Chapter 2
Short Term Load Forecasting in Electric Power
Systems with Artificial Neural Networks

G.J. Tsekouras, F.D. Kanellos, and N. Mastorakis

Abstract The demand in electric power should be predicted with the highest
possible accuracy as it affects decisively many of power system’s operations.
Conventional methods for load forecasting were built on several assumptions, while
they had to cope with relations between the data used that could not be described
analytically. Artificial Neural Networks (ANNs) gave answers to many of the above
problems and they became the predominant load forecasting technique. In this
chapter the reader is first introduced to Artificial Neural Networks and their usage
in forecasting the load demand of electric power systems. Several of the major
training techniques are described with their pros and cons being discussed. Finally,
feed- forward ANNSs are used for the short-term forecasting of the Greek Power
System load demand. Various ANNs with different inputs, outputs, numbers of
hidden neurons etc. are examined, techniques for their optimization are proposed
and the obtained results are discussed.

Keywords Artificial neural networks ¢ ANN evaluation ¢ Load Forecasting
* Short term load forecasting ¢ Training methods

2.1 Introduction

In a deregulated electricity market, the electric load has to be predicted with the
highest possible accuracy for different time periods: very short-term (few minutes),
short-term (few hours up to 1 week), midterm (few weeks up to few months) and
long-term (few months up to years). Especially, the short-term load forecasting is
very crucial as it affects decisively several power systems operations such as unit
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commitment [1], spinning reserve scheduling [2], estimation of available transfer
capability [3] and stability margins [3], load shedding decisions, etc. Consequently,
the accurate load forecasting ensures higher reliability in power system operation
while it facilitates the minimization of its operation cost by providing accurate input
to day-ahead scheduling.

The efficiency of load forecasting is highly affected by the used input data. The
most significant data used for short-term load forecasting are the hourly average
values of the load for time periods extending from few past hours up to some weeks
before the day the load is forecasted. The type of the day e.g. weekday, special
day, weekend etc. plays also a key role in load forecasting accuracy. For example,
load profile is different in weekdays and weekend, while load is more difficult to
be forecasted in special days. Electric load can be also attributed with different
behavior over the epochs of the year e.g. in Greece load demand is higher in summer
due to the increased touristic activity and energy demand for air-conditioning. The
above issues can be addressed with careful and methodical selection of the input
data used for the load forecasting and the time period they are referred to.

Before applying a load forecasting model the load demand should be carefully
decomposed in its components e.g. deterministic load, weather-dependent load
component etc. Several load decomposition methods have been proposed so far in
the literature. Namely, load decomposition:

(a) in four components: Deterministic load, weather-independent load, weather-
dependent load and noise component for the remaining load [4].

(b) inthree components: Yearly, seasonal and daily loads [5] that can be exploited in
autoregressive models. Alternatively, the daily, weekly and cyclic components
of the load can be used [6].

(c) in two components: the basic and the weather-dependent load components [7].

Several methods have been used for short-term load forecasting with different
levels of success, such as ARMAX models [8], regression [5], Artificial Neural
Networks (ANNSs) [9], fuzzy logic [10], expert systems etc. Among the variety of
load forecasting methods ANNs have been proved the most effective [9]. In this
chapter introduction to ANNs and their application to load forecasting is provided,
special issues concerning the optimization of ANN training and validation are
discussed, while results obtained from the exploitation of various types of ANNs
for Greek power system load forecasting are presented and discussed.

2.2 Review of Short Term Load Forecasting Methods

A large number of modern load forecasting techniques are based on the exploitation
of ANNSs as there are no well-defined relations between the load and several factors
affecting it, such as temperature, humidity, time, load values at previous hours etc.
Despite the fact that ANNs were initially avoided [11, 12] as they did not help to
understand the nature of the problem they finally dominated due to the same reason
i.e. they allow to tackle extremely complex problems without fully understanding
them.
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Pioneers in this field were the members of the EPRI research team, Khotanzad
et al., that developed various methodologies exploiting separate ANNs, for the
prediction of time components of the load (weekly, daily, hourly) [13], for each
prediction hours [14] and the load types (weather non-dependent and dependent load
components) [15]. Papalexopoulos et al. introduced the concept of load seasonality
through the use of sinusoidal functions of period equal to the number of days of the
year [16].

Rapid developments in load forecasting took place in the following period.
More specifically, significant advances occurred in, the forecasting of load increase
[17], learning techniques [18-21]. New network structures such as: radial basis
function networks [22-24], recurrent networks [25], not fully connected networks
[26], abductive networks [27], probabilistic networks [28, 29], and networks using
similar days [30] were also explored. Moreover, several new techniques like fuzzy
logic [31-39], wavelet decomposition [40], support vector machines [24, 41],
genetic algorithms [42], harmony search [43] etc. were combined with ANNs to
enhance their performance. Especially for Greece, pioneers in load forecasting were
Bakirtzis et al., that proposed load forecasting techniques for interconnected power
systems [44] as well as autonomous systems [45] followed by Kalaitzakis et al. [20]
and Tsekouras et al. [46—48].

Hippert et al. [9], Choueiki et al. [49], and other researchers [50-54] have
proved that the short-term load forecasting with classical multilayer artificial neural
networks trained by error back propagation algorithm lead to mean absolute fore-
casting error ranging between 1.5 and 2.5 %. Usually, these techniques incorporate
simple correction algorithms of data irregularities e.g. load behavior in holidays,
measurement errors etc. However, the conclusions drawn can be hardly generalized
as the influence of the inherent characteristics of the power systems is very strong
and differs from system to system.

2.3 Multilayer Feed Forward Artificial Neural Networks

2.3.1 Introduction

A widely used type of multilayer artificial neural networks is the multilayer
perceptron (MLP). The structure of a MLP is presented in Fig. 2.1. The neurons
of the network are organized into three layers: the input, the hidden and the output
layer. MLP is characterized as a feed forward network as the information flows
only on the direction from the input to the output layer. According to Kolmogorov’s
theorem [55] an ANN can solve a problem by using one hidden layer provided that it
comprises adequate number of neurons. Under these circumstances one hidden layer
is used, but the number of its neurons should be properly selected. The number of
the output layer neurons is equal to the number of the model output variables, while
the input nodes correspond to the input variables of the model.
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Input layer Hidden layer Output layer
(Layer 0) (Layer 1) (Layer 2)

Fig. 2.1 2-3-3 (with 2 input, 3 hidden and 3 output neurons) feed forward artificial neural network

The increased computational capability of a MLP stems from the inherent
nonlinear nature of its neurons, the complete interconnection between successive
layers and its ability to learn after proper training. Research interest in MLPs first
appeared by Rosenblatt in his work on the perceptron and also by Widrow who
presented Madaline network in 1962. However, an efficient training algorithm for
these networks was missing until 1985. Then, the error back-propagation algorithm
was proposed for application to multilayer ANNs and it is still one of the most
widely used ANN training methods. It should be noticed that error back propagation
algorithm was first proposed by Werbos in his Ph.D. thesis in 1974. From 1985 until
1986 it was used by Rumelhart, Hinton, Williams, McClelland, Parker and LeCun,
while it has been used since then in numerous applications [55, 56].

