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Abstract. A novel approach is presented for the analysis of parallel processing
of stochastic workload by multi-processor/multi-core processing resources in
data center environments. The method is based on job workload descriptions by
task graphs with generally-distributed task execution times and task scheduling
under consideration of prescribed precedence and synchronization constraints.
For the analytic performance evaluation, task graphs are restricted to the analysis
of directed acyclic graphs which are reduced by stepwise aggregations of tasks.
The reduction allows to aggregate the whole task graph under a given number n
of processing elements to a single virtual job processing time with average value
h, and coefficient of variation c,. By this way, the whole multi-processor system
can be modeled by a queuing system of type GI/G/1 from which the response
time Tr and the speedup factor S(n) is derived. Finally, the influence of
the stochastic properties of the workload on the performance and on energy
efficiency of parallel computing will be studied and compared with serial
computing on a multi-processor system modeled by a queuing system of the
type M/G/n.

Keywords: Parallel processing + Task graph - Graph reduction - Queuing
system - Performance evaluation - Energy efficiency

1 Introduction

Parallel processing has received enormous attention in the last 50 years, c.f. funda-
mental presentations in the books as [1-3]. Most of the studies in the early times of
computer science addressed problems of scheduling tasks with given task processing
times to be processed on a single or few processing elements under various scheduling
strategies based on constant processing times, order of arrival, priority classes or
deadlines for the execution. Many results are known from this research on optimum
scheduling with respect to the shortest possible execution duration until completion of a
given workload. For the description of more complex systems with precedence and
synchronization constraints, Petri Nets (PN) [4] have proved as an excellent modeling
methodology to guarantee the correct execution and to detect deadlock situations by the
control of state transitions using places and tokens but were not able to express per-
formance phenomena as a result of the absence of time. This deficiency was later
corrected by the introduction of timed Petri Nets and stochastic Petri Nets (SPN) where
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state transitions were extended by deterministic or stochastic durations. For the
processing of such generalized Petri Nets, powerful tools were developed either for
the simulation or for an analytical evaluation under Markovian process assumptions
[5]. Simultaneously to the developments of scheduling parallel computing as described
before, queuing network theory has progressed extensively within the last 5 decades
which is expressed by the phenomenon of “product-form” queuing networks and
efficient algorithms for their numerical performance evaluation. Queuing networks
allow for modeling of parallelism at large but are severely limited with respect to
synchronization constraints and generalized stochastic arrival and service processes
beyond Markovian assumptions [6]. These deficiencies have partly been overcome by
approximate evaluation methods and powerful computer tools for queuing network
analysis and simulations, see, e.g., [7-9]. Apart from the state-of-the-art reached in
queuing theory and through SPN, main problems remained open as decomposition
methods to reduce complexity in the evaluation and how to apply the results practically
as, e.g., to detect parallelism in the program execution path (at instruction or task level)
or in the data automatically as a basis for scheduling and program execution. More
recent developments in microelectronics and in program languages give rise to a
re-thinking of parallel processing: Through microelectronics powerful multi-core
processors with 16 or 32 cores are integrated on chip-level; multi-processor computer
racks provide thousands of processors within a cloud data center. Developments in
high-level programming languages allow for parallel program constructs which can be
explicitly expressed by the program developer and which support compilation and
scheduling by the operating system, in computing and communication.

