paradigm.Due toAmdahl’s law [1], the theoreticallymaximal speedup
is determined by the sequential part of a program even when an infinite number of
processor cores can be utilized. Consequently, significant speedups can be reached
on the GPU only for programs with a large parallel part.

The following analogy emphasizes differences between sequential and parallel
programming. Sequential programming on a single CPU core is like employing
a single, skillful and fast workman. Instructions are executed step by step on sin-
gle data (see Single Instruction, Single Data, SISD, [5]). Parallel and concurrent
programming on the GPU is like managing many, but slow workers. They should
not obstruct each other, even though they have to share scarce resources. If some
of the workers have to wait for resources, others stand in to conceal the latencies.
The efficiency of such a team depends on the programmer who faces much more
challenges than a sequential programmer. The GPU programmer is responsible for
cache coherency, optimal work balance and utilization of memory hierarchies—e.g.,
coalesced memory access is crucial on a GPU.

A GPU consists of several, concurrently acting Multiprocessors (MPs). Each of
these MPs is equipped with shared memory, very fast thread-private registers, load
and store units and many compute cores which work in parallel. On Nvidia GPUs
the workers are lightweight threads, where each 32 threads are grouped in a warp.
Instructions are executed by warps based on the Single Instruction, Multiple Data
principle, (SIMD) [5]. Generally, 32 threads of a warp execute the same instruction
at the same time on different data. Warp instructions are serialized by the hardware,
if divergent control flows or memory conflicts are present.

The PCIe bus transfers the data between the main memory of the CPU and the
device memory of the GPU. This data transfer is restricted by the bandwidth of
PCIe bus of, e.g., 8GB/s for PCIe v2.x. The GPU itself has internal memory layers
designed by decreasing both the size and the latency.

Valuable hints regarding optimal algorithms and programs on Nvidia GPUs are
given in [19].

2.4 Classification of Approaches for the Utilization of GPUs

Figure2.1 shows a taxonomy which can be used to classify how a certain task can be
solved on a computer. Firstly, the utilized device for computation must be selected.
The device, which mainly contributes to solve the problem, can be the CPU or



20 B. Steinbach and M. Werner

problem to solve: task

utilized device: CPU GPU

method: direct indirect

API: CUDA OpenCL XBOOLE-CUDA

algorithm: mapping special special NDM-DIF

Fig. 2.1 Classification of the explored approaches

the GPU. Due to the focus of this chapter, we explore the further taxonomy only
for the GPU. The CPU is only used to control the GPU and as reference for the
speedup reached on the GPU. For that reason we skip the classification details for
the CPU.

Secondly, we decide about the method how the device (GPU) is utilized to solve
the task. The direct method faces the programmer with the technical details of the
GPU and significantly increases the effort to implement the needed program. The
indirect method simplifies the programming effort because general domain-specific
operations wrap all details utilizing the GPU.

The third level of the suggested taxonomy deals with the Application Program-
ming Interface (API). Such an API provides a set of data types and functions needed
to serve a certain purpose, which is the utilization of the GPU in the studied case.
TheCompute Unified Device Architecture (CUDA) [4] is an API provided byNvidia.
Alternatively, theAPIOpen Computing Language (OpenCL) [6] canbeused to utilize
GPUs not only from Nvidia. OpenCL is an API that allows access to heterogeneous
platforms consisting of GPUs of different producers, CPU cores, and even Digital
Signal Processors (DSPs) or Field-Programmable Gate Arrays (FPGAs) in the used
hardware configuration.

The final question of this taxonomy asks for the algorithm to use. Typically, as
for the explored problem, there are many different algorithms [16]. We select two
algorithms for CUDA and refer to [14, 17] where further CUDA-algorithms are
evaluated which solve the studied problem. Our decision for these two algorithms
is based on the ability of the GPU. Knowing that the GPU is heavily optimized for
matrix multiplication, in [8] an algorithm was developed that maps the UCP to the
multiplication of matrices. Alternatively, we can utilize the properties of the UCP
in a special algorithm for the GPU [13]. For comparison of CUDA and OpenCL
the same special algorithm was implemented using OpenCL [7]. The domain-
specific API XBOOLE-CUDA [18] provides, among others, the operationsNegation
according to De Morgan (NDM) and the set operation Difference (DIF) which can
be utilized to solve the Unate Covering Problem with significantly less effort for the
implementation of the algorithm.
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2.5 Direct Utilization of the GPU for Solving the Unate
Covering Problem

2.5.1 Matrix-Multiplication Using CUDA

The Petrick Function P(p) is mapped to the matrix P of n rows and k columns.
The rows are associated top down to the variables pi using an increasing order:
p1, . . . , pn . Each column of the matrix P represents one clause of P(p) where a
value 1 indicates the existence of the associated variable in the clause.