Next some basic information on ANN models is provided. The activation signal
(input) of the k-th neuron of the £-th layer of an ANN is:

Pi—1

() =Y wil )y m) @.1)

v=0

where w;{") is the interconnection weight between the k-th neuron of the {-th layer
and the v-th neuron of the (¢ — 1) -th layer, py—; is the total number of the neurons
of the (£ — 1) -th layer and y{‘~" is the output of the v-th neuron of the (£ — 1) -th
layer.
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Fig. 2.2 Activation functions

The activation function of the neurons is denoted next with f. Hence, the output
the k-th neuron of the £ -th layer is:

= f (o) 22)

The most common activation functions are shown in Fig. 2.2.

Nonlinear activation functions are preferred in nonlinear problems. However, in
that case saturation problems may occur. These problems can be attributed to the
use of sigmoid activation functions which take values in a bounded area and are also
highly nonlinear outside the region [—1, 1]. In order to avoid saturation problems
the input and the output variables of the ANN are normalized as in the following
relation:

X=a+ e (X — Xmin) (2.3)

Xmax — Xmin
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where X is the normalized value of variable x, X, and X,,4 are the lower and the
upper bounds of x, and a, b are the respective values of the normalized variable.

Alternatively, the input and output variables can be normalized by using their
mean and standard deviation values as shown in Eq. (2.4).

xX—p
o

X =

(2.4)

However, the second method does not necessarily maintain the normalized variables
outside the highly nonlinear region of the activation function.

2.3.2 Steepest Descent Error Back-Propagation Algorithm

Appropriate data sets are needed for the training, evaluation, validation and opti-
mization of the network. Let us assume that m; vectors are used for training, m;, for
optimization-evaluation of ANN parameters and m; for load forecasting purposes.
The data set comprising the m; vectors used for network evaluation and optimization
may be a subset of the training data set.

The basic steps of the steepest descent error back-propagation training algorithm
[55, 56] are as follows:

(a) Initialization: Parameters like the number of the neurons in each layer, the
training rate etc. are defined. Connection weights are initialized to small
random values uniformly distributed in the interval [—0.1, 0.1].

(b) Use of the training set: In each training epoch all the training patterns are
randomly used. For each input vector ¢ and d steps are applied.

(c) Forward pass calculations: The n-th training pattern is defined as
{?,-n(n),_t)(n)}, where ?i,,(n) is the g;,x1 input vector comprising the
normalized input variables x; and _t>(n) the respective g,,x1 normalized
output vector. The activation signal of the k-th neuron of the £-th layer is:

Pi—1

w0 (n) =" wi )y (n) 2.5)
v=0

where wi{? is the weight assigned to the connection of the k-th neuron of

the {-th layer with the v-th neuron of the ({ — 1) -th layer, p,— is the total
number of neurons of the (£ — 1) -th layer and y{'~" is the output of the v-
th neuron of the (£ — 1) -th layer. For v =0, the bias is defined as 6} = wy,
while y{{ ) = — 1. The activation function f at each layer can be the hyperbolic

tangent, sigmoid or linear. The output of the neuron is:

i = f (o) 2.6)
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(d)

(e)

The output of the v-th neuron of the input layer is:
yO®n) = x,(n), Vv 2.7

where x,(n) is the v-th element of network input vector Xin (n).
The output of the k-th neuron of the output layer (L) is:

W) = ox(m), Vk 28)
where oi(n) is the k-th element of the output vector o (1), estimated by the
ANN.

Hence, the error obtained at output of the k-th neuron of the output layer is:

ex(n) = 1 (n) — o (n) (2.9
Reverse pass calculations: The weights are updated by using the delta-rule:

W) 4 1) = Wil + 080y (2.10)

where, n is the constant training rate and 8:©(n) the local descent of the k-th
neuron estimated for the output and hidden layers as following:

55 (n) = eF (n) - £/ (u;“(n)) Q2.11)
Sl(f)(n) — f/ (M](f)(n)) ,ZS§€+1)(H)W§£+1)(H) (2.12)

Stopping criteria: Steps b up to d are repeatedly executed until the weights
of neuron interconnections are stabilized or the output error function does not
improve or the maximum number of epochs is exceeded.

Neurons’ connection weights stabilization criterion is formulated as:

w,(fv)(ep) - w](fg (ep — )| < Limit,,Vk,v, £ (2.13)

where, £imit, is the upper limit of the absolute weight change and ep is the
current epoch of training algorithm.

The output error function is the root mean square error RMSE,,, estimated
for the evaluation data set according to:

1 my  Yout

D0 eim) (2.14)

my - qout el k=1

RMSE,, =
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The respective stopping criterion is formulated as:
|[RMSE,,(ep) — RMSE,, (ep — 1)| < Limit, (2.15)

where {imit, is the upper bound of the absolute change of RMSE in two
successive epochs.
The maximum number of epochs exceedance criterion is formulated as:

ep > max_epochs (2.16)

If one of the above criteria becomes true, the main core of error back-
propagation algorithm is ended. Otherwise the number of epochs is increased
by one and the algorithm returns to step b. The above criterions are used on one
hand to avoid data overfitting and on the other to enable the training algorithm
to converge.

Validation criteria: The mean absolute percentage error (MAPE) is calculated
for the evaluation data set as following:

MAPE,, = 100%- Y _ |(tx(i) — 0x(i)) / tx (i)]/m2 (2.17)

i=1

In this training process each input vector is used randomly per epoch (stochastic
YGout

training) to minimize the error function, G(n) = %Z e? (n).
j=1

Alternatively, all input vectors can be used in a series during the forward

process and afterwards the weights are updated minimizing the average output
mi mi1 out

error function, G, = mLIZ G(n) = ﬁz Z e? (n). This training process

n=1 n=1j=1
is called batch mode and the respective weights update term is calculated as:

AW (ep) = —n-VG (W(ep)) (2.18)

If a momentum term, a, is added then the respective equation becomes:
AW (ep) = —n-VG (W(ep)) +a-AW (ep— 1) (2.19)
In steepest descent algorithm the parameters of learning rate and momentum

are kept constant. Alternatively, decreasing exponential functions, as described
in Egs. (2.20) and (2.21) can be used:

n(ep) = no- exp (—ep/Ty) (2.20)

a(ep) = ao- exp(—ep/Ta) 2.21)
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where, T, T, are time parameters and ng, ao the initial values of training rate
and momentum term, respectively. Faster convergence can be achieved through
the proper calibration of T, ng, T,, ap and it becomes even faster especially if
the initial values ng, ag are large.

2.3.3 Other Training Methods Based on Error
Back-Propagation Algorithm

Variations of the error back-propagation algorithm are presented in the following
paragraphs.
2.3.3.1 Adaptive Error Back Propagation

In this method both the training rate and the momentum term are adaptively changed
as described in Eqgs. (2.22) and (2.23) in order to achieve rapid convergence.