In this paper, a novel and practical approach to the evaluation of parallel processing
will be presented which is based on processing jobs described by reducable task
graphs. A task graph models all possible execution paths of a program (computation
job) and can be described by a directed acyclic graph (DAG) with generally-distributed
task execution times, precedence conditions and synchronization constructs for parallel
executable tasks [9, 10]. From the viewpoint of analysis it is important to derive task
graphs automatically, to generate task graphs synthetically and to reduce the com-
plexity by graph reduction methods [11-14]. For the analytic performance analysis of
this paper it is important that the task graph can be reduced stepwise by elementary
aggregations of two tasks at each step. By this approach, it is possible to reduce the
whole task graph for a given number n of processing elements to one “virtual” task
with a corresponding generally-distributed virtual processing time. Thus, the execution
of a specified job stream on a multi-core or multi-processor system can be modeled by
a virtual queuing system of type GI/G/1 where GI represents the job arrival stream with
arrival rate A, G represents the virtual task execution time on the multi-processor
system, and where n = 1 server represents a “virtual processor”. Jobs are served by the
virtual processor in a batch processing mode, i.e., one at a time only, to avoid context
switching overhead and cache splitting in case of simultaneous processing of multiple
jobs in a time-sharing mode. Temporally idle processors are turned in a low-power
sleeping mode to save energy consumption during enforced “slack times” for con-
current processes or idle periods which can be accomplished by dynamic voltage and
frequency scaling (DVES).
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The remaining part of this paper is structured as follows: In Sect. 2, the problem of
parallel execution of a job is defined by a task graph which is composed by four generic
modeling constructs for serial processing, parallel processing, alternative task and
repeated task executions. The description and reduction of the task graph follows in
principle the modeling approach reported in [12, 14] and is illustrated by an example
graph. Task execution times are described by generally distributed random variables
and their probability density functions, respectively. For numerical analyses the gen-
erally distributed task execution times are represented by a phase-type model with 3
parameters only which allows the adaption to arbitrary mean values and coefficients of
variation. The four generic modeling constructs are described generally through
mathematical operations on random variables by distributions as well as by a two-
moment characterizations. In Sect. 3, the reduction of the whole task graph by stepwise
aggregation of tasks according to the 4 principal modeling constructs is discussed
generally and for the example graph of Sect. 2. Section 4 addresses the performance of
parallel processing in terms of the speed-up factor achieved by parallel processing and
by the job response time by queuing analysis as well as an analysis of the energy
consumption. Both performance and energy consumption are compared for two fun-
damentally different operation modes for multi-processor systems, serial processing of
jobs on one processing element each and parallel processing of jobs on all available
processing elements. The paper concludes by summarizing the current state of the
project and gives an outlook on ongoing further work based on the presented methods.

2 Multi-processor Job Execution

2.1 Multi-processor Queuing Model

In Fig. 1, the considered queuing model is shown consisting of n processing elements
representing processors of a multi-core or a multi-processor system. Jobs arrive
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Fig. 1. Principal model of a multi-core/multi-processor processing system for parellel processing
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Fig. 2. Example of a task graph and its stepwise redution (a) Original task graph (b, ¢) Intermediate
reduction steps (d) Results of aggregation

according to a general stochastic arrival process of type GI (generally- and indepen-
dently-distributed arrivals) at an arrival rate of A jobs/time unit. The model represents,
e.g., the physical resources provided by a data center to a tenant (company) or to a
group of users for a particular service. The model can be considered as a simplified
model for an “Infrastructure as a Service” (IaaS) providing physical resources upon
which a workload is processed defined by a Virtual Machine. The workload accom-
panied with each arrival is defined by a stochastic task graph, see e.g., Fig. 2. Jobs are
processed on the multi-processor model according to the batch mode, e.g., by FIFO
(First-In, First-Out) scheduling sequence and each job uses the n processors exclusively
to avoid program context switching during a job being in execution.

2.2 Task Graph Job Model

Each job is represented by a task graph with stochastic task processing times. A simple
model of a task graph is shown in Fig. 2(a) consisting of altogether 9 different tasks
1, 2, ..., 9 and 4 generic task constructs. Terminals 1 and 8 represent the initial and
final points of a job execution. The task graph belongs to the class of Directed Acyclic
Graphs (DAG). Figures 2(b, c, d) represent reduced task graphs of the DAG of Fig. 2(a)
and will be discussed later on in Sect. 3. Any execution path between Terminal 1 and
Terminal 8 is a feasible production for a job execution.
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Fig. 3. Principal task graph elements (a) Sequential processing of two tasks 1 and 2
(b) Alternative split (Or-Split) of two tasks 1 and 2 (c) Parallel processing (Concurrency,
And-Split) of two tasks 1 and 2 with synchronization S (And-Join) (d) Iteration loop for task 1
with parameter q

Figure 3 represents the four generic or principal constructs (task graph elements).

The execution time T; of a task i will be represented by its cumulative probability
distribution function (DF) F;(t) = P{T;<t} and its probability density function
fi(t) = dFi(t)/dt, respectively. Individual task execution times T; of a job are con-
sidered as being statistically independent of each other. The aggregated execution times
T of the four principal task graph elements of Fig. 3, measured between the Terminals 1
and 2, can be mathematically expressed by their PDF f(t) as follows:

(a) Sequential processing of two tasks (concatenation)
ft) = /i) @ f2(1) ()
where the symbol ® indicates the mathematical convolution operator
(b) Alternative Split of two tasks (Or-Split)
f(t) =qfi(t) + (1 —q;)f2(t) (Or-Split followed by Or-Join, Choice) (2)

Remark: The OR-Split is the basic function for tree-structured execution paths.