All vectors of the Boolean space are assigned top down to the matrix A of l = 2n

rows and n columns. The elements of the result matrix R = A × P of l = 2n rows
and k columns can be calculated as usual:

R[r, c] =
n∑

i=1

A[r, i] · P[i, c]. (2.4)

The value of R[r, c] indicates how many variables of the row r of A cover the clause
associated to the column c of P . Hence, if R[r, c] = 0 then the row r of A is no
solution of the Unate Covering Problem. The evaluation of the matrix R detects all
exact minimal solutions. Figure2.2 shows an example of this approach. The rows of
bold numbers in R indicate valid covers. The set {(101), (111)} of associated rows
of the matrix A contains the row (101) with the smallest number of values 1 and
determines the only exact minimal cover p1 p3.

A subset of variables pi is a valid cover when all clauses are covered. It is not
needed to know how often each clause is covered, therefore the algebraic matrix
multiplication (2.4) can be substituted by the Boolean matrix multiplication (2.5):

RB[r, c] =
n∨

i=1

A[r, i] ∧ P[i, c]. (2.5)

Fig. 2.2 Exact minimal
cover p1 p3 of P(p) found
by matrix multiplication

P(p) = (p1)∧ (p1 ∨ p2)∧ (p2 ∨ p3)∧ (p3)

R= A×P=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×
⎡
⎣
1 1 0 0
0 1 1 0
0 0 1 1

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 1 1
0 1 1 0
0 1 2 1
1 1 0 0
1 1 1 1
1 2 1 0
1 2 2 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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The advantage of the Boolean matrix multiplication (2.5) in comparison to (2.4) is
that a simpler data type reduces the memory for the matrices. However, the number
of rows in the matrices A and R exponentially grows depending on the number of
variables pi and restricts this approach to small instances of the UCP.

2.5.2 Ordered Restricted Vector Evaluation Using CUDA

The achievable speedup does not only depend on the number of used processor cores,
but also on the implemented algorithm. The ordered restricted vector evaluation is a
very powerful algorithm for the Unate Covering Problem. Some intermediate steps
help to understand this approach.

Searching for more powerful algorithms we compare the given Petrick Function,
e.g. (2.1), with the expression of the corresponding exact minimal cover (2.3). This
comparison shows the transformation from the given conjunctive form into an equiva-
lent minimal disjunctive form. This transformation is realized by the distributive law:

(a ∨ b) ∧ (c ∨ d) = a c ∨ a d ∨ b c ∨ b d. (2.6)

The application of the absorption law:

a ∨ a b = a (2.7)

reduces the calculated form to conjunctions of the minimal cover. The exact minimal
cover can be found by counting the number of variables in the conjunctions and the
selection of the conjunctions having a minimal number of variables. It was shown in
[16] that a repeated application of (2.7) after the calculation of (2.6) for the intermedi-
ate result and a single clause reduces the runtime by a factor of more than 104. There-
fore,we use this significantly improved algorithmas basis for all further comparisons.

The theoretical basis of another approach is shown in (2.8). Two consecutive
negations do not change P(p). The inner negation can be executed in constant time
according to De Morgan’s Law (NDM). The outer negation must be executed as
Complement operation (CPL).

P(p) = 1

P(p) = 1

N DM(P(p)) = 1

C P L(N DM(P(p))) = 1 (2.8)

A proof in [14] shows that an algorithm based on (2.8) solves the UCP. Using the
XBOOLE operations NDM and CPL on a single CPU core, the time to solve an
Unate Covering Problem could be reduced by a factor of almost 105.

The CPL(NDM(P))-approach achieved a strong improvement. This algorithm
needs almost all time for the calculation of the complement operation that must take
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into account all 2n elements of the Boolean space B
n . The wanted exact minimal

solutions are not distributed over the whole Boolean space, but are characterized
by a fixed number of values 1. Hence, the division of the Boolean space in certain
subspaces is a starting point for further improvements.