_ np—1), RMSE;,(ep) > RMSE,, (ep — 1)

tep) = { n(ep—1) - exp(—1/T,), RMSE,,(ep) < RMSE;, (ep — 1) (22
_ a(ep—1), RMSE,(ep) < RMSE,, (ep — 1)

alep) = { a(ep—1) - exp(—1/T,) . RMSEs(ep) > RMSEyy (ep —1) %)

where 19 =1n(0), ap = a(0) and RMSE,,(ep) is the root mean square of the output
error estimated for the training data set in training epoch, ep. If RMSE,.(ep — 1)
is larger than RMSE,(ep), which means that neurons’ connection weights were
updated in the correct direction, then training rate is decreased while the momentum
term values remains the same in the next epoch. In this way, the previous successful
update of the weights is rewarded. Otherwise, if RMSE,(ep) > RMSE,.(ep — 1) it is
reasonable to reduce the momentum term and keep the learning rate constant as a
penalty to the previous unsuccessful update of the weights. It should be noted that
increasing the momentum term or the learning rate, as proposed in [57], may lead
the training process to instability.

2.3.3.2 Resilient Algorithm

Inresilient algorithm only the sign of the derivative of the error function with respect
w;; is used for the estimation of the connection weight change direction. The weights
are updated by using the following relations:
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81 Awj (ep — 1), %—?#(ep)-% (ep—1)>0
Awii(ep) =4 Awy(ep=1), Ge(ep)-Foa(ep—1) =0 (224)
% “Aw;j (ep—1), %?V‘;? (ep) - %ﬁ_fju (ep—1)<0

where, §;, 8, are increasing and decreasing factors of the weight change over
two successive epochs, respectively. If the derivative of the error function G with
respect to the weight w;; maintains the same sign during two sequential epochs, the
weight change over epoch ep is the multiple of the respective change in epoch, ep-1
(multiplied by ;). Respectively, if the sign of the derivative changes then the weight
change is decreased else if the derivative is zero then the same weight change with
the one of the previous epoch is applied.

2.3.3.3 Conjugate Gradient Algorithms

In conjugate gradient (CG) algorithm [21] a search is performed along conjugate
directions leading generally to faster convergence than following the steepest
descent direction. The basic steps of the CG algorithm (Fletcher-Reeves and Polak-
Ribiere) are as follows:

(a) In the first iteration the search direction _p)o is determined by the opposite of the
output error function gradient:

70 =-VG (W)iW}:Tv}o (2.25)
(b) At k-th iteration the weights of the network are updated towards the search
direction _p>k as following:

AWy =a;- Py (2.26)

The positive parameter a; is calculated by numerical methods such as the golden
section, bisection etc.
(c) In the next iteration the search direction 77),{ 11 1s calculated by:

P =—VG (W)|g_y,, +BerPi (2.27)

k+

Bi+1 is calculated either by the Fletcher-Reeves [58] or Polak-Ribiere equation
[59] respectively:

T
'3 VG (TV)) i7=7k+1 VG (TV)) |7=7k+1 (2 28)
k+1 = .
VG (W)|mw, - VG (W) |5,
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A(VG () 5ow,) VG ()lgor,,,
Bisi = — — (2.29)
VG (W)|5ow, VG (¥)|5ow,

(d) If the algorithm has not converged then step (b) is repeated. It is mentioned
that the k-th iteration usually coincides with the respective epoch, but this is
not necessarily the case. The iterative process must be occasionally restarted
in order to avoid a constant convergence rate. It is usual to restart it every N,
or (N,, + 1) iterations, where N,, is the number of the variables (weights and
biases). Powell and Beale [60] proposed to restart the process of Polak-Ribiere
algorithm occasionally or when the orthogonality between 7))k and _p)k_ 118
quite small:

VG ()5

Wk

VG (W)

k+1)

2
= limorshagonatiny - | VG (%) | with k = 1 (2.30)

]
W=Wgt
The limit, lim,,og0nality, Mmay take values within the interval (0.1, 0.9). Usually,
it is set equal to 0.2.

The basic drawback of CG algorithm is the complexity of the evolved calcu-
lations per iteration as a linear search is performed to determine the appropriate
step size. In scaled conjugate gradient algorithm (SCGA) the search process is
avoided by using the Levenberg-Marquardt approach. The basic steps of SCGA are
as follows [61]:

(a) _p)0 is initialized by Eq. (2.25) and the vector of the weights and biases W is
properly chosen. The rest parameters of the algorithm (o, Ao, Ao, flag) are set
as following:

0<o<107* 0<Ay<10® A=0  flag=1
(b) If flag is 1 then the following additional information is calculated:

or =0/ H?k H (2.31a)
Ti= (V6 (W)lperisn-7,— VO (W)l ) fox (231b)
S =P Sk (2.31¢)

(¢) The parameter & is scaled according to:

Or = &k + (lk —Ik) . H?))k H2 (2.32)
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(d) If 8; <0, then the Hessian matrix is made positive by setting:

T =2 (,xk - (Sk/H;’k Hz) (2.33a)
S = —85 + Ay - H?k H2 (2.33b)
Ak = Ak (2.33¢)

(e) The step size is calculated as:

e =B VG (W)|»_— (2.34a)

k
ar = i/ 8k (2.34b)
(f) The comparison parameter Ay is calculated as:
— 2
ae=28 (G ()] a7, ) /R 239)

(g) If Ax > 0 then a successful reduction in error can be achieved by applying the
following equations:

AWy =ai- Py (2.362)
Tis1=-V6 (W)|pv,,, (2.36b)
=0 (2.36¢)

flag =1 (2.36d)

(h) If the number of iterations is multiple of the population of the weights and
biases, N,, then the algorithm is restarted:

77)k+1 =—-VG (7"))|7=Wk+1 (2.37)
else:
2 T
Brt1 = (H VG (W)b:vm) - VG (W)|52w,,, VG (W))|W=m) /b
(2.38)
Piy1 =—VG6 (W)|5ow,,, + B Pi (2.39)
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If Ay > 0.75, then A, = 0.25 - A, else Ay = Ay, flag = 0.
2
If Ay <0.25,then Ay = Ap + 6 (1 — Ak)/H_I;k H .

) If VG (TV)) |W’=W’k+1 #* 6), then k =k + 1 and the step (b) is repeated else the
training process is completed.

The basic drawback of the SCGA algorithm is the increased complexity of the
calculations within an iteration that is in the order of O(6N,,?) instead of O(3N,,?)
of the basic steepest descent method. If the scale parameter A, is zero, then the
SCGA coincides with the CGA. SCGA’s basic advantage is that the error decreases
monotonically as error increase is not allowed. If the error is constant for one or
two iterations then the Hessian matrix has not been positive definite and A; has been
increased. It is also recommended that the value of parameter o should be as small
as possible in order to constrain its effect on the performance of the algorithm.

2.3.3.4 Newton Algorithm

In Newton method the inverse of the Hessian matrix, V2G (TV)), is used to update
the connection weights and biases of the network as follows:
-1

AV =~ V6 ()7,

VG (W)|o_= (2.40)

Usually, the convergence of this algorithm is more rapid than the aforementioned
algorithms if the size of the problem is small. The calculation and the inversion
of Hessian matrix are complex and computationally demanding processes. Hessian
and Jacob matrices are estimated according to the following equations:

Hessian matrix:

V3G (W) = J (%) T (W) + D e; (W) - Ve, (W) (2.41)

Jacob matrix:

awp  dwp wp,,
der  Der | der
awyp  dw aw
s 1 2 Nyy
J@y =" "o (2.42)
dem;  dem, . dem
awp  dwp wn, =y 1 XN,y

The quasi-Newton method belongs to this family of Newton’s algorithms. In this
method the second term of Hessian matrix is omitted as it usually takes small values
that are not significant.
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Alternatively, in the one step secant algorithm only the diagonal elements of
Hessian matrix are used to simplify its inversion. It needs more iterations than
the basic Newton method but the required computational effort is significantly
compressed.

The Levenberg-Marquardt method [62, 63] is another commonly used variation
of Newton algorithm. The weights and the biases of the network are updated as
follows:

AWy = (7T + A -diag [T 1) VG (W)

=—(J"-J +A-diag[J"-J])"

JTE (W) (2.43)
Factor A is updated with respect to the change of the output error function as
following:

Ak)-B, Gay(k) > Gy (K — 1)
Ak +1) =1 A(k). Gay(k) = Ggy(k —1) (2.44)
/\(k)/ﬁv Gav(k) < Gav (k - 1)

The parameter § usually takes values near 10. The Levenberg-Marquardt algorithm
is not the optimal one but it performs extremely well if the number of the weights
and biases is smaller than few thousands.

2.3.4 Bias-Variance Dilemma

One significant issue closely related with the efficiency of the ANNS is the selection
of the number of the neurons at hidden layer. Using many neurons leads the network
to memorize the training data and degradation of its generalization properties occurs
i.e. the ANN does not perform satisfactorily on data not belonging to the training
set. On the contrary, small number of neurons reduces the capability of the ANN
to identify complex relations between the input data while generalization capability
may be satisfactory.

Therefore, it is crucial to determine the optimal ANN structure that leads to
accurate results and ensures at the same time satisfactory generalization properties.
This is known as the bias-variance dilemma where the generalization error is
expressed by the terms of bias and variance. Simple models are characterized by
increased bias while complex models comprising large number of parameters lead
to increased variance. According to bias-variance dilemma, if the bias increases then
variance decreases and vice versa. Consequently, the best model is the one obtained
by the optimal proportion of the two terms.

There are two major approaches to achieve balance between bias and variance.
In the first, known as the “structural” approach, the number of the neurons of the
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hidden layer is gradually increased until the optimal generalization is achieved.
Generalization becomes optimal when MAPE of the test data set starts to increase
and overtraining occurs.

The second approach is based on the idea of network parameters regularization.
The simplest way to achieve regularization is the introduction of a penalty term at
the output error function of the network. This term prevents the parameters (weights
and biases) from taking large values. In this way, parameters of small significance
are nullified and the number of the parameters of the network eventually decreases.
The sum of the squared values of the network parameters is often used as the
regularization term. Assuming that p; are the parameters of the network and G the
output error function of the network then the following function is minimized during
the training process:

Gr=G+xY p} (2.45)

where, A is the parameter that determines the significance of the two minimization
goals that are the minimization of the output error function and the reduction of
network parameters values.

2.3.4.1 Confidence Interval Estimation

In case of ANNSs the confidence interval is not directly estimated unlike to the
classical forecasting models. Three techniques have been proposed so far [64]:

(a) error output: According to this technique the ANN model uses two outputs for
each output variable, the first one is the forecasted mean value and the second
one the respective absolute percentage error. After the training process a larger
confidence interval is determined by multiplying the initial one by a proper
factor in order to reach to the required confidence level.

(b) re-sampling: The prediction and the respective error are calculated for each set
and for all available m input vectors and are sorted in ascending order. The
cumulative distribution function of the prediction errors can be estimated by:

0, 7<7z
Sm(@) = r/m,z <z<z41 (2.46)
I, Zm =2

When m is large enough, S,,(z) is a good approximation of the true cumulative
probability distribution F(z). The confidence interval is estimated by keeping
the intermediate value z, and discarding the extreme values, according to the
desired confidence degree. The obtained intervals are equal in probability (not
necessarily symmetric in z). The number of cases to discard in each tail of the
prediction error distribution is n - p, where p is the probability in each tail. If n - p
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is not an integer then |n - p| cases are discarded in each tail. If the cumulative
probability distribution F(Z,) equals to p, then an error is less than or equal to
Z, with a p probability which indicates that Z, is the lower confidence limit.
Consequently, Z;—, is the upper limit and there is a (/ — 2p) confidence interval
for future errors.

multi-linear regression model adapted to ANN: This technique can be applied
only if linear activation functions are used at the output layer. In this technique,
a multi-linear regression model can be implemented for each neuron of the
output layer. The inputs of the regression model are the outputs of the hidden
neurons, while regression coefficients are their connection weights with the
output neuron. The computation of the confidence interval is accomplished
through the estimation of the prediction error variance:

o’ =Y (6 =0/ (mi—po) (2.47)

i=1

where, p. is the number of the regression model coefficients. The confidence
interval at a prediction point t can be computed using the prediction error vari-
ance estimated in Eq. (2.47), the ANN inputs and the desired confidence degree
that follows #-Student’s distribution with (m; — p.) degrees of freedom [64].

Re-sampling technique is usually preferred to the other two techniques as
the doubling of the ANN’s outputs and the use of linear activation function at
the output layer are voided. Finally, Silva et al. [65] propose the re-sampling
technique as the most suitable for the estimation of the confidence interval with
a high degree of confidence.

It is noted that the second method has been the most applied [65] with some
empirical enhancements in some cases [66] while other similar probabilistic
methods have been recently proposed [67, 68].

2.3.5 Compression of the Input Data

Usually, a large number of inputs is used in short-term load forecasting models.
Compression techniques, such as the principal component analysis (PCA), can be
applied [21, 69] to suppress the inputs of the model. Let us assume that X is a Nxp;,
matrix whose rows contain the input vectors while the p;, columns of X represent the
properly transformed input variables so as their means equal to zero. Also, vector
@ is defined as the vector that maximizes variance of X projection on it (X Q).
The variance of @ is defined as:

T
o2=(x-7)  (x@)=7" -x"xa=7"-v7

where V = X7 - X is the covariance matrix of X.
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0,2 the variance is a function of both @ and X and it must be maximized.
In order to avoid unconstraint increase of ¢ it is normalized according to the

T . o .
- @ = 1. In this case the optimization problem is transformed to the

S . T T :
maximization of the quantity f,,; = a - vad—A- (7 - 1), where A is a

. —
constraint, d

Lagrange multiplier. By setting the derivative of f,,; with respect to a equal to zero
the maximization problem is finally reduced to the estimation of the eigenvalues of
the covariance matrix V as follows:

fopt

= =2.V-d-21d=0=>WV-A-1)-d=0
a

If the eigenvalues of V are ranked in descending order, the first principal component
@ is the eigenvector associated with the largest eigenvalue A; of the covariance
matrix V, the second principal component @ is the eigenvector associated with
the second largest eigenvalue A, etc. The obtained eigenvectors are orthogonal each
other because the V matrix is real and symmetric.