Definition 2.1 The function f (p) is symmetric with regard to two variables{
pi , p j

}
if

f (pi , p j , p0) = f (p j , pi , p0). (2.9)

Definition 2.2 The function Si (p) is a symmetric function that is symmetric with
regard to each pair of variables. The index i indicates the number of non-negated
variables in their conjunctions.

There are n + 1 symmetric functions Si (p) in each Boolean space B
n . For n = 4

we have, for instance,

S0(p1, p2, p3, p4) = p1 p2 p3 p4
S1(p1, p2, p3, p4) = p1 p2 p3 p4 ∨ p1 p2 p3 p4 ∨ p1 p2 p3 p4 ∨ p1 p2 p3 p4
S2(p1, p2, p3, p4) = p1 p2 p3 p4 ∨ p1 p2 p3 p4 ∨ p1 p2 p3 p4∨

p1 p2 p3 p4 ∨ p1 p2 p3 p4 ∨ p1 p2 p3 p4
S3(p1, p2, p3, p4) = p1 p2 p3 p4 ∨ p1 p2 p3 p4 ∨ p1 p2 p3 p4 ∨ p1 p2 p3 p4
S4(p1, p2, p3, p4) = p1 p2 p3 p4.

Figure2.3 shows how the five symmetric functions Si (p) structure the Boolean space
B

n where edges connect elements which differ in one position. The following theo-
rems guide us to a more powerful algorithm for the UCP.

Theorem 2.1 For each Boolean space of n variables it holds:

n∨

i=0

Si (p) = 1. (2.10)

0011

0001 0101 0111

0010 1001 1011

0000 1111

0100 0110 1101

1000 1010 1110

1100

4
0

4
1

4
2

4
3

4
4

Fig. 2.3 The Boolean space B
4 structured with regard to the number of values 1
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Theorem 2.2 For each Petrick Function P(p) �= 0 of n variables it holds:

P(p) ∧ S0(p) = 0. (2.11)

Theorem 2.3 For each Petrick Function P(p) �= 0 of n variables it holds:

P(p) ∧ Sn(p) = Sn(p). (2.12)

Theorem 2.1 directly follows from Definition 2.2. Theorem 2.2 holds because
P(p) �= 0 cannot be covered without any non-negated variable pi . Theorem 2.3
holds because a P(p) �= 0 does not include any negated variable pi .

Theorem 2.1 is the key to split the calculation of the complete complement into
n + 1 difference operations (DIF( f, g) = f ∧ g) between Si (p) and NDM(P(p)):

P(p) = 1,

P(p) = NDM(P(p)) = 1 ∧ NDM(P(p)) = 1,
n∨

i=0

[
Si (p)

] ∧ NDM(P(p)) =
n∨

i=0

[
Si (p) ∧ NDM(P(p))

]
= 1,

n∨

i=0

DIF(Si (p), NDM(P(p))) = 1. (2.13)

The evaluation of the symmetric functions Si can be organized in increasing
order. In the visualization of a Boolean space as shown in Fig. 2.3, this ordered
procedure evaluates the columns of binary vectors from the left to the right. Due to
Theorem 2.2 the evaluation of S0 can be skipped. Due to the increasing order of the
evaluated symmetric functions Si , the first non-empty solution set of the difference
operation of Si contains all wanted exact minimal solutions of the UCP. Hence, all
other difference operations of S j , j > i, can be skipped. A precise representation of
this approach is given in Algorithm 1. This algorithm terminates due to Theorem 2.3.

Algorithm 1: Solve the UCP by Ordered Evaluation of Symmetric Functions
Input: Petrick Function P(p) = d1(p) ∨ . . . ∨ dk(p)

Output: all exact minimal solutions AE M S of P(p) = 1
1 begin
2 AE M S ← ∅
3 i ← 1
4 while AE M S = ∅ do
5 generate Si (p)

6 AE M S ← DIF(Si (p), NDM(P(p)))

7 i ← i + 1

The symmetric function Si (p) is generated in line 4 of Algorithm 1 and contains
all permutations of i values 1 within an n-bit vector. Due to this method of generation
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we call it permutation vector pv. Similarly, each clause of the Petrick Function P(p)

can be represented as an n-bit binary vector where a value 1 in the position j indicates
the appearance of the variable p j in the clause. We call the vector of all clauses of a
Petrick Function P(p) clause vector cv.