A basic property of this method is that if the data are projected to the first k

eigenvectors then the variance of the projected data can be expressed as the sum of
k

the eigenvalues, Z A ;. Equivalently, the squared error in matrix X approximation
j=1
Pin Pin
by using only k eigenvectors can be expressed as Z A/ Z A ;. Increasing the
j=k+1  j=1
number, k, of the principal components the respective mean square error J; =
2

N | k
Z Z Aj -a ji— 7”, decreases, where X are the column-vectors of X7 .
m=1||j=1
In case of multidimensional data sets with strongly correlated elements, 5 up
to 10 principal elements are necessary to achieve at least a 90 % accumulated
percentage of explained variance.

2.4 Short Term Foresting of the Greek Power System
Load Demand by Using ANNs

In this paragraph feed forward multilayer ANNs are used for load forecasting
purposes in Greek electric power system. Different configurations of ANNs and
issues related with their optimization are examined.
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2.4.1 Basic ANN Configuration

The basic ANN configuration used in the following analysis comprises 71 input
variables [44, 46]. Assuming that the hourly average values of the load of the d-th
day of the year are to be forecasted the input and output variables of the basic ANN
model are grouped as in Table 2.1.

It is noted that according to Kolmogorov’s theorem [56] ANNs comprising one
hidden layer with adequate number of neurons can describe any nonlinear system.
Hence, ANNs with one hidden layer are used and the optimal number of the neurons
of the hidden layer should be found. The basic ANN configuration is shown in
Fig. 2.3.

In the next paragraphs several case studies are presented concerning the use
of different training methods, inputs/outputs of the ANN, confidence interval
estimation etc. In each of the examined cases the general heuristic methodology
shown in Fig. 2.4 is used to determine the optimal parameters of the ANN model.

A brief description of the basic steps of the methodology of Fig. 2.4 is provided
next.

(a) Data selection: The input and output variables of the forecasting model are
selected. The inputs and the outputs of the basic ANN configuration are as
described Table 2.1 while scenarios concerning the use of different inputs and
outputs will be examined in the next paragraphs.

(b) Data pre-processing: Data normality is examined and outliers are modified or
extracted from the data (noise suppression). Next, input and output variables are
normalized according to Eq. (2.3) in order to avoid saturation.

(c) Main procedure: A large number of model parameters combinations are used in
order to optimize the performance of the ANN model. The obtained forecasting
models are tested and evaluated. Mean absolute percentage error (MAPE) is
used for evaluation purposes.

MAPE is estimated by:
ne, 24 |L(d.i)=L(d.i)
MAPE,, = 100% - . - (2.48)
Moy ; ; L(d,i)

Where, L(d,i) is the measured value of load demand at the i-th hour of d-th

day of the evaluation set, L (d, i) the respective forecasted load and m,, is the
number of the data vectors of the evaluation set.

(d) ANN test: The load demand is finally estimated for the days of the test set by
using the optimal values of the parameters that lead to the lowest MAPE.

Next, the above optimization method is applied to the basic ANN configuration
of Fig. 2.3. Several parameters of the ANN model and the training method are
optimized and they are listed next:
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Fig. 2.3 Basic ANN configuration

 the number of the neurons of the hidden layer ranging from 20 up to 70.
e the initial value of n, ny, and the time parameter 7, of the training rate, which
get values from the sets {0.1, 0.2, ..., 0.9} and {1,000, 1,200,..., 2,000},

respectively.
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Data selection

v

Data preprocessing

Main Procedure
' Set ANN parameters

v
»|  Combine ANN
parameters values

v

Training Process
No v
Evaluation

v

End of trials?

Selection of the set of parameters
with the lowest MAPE

v
ANN Test

Fig. 2.4 Flowchart of the ANN optimization and the evaluation process

e the initial value of parameter a and the time parameter 7, of the momentum term,
which get values from the sets {0.1,0.2,...,0.9} and {1,000, 1,200, ..., 2,000},
respectively,

e the type and the parameters of the activation functions used at the hidden
and output layers. The type of the activation functions can be the hyperbolic
tangent, linear or logistic, while their parameters a;, a, get values from the set
{0.1,0.2, ..., 0.5} and parameters b;, b, from the set {0.0, £0.1,£0.2}.

Stopping criteria are defined after a few trials as max_epochs= 10,000,
limity = 1073, limit, = 1075,

In this study the combinations resulting from the above assumptions account
to 836,527,500 and they cannot be practically examined. To this end, calibration
process through successive variations of the parameters values is applied in order to
determine the optimal or nearly optimal values of the parameters.

First, the number of the hidden neurons is varied from 20 up to 70, while the
remaining parameters are assigned with fixed values (ap = 0.4, T, = 1,800, no = 0.5,
T,, = 2,000, the type of activation functions at hidden and output layers is hyperbolic
tangent with a; =a, =0.25, b; = b, =0.0). MAPE of the training, evaluation and
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Fig. 2.5 MAPE (%) of all sets versus the number of hidden neurons. (ayp=0.4, T, = 1,800,
no=0.5, T, =2,000, activation functions in both layers: hyperbolic tangent, a; =a, =0.25,
b] . b2 el 00)

test sets versus the number of the hidden neurons are presented in Fig. 2.5. The
MAPE of the evaluation and tests set keep step with the respective one of the training
set and the following relationship is valid within the entire examined range of hidden
neurons number:

MAPEtmining < MAPEevuluution < MAPEtest (249)

MAPE of the evaluation set is minimized for 45 neurons at hidden layer while it
rapidly increases when the number of the hidden neurons increases.

Next, the initial value 7o and the time parameter 7, of the training rate are
varied while the other parameters remain constant (hidden neurons =45, ay = 0.4,
T, = 1,800, hyperbolic tangent activation functions are used at hidden and output
layers with a; =a, =0.25, b; = b, =0.0). It appears in Fig. 2.6 that the results
obtained for the MAPE of the evaluation set are satisfactory for 0.5 <7y <0.8 and
1,000 < T, < 1,400. The lowest MAPE is obtained for no =0.5, T;, = 2,000. It is
mentioned that MAPE increases dramatically for ng > 0.7 and 7, > 1,600.

In the next step of the calibration process, the initial value ay and the time
parameter T, of the momentum term are simultaneously varied, while the rest of the
parameters are kept constant (hidden neurons = 45, no = 0.5, T), = 2,000, activation
functions at hidden and output layers: hyperbolic tangent with a; =a, =0.25,
b; = by =0.0). In this case, the obtained MAPE of the evaluation set is satisfactory
for ap>0.6 and T, > 1,600, while the lowest MAPE is obtained for a9 =0.9,
T, =2,000. It is mentioned that MAPE increases dramatically for ay <0.5.

Similarly, it is found that the ANN gives better results if the hyperbolic tangent
activation function with parameters a; = a; = 0.25 and b; = b, = 0.0, is used at both
layers. The results obtained by using different activation functions are registered in
Table 2.2.
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Fig. 2.6 MAPE (%) of the evaluation set versus parameters T}, and ng. (o = {0.1,0.2, ...,0.9},
T, = 11,000, 1,200, ...,2,000}, hidden neurons: 45, ay=0.4, T, = 1,800, activation function
used in both layers: hyperbolic tangent, a; = a, = 0.25, b; = b, =0.0)

Table 2.2 MAPE (%) of (A) training set, (B) evaluation set, (C) test set for different
activation functions

Activation function of hidden layer

Activation function | Hyperbolic sigmoid | Hyperbolic tangent | Linear

of output layer @A B O » B [© A& |B) |[©
Hyperbolic sigmoid | 2.030 | 2.048 | 2.625 | 1.510 | 1.621 | 1.817 | 1.788 | 1.850 | 2.091
Hyperbolic tangent | 1.671 | 1.737 | 2.042 | 1.383 | 1.482 | 1.749 | 1.900 | 1.987 | 2.200
Linear 1.603 | 1.691 | 1.903 | 1.390 | 1.522 | 1.747 | 1.936 | 2.023 | 2.194

Number of hidden neurons: 45, ay=04, T,=1,800, no=0.5, T,=2,000,
a; =a,=025,b;=5b,=0.0

The above described process finally leads to the following optimal intervals of
the parameters values: 40 up to 50 neurons at the hidden layer, ayp=0.8—0.9,
T, =1,800-2,000-2,200, no =0.5—0.6, T,, = 1,000-1,200-1,400, activation func-
tions of both layers: hyperbolic tangent with a; = a; = 0.20-0.25-0.30, b, = b, =0.

The minimum MAPE of the evaluation set is 1.48 % and it is obtained for
an ANN with 45 neurons in the hidden layer, a9 =0.9, T, =2,000, no=0.5,
T,=2,000, ay =a>=0.25 and b; =b, =0 with hyperbolic tangent activation
functions in hidden and output layer.
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2.4.2 Comparison of Different Training Algorithms

In this case study the basic ANN structure presented in paragraph 2.4.1 is used
while parameters, such as the number of neurons of the hidden layer, activation
functions, weighting factors, learning rate, momentum term, etc. are determined by
a calibration methodology through an extensive search. The performance of each set
of parameters is evaluated by the MAPE index of the evaluation data set. The ANN
parameter calibration process is based on the philosophy of the heuristic process
outlined in Fig. 2.4 and it is repeated for 14 different training algorithms. The main
goals are:

e the determination of the optimal ANN structure (number of neurons in the
hidden layer, learning rate initial value, etc.) for each of the examined training
algorithms,

e the comparison of the training algorithms in terms of MAPE and computation
time minimization

 the selection of the training algorithm with the best performance.

The examined training algorithms are registered in Table 2.3. Several parameters
of the ANN model should be optimized for each of the case studies included in
Table 2.3. The common parameters in all cases are:

¢ the number of the hidden neurons, N,,,
* the type of the activation functions (hyperbolic tangent, logistic, linear),

Table 2.3 Examined training algorithms

No. | Training algorithms

1 Stochastic training with learning rate and momentum term (decreasing exponential
functions)

Stochastic training, use of adaptive rules for the learning rate and the momentum term

Stochastic training, constant learning rate

Batch mode, constant learning rate

Batch mode with learning rate and momentum term (decreasing exponential functions)

Batch mode, use of adaptive rules for the learning rate and the momentum term

Batch mode, conjugate gradient algorithm with Fletcher-Reeves equation

|| AN N B W N

Batch mode, conjugate gradient algorithm with Fletcher-Reeves equation and
Powell-Beale restart

9 | Batch mode, conjugate gradient algorithm with Polak-Ribiere equation

10 | Batch mode, conjugate gradient algorithm with Polak-Ribiere equation and
Powell-Beale restart

11 | Batch mode, scaled conjugate gradient algorithm

12 | Batch mode, resilient algorithm

13 | Batch mode, quasi-Newton algorithm

14 | Batch mode, Levenberg-Marquardt algorithm




2 Short Term Load Forecasting in Electric Power Systems. .. 43

* the parameters of the activation functions,
* the maximum number of the training epochs.

The additional parameters used in the each of the examined training methods are
listed next.

Methods /-6:

 the time parameter, T,,, and the initial value of the learning rate, n,
e the time parameter, Ty, and the initial value of the momentum term, o (not
applied to methods 3, 4).

Methods 7—10:

¢ the initial value of s,

¢ the number of iterations, 7,, for the calculation of the basic vector,

e the number of iterations, Ty, used for the trisection according to the golden
section method for output error minimization.

Method 11:

e Parameters ¢ and Ao,
Method 12:

* the increasing and decreasing factors §; and &, (see Eq. (2.24))
Method /4:

* the initial value of A, A(0), and the multiplicative parameter S.

The number of all possible combinations of the values of the parameters that
should be examined ranges in the order of some hundreds of millions. Hence, all
possible combinations cannot be practically examined and a gradual calibration
process is applied. The intervals of the parameters values used in this study are
registered in Table 2.4 while the calibrated parameters obtained for the 14 examined
scenarios of Table 2.3 are registered in Table 2.6.

The minimum MAPE of the evaluation data set is obtained by the stochastic
training algorithm with adaptive rules for the learning rate and the momentum term
and the scaled conjugate gradient algorithm. The MAPE of the test data set is also
satisfying while the stochastic training algorithm with decreasing learning rate and
momentum term leads to slightly better results (see Table 2.5).

The proportion of the computation times the first 11 training algorithms require,
1:32+3+12+40+35+14+-10+12+12+12+1.

Based on the above the scaled conjugate gradient algorithm is proposed.

An indicative daily load curve and the respective load curve forecasted by the
proposed ANN are presented in Fig. 2.7. The MAPE of the specific daily load curve
is 1.173 %.