The operations in line 6 of Algorithm 1 require the comparison of each element
of pv with each element of cv. The necessary and sufficient condition that the n-bit
binary vector pv[ j] covers all cv.elements clauses of the Petrick Function P(p) is:

∀ cv[k] ∈ cv : pv[ j] ∧ cv[k] �= 0. (2.14)

The ∀-quantifier of (2.14) provides one more possibility to restrict the computation
effort. The vector pv[ j] is no solution if the result of pv[ j]∧cv[k] = 0 for one value
of k. Hence, all further evaluations for such a vector pv[ j] can be skipped.

The calculation of (2.14) can be realized in parallel on the GPU for the different
permutation vectors pv[ j] as shown in Algorithm 2.

Using CUDA [4, 19] we have implemented a program [13, 17] in which
Algorithm 2 is used to realize the main step 6 of Algorithm 1. The number of per-
mutations

(n
i

)
can achieve such a large value that memory conflicts occur. We avoid

this problem in our implementation by splitting Si (p) into slices of a fixed maximal
value. These slices are sequentially evaluated on the GPU.

Algorithm 2: sv = BDIF_kernel(pv, cv) for the GPU
Input: the permutation vector pv of a symmetric function Si (p) and the clause vector cv of

the Petrick Function P(p)

Output: solution vector sv(p) which holds P(p) = 1
1 begin
2 for ic ← 0, ic < cv.elements, ic ← ic + 1 do
3 if pv.vector [i p] ∧ cv.vector [ic] = 0 then
4 break

5 if ic = cv.elements then
6 sv.vector [is] ← pv.vector [i p] 	 add solution
7 is ← is + 1

2.5.3 Ordered Restricted Vector Evaluation Using OpenCL

TheAPIs CUDA [4, 19] andOpenCL [7] require different implementation details but
realize the same paradigm for parallel programs. Therefore, the powerful algorithm
of the previous subsection can be implemented using OpenCL. The execution of both
the CUDA and the OpenCL implementation of the same algorithm on the same GPU
allows a comparison of the influence of these APIs to the needed runtime.

Using Algorithm 2 to realize the main step 6 of Algorithm 1, an OpenCL program
was implemented in [7]. The advantage of this OpenCL implementation is that it
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can be used for different GPUs and even for multi-core CPUs. Experiments of [7]
confirm the flexibility of OpenCL with regard to the utilization of different hardware
resources.

A more efficient data management leads for small benchmarks to faster calcula-
tions in comparison with the CUDA implementation of [13, 17]. However, for the
largest benchmark of 32 Boolean variables and 1024 clauses in the Unate Covering
Problem the OpenCL implementation needs approximately twice the time of the
CUDA implementation using the same GPU Tesla C2070. This result confirms the
advantage of a well-developed special API for a restricted set of GPUs.

2.6 Indirect Utilization of the GPU for Solving the Unate
Covering Problem

2.6.1 Implementation of XBOOLE Using CUDA

XBOOLE is a library of more than 100 functions which can be used within programs
written in C or C++ to solve a wide field of Boolean problems [9, 15]. In order to
make this chapter self-contained, we give a very brief introduction to XBOOLE.

XBOOLE uses the dash element (−) to express the combination of the Boolean
values 0 and 1.A ternary vector with d dash elements represents 2d binary vectors.
In this way the needed memory to store sets of binary vectors and the time for their
computation can be reduced exponentially. The Ternary Vector List (TVL) is the
main data structure. An orthogonal TVL does not contain any binary vector in more
than one ternary vector. Most of the XBOOLE-operations compute an orthogonal
TVL. Each non-orthogonal TVL can be transformed into an orthogonal TVL using
the XBOOLE-operation ORTH.

A TVL can be considered as a set of binary vectors. The set operations:

CPL the Complement A,
ISC the Intersection A ∩ B,
UNI the Union A ∪ B,
DIF the Difference A\B,
SYD the Symmetrical Difference A � B, and
CSD the Complement of the Symmetrical Difference A � B

can be used to compute needed new sets of binary vectors.
Using the form attribute a TVL is able to represent a Boolean function by each of

the four basic forms [10]:

Disjunctive Form (D),
Conjunctive Form (K),
Antivalence Form (A), or
Equivalence Form (E).
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A benefit of an orthogonal TVL is that such a TVL in ODA form can be used in both
D- or A-form. Dual properties are valid for the OKE-form.