44 G.J. Tsekouras et al.

Table 2.4 Intervals of the training parameters values

Training algorithm | Intervals of the training parameters values
12 ap=0.1,0.2,...,0.9, T, = 1,000,1,200, . . .,2,000,
10=0.1,0.2,...,0.9, T, =1,000,1,200, . . .,2,000
3 n9=0.01,0.02,...,0.1,0.2,....,3
n0=0.1,0.2,....3
5-6 a9 =0.1,0.2,...,09, T, = 1,200,1,500, . . . ,6,000,
n0="0.1,0.2,...,0.9, T, = 1,200,1,500, . . . ,6,000
7,9 §= ?.04,0.1,0.2, Ty, =20, 40, Tyyix =50, 100, e, = 1076,
10~
8, 10 5 =0.04,0.1,0.2, T}, = 20, 40, T},;, = 50, 100, ;i = 1075,
1073, limprhogonatiry =0.1,0.5,0.9
11 o=1073,107%107>,1=10"%,10"7,5-10"%
12 8, =0.1,0.2,...,05,8,=0,1,02,...,2
13 -
14 A0)=0.1,0.2, ...,1,2,...,5,=2,3,...,9,10,20, ...,50
Common parameters | N, = 20,21, ...,70, activation function for hidden and output
layer = hyperbolic tangent, linear, logistic, a; =0.1,0.2, ...,
0.5,a,=0.1,0.2,...,0.5, b, =0.0, £0.1,=£0.2, b, = 0.0,
+0.1,+0.2
Taplfe 2.5 MAI?E (%) of MAPE (%)
;ﬁ?gi;fi‘;ﬁﬁg;fg?t Training algorithm | Training set | Evaluation set | Test set
training algorithms 1 1.383 1.482 1.749
2 1.311 1.475 1.829
3 1.372 1.489 1.833
4 2.356 2.296 2.602
5 2.300 2.294 2.783
6 2.019 2.026 2.475
7 1.798 1.831 2.147
8 2.544 2.595 3.039
9 2.545 2.600 3.035
10 2.544 2.600 3.035
11 1.294 1.487 1.781
12-14 # # #

2.4.3 Study of ANN Inputs

In this paragraph, several scenarios regarding the input variables of the model
are examined. A methodology based on the heuristic methodology introduced in
paragraph 2.4.1 is used to obtain the optimal set of input variables and ANN
parameters. The steps followed are briefly described next.
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Fig. 2.7 Chronological load curve (measured and estimated load) of 1 day of the test set
(Thursday, June 8, 2000)

(a) Data selection: In this step the input variables for the short term load forecasting
model are defined.

I°" scenario (basic): The input and output variables of the basic ANN
configuration as described in paragraph 2.4.1 are used.

2" scenario: This scenario is same with the 1% except from the use of a
seven-digit binary coding for the weekdays in replacement of the sinusoidal
functions (cos(27d/7), sin(2rd/7)).

3" scenario: This scenario is same with the 2" scenario except from the use
of 3-h average temperature values of the d-th day and the previous one (for
Athens and Thessalonica) in replacement of the group of inputs ANN_Inp.2
up to ANN_Inp.6. In this case the input vector of t he ANN comprises 84
elements.

4™ scenario: This scenario is same with the 1*! scenario except from the fact
that only the hourly load measurements of the previous day (d — 1) are used.
In this scenario, the input vector comprises 47 elements.

5™ scenario: This scenario is same with the 1% scenario except from the fact
that hourly load measurements for 3 days before the prediction day are used.
In this case the input vector comprises 95 elements.

6" scenario: In this scenario, PCA is applied to the input data used in the
2" scenario eventually suppressing the input variables from 66 to 6 with a
99 % accumulated percentage of explained variance according to Kaiser’s
criterion [21].

7™ scenario: In this scenario, PCA is applied to the inputs used in 2™
scenario except from the ones dealing with the week days and the season
of the year. The input variables are eventually suppressed from 66 to 19 with
a 99 % accumulated percentage of explained variance according to Kaiser’s
criterion.
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(b) Data pre-processing: As described in paragraph 2.4.1.
(¢c) Main procedure: The ANN is trained by using the scaled conjugate gradient
algorithm (SCGA).

The optimal results obtained for each of the seven examined scenarios are
summarized in Table 2.7. The basic scenario (no 1 of Table 2.7) leads to the
minimum MAPE of the evaluation set. The second and the third scenario lead to
similar results. It is worth mentioning that if MAPE of the test set is considered
then the third scenario becomes the optimal while the first and the second scenarios
perform similarly. MAPE increases in scenarios 4 and 5 while further increase
occurs in scenarios 6 and 7.

The proportion of the computation times of the seven examined scenarios is:
1+0.98+1.1+-0.8+1.3+0.4=+ 0.55. The use of compression techniques decreases
the computational time significantly, but MAPE is considerably increased. Accord-
ing to the obtained results the first scenario is suggested for this case study.

2.4.4 Study of ANN Outputs

The outputs of the ANN models examined so far are the 24 hourly load values that
should be forecasted. This classical design imposes the use of ANNs with 24 output
variables. An alternative solution comprises 24 different ANNs that are separately
used for the prediction of each of the 24 hourly load demands. The performance
of each of the 24 ANNs can be affected in a different way by the inputs it uses.
Hence, various scenarios will be studied next regarding the inputs used. In all
cases the scaled conjugate gradient training algorithm is used with its most crucial
parameters being properly calibrated. Moreover, a large number of combinations of
ANN parameters such as the number of neurons, the type of the activation functions,
etc. are explored in order to finally obtain the optimal configuration of the short
term load forecasting model and the optimal set of training parameters values. The
performance of each of the examined forecasting models is evaluated by using the
MAPE of the evaluation data set.
The scenarios examined are:

e 1% scenario: The ANN described in paragraph 2.4.1 trained with scaled conjugate
gradient training algorithm is used.

o 2™ scenario: 24 ANNSs are used; one for each of the predicted hourly average
loads. The input variables of the ANNs are the same with those used in the
1% scenario except from the seven digit binary coding of the weekdays that is
replaced by the two sinusoidal functions cos(2rd/7) and sin(2wd/7).

3" scenario: In this scenario, PCA is applied to the input variables used in 2"
scenario except from the ones dealing with the weekdays and the season of the
year. The inputs are eventually suppressed from 66 to 19 with a 99 % accumu-
lated percentage of explained variance according to Kaiser’s criterion [21].
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4™ scenario: The inputs of the i-th ANN (used for the forecasting of the average
load demand of the i-#4 day hour) are:

— The average load demands of the i-th, (i— 1)-th and (i —2)-th hour of the
previous 2 days of the day the load is forecasted.

— The mean temperatures of Athens and Thessalonica for the current day and
the previous one.

— Two sinusoidal functions representing the week day.

— Two sinusoidal functions representing the seasonal behaviour of the load.

In this scenario the input vector comprises 14 elements.

o 5" scenario: It is the same with the 4" scenario, but Principal Components
Analysis is applied to all inputs except from those dealing with the weekly and
seasonal behaviour of the load. The inputs are suppressed in a way that 99 %
accumulated percentage of explained variance according to Kaiser’s criterion.
The number of the remaining inputs after PCA application is different for each
ANN.

The MAPE estimated for the training, evaluation and test data sets and the output
of the ANN used to forecast the load demand at the 12-th hour of the day of the year,
are shown in Table 2.8. Moreover, the optimally calibrated parameters of the ANN
are registered in the same Table. It is noted here, that the parameters of the training
algorithm, the type and the parameters of the activation functions of the hidden and
the output layers are the same with those used in the 1% scenario.

Respectively, the MAPE of training, evaluation and test sets and for all examined
scenarios are shown in Fig. 2.8 and Table 2.9. For scenarios 2-5 the average of the
MAPE of the 24 ANNS is calculated.

The proportion of the computation times of the examined scenarios is:
1+0.4+-0.05=-0.15--0.03. This indicates that the computation time decreases
significantly when the dimension of the input vector decreases. Even larger decrease
could be achieved in scenarios 2-5 if 24 different computers were used (parallel
processing) for the training of each ANN. However, the 1% scenario leads to the
minimum MAPE of the evaluation data set while the second and the third scenario
lead to slightly worse results. MAPE of test set remains almost the same in 1% and
2" scenario. In the 4" scenario, leaving out some of the input data led to worse
results. The application of PCA (3" and 5" scenarios) decreases significantly the
computation time but the performance of the forecasting model deteriorates. This
becomes even more evident if MAPE of the test data set is considered. Based on the
previous observations the data compression is not suggested while the 2" scenario
presents satisfactory behavior regarding MAPE and it could be preferred to the 1%
scenario if minimization of the computation time is of high importance.
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1st scenario

0 2nd scenario

3rd scenario

MAPE (%)

M 4th scenario

5th scenario
Traming set Evaluation set Test set

Fig. 2.8 MAPE (%) of training, evaluation and test set for the interconnected Greek power system
and the 5 different scenarios of output variables

Table 2.9 MAPE (%) of MAPE (%)

training, evaluation and test S o | Traini | Evaluati ¢ Test set

sets for the 24-h Toad cenario | Training set | Evaluation set | Test sel

prediction 1 1.294 1.487 1.781
2 1.390 1.603 1.830
3 1.565 1.667 1.994
4 1.850 1.989 2.503
5 2.596 2.598 3.043
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Fig. 2.9 90 % confidence interval limits with respect to the training, evaluation and test sets for
the best ANN model for 8-6-2000 in Greek interconnected power system

2.4.5 Estimation of the Confidence Interval

Using the basic ANN configuration described in paragraph 2.4.1 the 90 % confi-
dence interval is estimated using the re-sampling technique with the probability in
each tail equal to 5 %. In Fig. 2.9 the prediction errors of a typical summer day
for Greek interconnected power system of the year 2000 (Thursday 8-6-2000) are
presented for the training, evaluation and test sets respectively, while in Fig. 2.10
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Fig. 2.10 Chronological active load curves of the measured load, the estimated load, the estimated
load with the 5 % lower limit with respect to evaluation set, the estimated load with the 5 % upper
limit with respect to evaluation set, the estimated load with the 5 % lower limit with respect to test
set, the estimated load with the 5 % upper limit with respect to test set for the best ANN model for
8-6-2000 in Greek interconnected power system

the respective measured and estimated load values are presented together with the
90 % confidence intervals of the evaluation and the test data sets.

It is observed in Fig. 2.10 that the lower limits of the confidence intervals for the
three data sets are quite similar. The ratio between the lower hourly errors of the test
set to the respective one of the evaluation set varies between 0.71 and 1.60, while
the mean value is equal to 1.00. However, the upper limit of the confidence intervals
for the test set is almost the double of the respective one of the evaluation set. The
ratio between the upper hourly errors of the test set to the respective one of the
evaluation set varies between 1.22 and 3.02, while the mean value is equal to 1.78.
It is observed in Fig. 2.10 that the confidence interval of the test set is broader than
the respective one of the evaluation set. Similar behavior is presented for all days
studied. In fact the limits of the test set are unknown in real applications, which
means that they should be corrected, i.e. using the proper multiplying factor which
is calculated by trial executions with historical data [66].

2.4.6 Effect of the Special Days

Load curves of special days differ significantly from the respective ones of the
regular days. One approach to dealing with this problem is to ignore the irregularity
of the special days and include their data into the training and test sets. However,
ANN performance is generally expected to deteriorate in this case.

In a different approach, proposed in [44], the load curve of a special day is
decomposed in two components; one representing the load of a normal day and
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another representing the special day effect. More specifically, the load is expressed
as follows:

Zholiday = Znormal - AZhaliday (250)

Hence, the vectors of the input data set corresponding to special days are increased
by the special day corrective term, Azh(,/iduy, before they are used in training
process. Finally, the vectors used for the training are of the form Lnormal =
N (7 + AY;,agiday). Where, X is the input vector comprising load data containing,
temperature measurements and Ayholiday the correction term of the effect of the
special days. The last term is calculated by reusing load data of respective special
days of previous years.

Another way to deal with the effect of the special days is to properly group the
input data with emphasis placed on the special days [70].

2.4.7 The Effect of the Time Period Length
Used for the Training of the ANN

In order to study the effect of the duration of the training data time period seven
different time periods were used. More specifically, these time periods extend on
the last one, two, ..., and seven years before the reference year, respectively.
The MAPE of the training, test and validation data sets obtained for the basic
ANN configuration of paragraph 2.4.1 (trained with the scaled conjugate gradient
algorithm) is shown in Fig. 2.11. It appears that in case of short term load forecasting
in Greek power system using data from the last 3 years leads to the best results
regarding MAPE minimization. The use of validation test set is necessary as it helps
to achieve better generalization results and it seems to have similar behaviour with
the test set rather than the training set.

22

19 T R

S . e e
g 16 Training set
g 134 .- —a Evaluation set
- - Test set
1.0 T T T T T T 1
1 2 3 4 5 6 7

Years of the training set

Fig. 2.11 MAPE of training, validation and test sets versus the training years. The scaled
conjugate gradient training algorithm is use and the 10 % of the data is used for model evaluation
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Fig. 2.12 MAPE of training, validation and test sets versus the percentage of the data used for
ANN evaluation. Scaled conjugate gradient training algorithm is used

Another important issue that should be carefully studied is the percentage of the
data used for the evaluation of the model. Due to the abundance of the available
data it was decided that the training and evaluation data sets should not overlap.
For the specific case study, it is proved that the minimum MAPE is obtained if the
10 % of the data is used for evaluation purposes. The respective results are shown
in Fig. 2.12.

2.5 Conclusions

Short term load forecasting in electric power systems is a very complex problem.
ANNs have been proved very efficient in short term load forecasting and they
constitute nowadays the predominant method in this field. The basics of ANNs and
the major training techniques are described at the beginning of this chapter. Next,
several variations concerning the structure of the ANN model, the training method
and its parameters have been examined and applied to the Greek power system for
short term load forecasting. The results obtained reveal that general conclusions
cannot be easily extracted as the performance of each of the examined forecasting
models depends highly on the characteristics of each case study. However, it seems
that in most cases the basic ANN configuration described in 2.4.1 seems to be
the most appropriate for application to Greek power system. Data compression
techniques reduce greatly computation time but generally deteriorate performance.
Hence, they could be avoided if computation time is not a constraining factor.
Further work on this topic could be the combination of ANNs with other tech-
niques like fuzzy logic, GA algorithms etc. Moreover, short term load forecasting
in emerging types of power systems incorporating extensive smart load demand
management will be a topic of great importance in the forthcoming years.
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