Boolean operations between functions are directly realized by the introduced set
operations. In case of an ODA-form we have the following association:

CPL negation ( f ),
UNI disjunction ( f ∨ g),
ISC conjunction ( f ∧ g),
DIF difference ( f ∧ g),
SYD antivalence ( f ⊕ g), and
CSD equivalence ( f 
 g).

The Boolean Differential Calculus [9, 11, 15] extends the Boolean Algebra by oper-
ations which evaluate certain changes of Boolean values.

XBOOLE directly provides all k-fold derivative operations:

DERK the k-fold derivative,
MINK the k-fold minimum,
MAXK the k-fold maximum;

and all vectorial derivative operations:

DERV the vectorial derivative,
MINV the vectorial minimum,
MAXV the vectorial maximum.

The portable source code of XBOOLE is used to provide programming libraries for
several types of CPUs and versions of operating systems. The time to solve complex
Boolean problems can be reduced when time-consuming operations of XBOOLE
are executed on the GPU.

Following this idea, a compatible library XBOOLE-CUDA was implemented in
[18] using CUDA. In this way all recent and future applications benefit from the
speedup of XBOOLE-CUDA and the simple implementation of Boolean algorithms
on the high domain-specific level. XBOOLE-CUDA provides the same operations
as XBOOLE. Hence, the migration from an XBOOLE-program to an XBOOLE-
CUDA-program simply requires the replacement of the library. XBOOLE-CUDA-
operations decide by the size of the TVLs whether CPU is used for small TVLs or
the GPU accelerates the calculation for large TVLs. Additional operations allow the
programmer to customize such decisions.

The speedup achieved by XBOOLE-CUDA strongly depends on the executed
operation and the size of the data. In best case a speedup of more than 13 ∗ 103

was realized using a special brute force algorithm. Table2.1 summarizes the arith-
metic average (∅), the standard deviation (σ ), as well as the measured minimal and
maximal speedup of XBOOLE-CUDA-operations on a graphics board GTX 470 in
comparison to the same XBOOLE-operations running on a CPU Intel i7 3.06 GHz.
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Table 2.1 Speedups of XBOOLE-CUDA using the GPU GTX 470 (448 Cores)

Operation ∅ σ Minimum Maximum

CPL() 5.04× 2.21× 2.11× 8.11×
ISC() 54.90× 7.48× 43.54× 67.32×
UNI() 34.25× 15.57× 13.83× 61.44×
DIF() 19.63× 15.03× 2.22× 43.15×
SYD() 17.61× 5.40× 11.02× 24.74×
CSD() 197.58× 287.55× 3.47× 843.54×
DERK() 29.95× 10.26× 19.90× 52.63×
MINK() 68.78× 30.31× 41.06× 136.75×
MAXK() 56.24× 16.80× 42.25× 95.97×
DERV() 18.84× 2.63× 16.24× 24.01×
MINV() 77.42× 22.93× 55.63× 115.05×
MAXV() 43.19× 6.36× 32.69× 52.09×
ORTH()(xm3) 448.48× 728.29× 21.20× 2196.97×

2.6.2 Difference-Operations of XBOOLE-CUDA

Algorithm 3 shows the simple implementation of the unate covering problem using
XBOOLE-CUDA. The theoretical basis for this algorithm is Algorithm 1.

The Petrick Function P(p) is given as object 1 of the memory list in the file
petInput.sdt. A file of the type sdt contains all data belonging to a recent XBOOLE-
system. Such files are used to exchange XBOOLE-systems between programs. The
LDS-operation in line 2 of Algorithm 3 reads the file petInput.sdt. XBOOLE stores
all objects in a special box-system and uses pointers for their access. The GET_ML-
operation in line 3 of Algorithm 3 delivers the pointer ctvl to the TVL of all clauses
of P(p).

The NDM-operation in line 6 of Algorithm 1 calculates in each swap of the while-
loop the same result. Hence, in Algorithm 3 this NDM-operation is moved into line
4 outside of the while-loop. The wanted vectors of the exact minimal solution must
be stored in a separate TVL. The EMPTY operation in line 5 prepares an empty list
having all variables of the Petrick Function P(p). The final step for preparation is the
initialization of the variable min_cover which indicates the index of the symmetric
function which must be evaluated.

The XBOOLE-operation NTV in line 7 calculates the number of ternary vectors
of the solution-TVL. The loop in lines 7 to 9 terminates when the number of ternary
vectors of the solution-TVL is greater than 0. The function generate_permutations()
in line 8 is implemented in C and uses the XBOOLE-operation SDATV for storing
the generated permutation vectors into the TVL with the access pointer ptvl.
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The main work to solve the Unate Covering Problem is realized by the DIF-
operation in line 9. XBOOLE-CUDA uses the CPU for small TVLs of permutation
vectors. Time-consuming DIF-operations of larger TVLs of permutation vectors
are executed on the GPU. Extremely large TVLs are split into slices so that no
memory problems occur. The solution-TVL is registered in the XBOOLE-memory
list as object number 2 using the XBOOLE-operation PUT_ML in line 10. The STS
operation stores all data of the extended XBOOLE-system in the file petSolution.std
for later evaluation.

Algorithm 3: petSolution.sdt = xb_cuda_ndm_dif_p(petInput.sdt)
Input: file petInput.sdt that contains all clauses of of the Petrick Function P(p) as

object 1
Output: file petSolution.sdt that additionally contains all exact minimal solutions of

P(p) = 1 as object 2
1 begin
2 LDS(petInput.sdt) 	 load task file
3 GET_ML(1, &ctvl) 	 select P
4 NDM(&ctvl,&ctvl) 	 negate P according to De Morgan’s Law
5 EMPTY(&ctvl, &stvl) 	 prepare solution TVL
6 min_cover ← 1
7 while (NTV(&stvl) = 0) do
8 generate_permutations(min_cover++, &ptvl)
9 DIF(&ptvl, &ctvl, &stvl) 	 main task (CPU or GPU)

10 PUT_ML(2,&stl)
11 STS(petSolution.sdt) 	 store solution file

2.7 Experimental Results

The mapping of the UCP to the matrix multiplication is explained in Sect. 2.5.1. The
implementation of this mapping-approach in [8] achieves in the best case a speedup
of 3.427 (time on GPU: 236.532ms; time on CPU: 810.594ms) using the 64 cores
of the GPU GeForce 9600GT in comparison to a single core of the CPU Intel i7 940
(2.93GHz) solving the benchmark of 16 variables and 256 clauses. The evaluation
of all 2n Boolean vectors restricts this approach to such very small UCPs.

The achieved strong improvement requires much larger benchmarks for time
measurement. We used a Petrick Function of 32 variables pi and 1024 clauses for
comparison. All experiments utilized one core of the CPU Intel Xeon X5650
(2.67GHz) or the 448 cores of a GPU Tesla C2070. Table2.2 shows the experi-
mental results measured on this hardware. The speedups achieved on the GPU are
calculated using the reference introduced in Sect. 2.5.2.
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Table 2.2 Benchmark results: Petrick Function of 32 variables pi and 1024 clauses

Device Method API Algorithm Time in ms Speedup Implementation
effort

GPU Direct CUDA 2 within 1 20.849 1.2×1011 Expensive

GPU Direct OpenCL 2 within 1 43.804 5.7×1010 Expensive

GPU Indirect XBOOLE_CUDA 3 213.600 1.2×1010 Minor

CPU Indirect XBOOLE 3 786.967 3.2 × 109 Minor

2.8 Conclusions

The large number of cores of a GPU is an important source to reduce the time for
hard Boolean problems. There are two ways for utilizing the GPU:

1. the direct implementation using a given API;
2. the indirect implementation utilizing a domain-specific basic software, such as

XBOOLE.

The first way provides unrestricted possibilities utilizing the properties of the
GPU, but requires an expensive effort for the implementation. We showed that the
results of this way significantly depends on the selected algorithm in a range of 3.4
for matrix multiplication to 1.2 × 1011 using CUDA and the algorithm Ordered
Restricted Vector Evaluation. The implementation of the same algorithm using
OpenCL reduces to speedup to one half but extends the usable devices.

The second way allows us to utilize the power of the GPU without exploring
all details of GPU-programming. A much simpler XBOOLE-program requires only
37.5 times more time in comparison to the fastest CUDA implementation. The GPU
ported library XBOOLE_CUDA needs only 10 times more time in comparison to the
fastest CUDA implementation, but is more than 1010 times faster than the reference
implementation.
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