(c) Parallel processing of two tasks with synchronization (Concurrency, And-Split
followed y And-Join)

T = max(Ty, To): £(t) = f1(OF2(0) + £(0F (1) (3a)
T = min(Ty, To): f(t) = £;()[1 — F2(t)] + f2(t)[1 — Fy(1)] (3b)

Remark: The maximum operator is applied if both tasks 1 and 2 have to be completed
before continuation. The minimum operator applies, e.g., for a parallel search.
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(d) Iteration loop for Task 1 (Repetition)

=> 4 [ efH)®...©h0) (4a)
i=0 ifactors

for a probabilistic iteration with probability q and

fO=ha)@h()®...2f()] (4b)

gfactors

for q deterministic iterations

2.3 Generic Task Execution Model

The operations are generally too complex to be programmed for arbitrary PDFs.
Therefore, a generic task execution model will be used which is defined by 3
parameters only, see Fig. 4.
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Fig. 4. Mixed phase-type model for task excution times

The substitute model of Fig. 4 consists of a series of a deterministic phase Tp; (D)
with duration h; between Terminals 1 and 2 followed by a degenerated hyperexpo-
nential phase between Terminals 2 and 3 realized by a probabilistic alternative between
a negative-exponentially distributed phase Tp, (M) with mean h, = 1/g, chosen with
probability q and a zero-phase chosen with probability (1—q). This model will be
defined by two parameters for each task execution time Tp, its mean hp and its coef-
ficient of variation cp:

hp = E[Tp] (5a)
2 — VAR[Tp)/E[Tp]". (5b)
Parameters hp and cp can be arbitrarily prescribed, where 0 < ¢, <oo. This model

allows to represent any task with arbitrary mean hp and coefficient of variation cp by a
PDF fp(t) and a DF Fp(t), respectively:
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fp(t) = (1 —q)d(t —hy) + qezexp(—ex[t — hy])u(t — hy) (6a)
Fp(t) = (1 —qu(t—hy) + q[l —exp(—&2[t —hi])Ju(t —hy), (6b)

where 8(#) indicates the impulse function (delta function) and u(t) the unit-step func-
tion, with

hp = h1 + qh2 (6C)
2 _ 2 2
cp” = q(2 — q)hy”/(h; +qhy)". (6d)
The model has 3 parameters hy, h, and q to be derived from Eq. (6¢, d), i.e., there is
one degree of freedom. For hy — 0, we find ¢, — oo for ¢ — 0. The degree of freedom

can be used by choosing h; > 0 to avoid trivial task execution times. Fixing hy,
parameters h, and q follow formally from Eq. (6¢c, d):

L (h:*’h*’hl)zl (7a)

1
h2 = 5 [hp — h1 + szhpz/(hp — h])] (7b)

q=2/

For a feasible solution, 0 < q <1 has to be regarded as compatibility condition.
A quite simple solution of the parameter fitting follows from (7a, b) by subdivision of
the cp-range:

(a) 0<cp <1 (hypoexponential characteristic)

q= 1, h1 = hp(l — Cp), hz = Cphp (83)

(b) 1<cp<oo (hyperexponential characteristic)

hy =0, hy= hp(1+ c’)/2, q =2/(1+ o) (8b)

The solution (8a) represents a series of a deterministic phase and an exponential
phase while (8b) represents a degenerated hyperexponential phase.

2.4 Performance of the Principal Task Graph Elements

Applying the mixed phase-type model for all task execution times, represented by the
PDF fp(t) and DF Fp(t) acc. to Eq. (6a, b), the execution times T for the principal task
graph elements of Fig. 3 can be expressed explicitly by their PDF {(t) from Eqs. (1-4).
These results are too voluminous and will be reported in detail in a forthcoming



24 P.J. Kuehn

companion paper. The results for a two-moment representation are much easier to be
derived by elementary moment operators on independent random variables (cases a, b
and d) or on PDFs (case c). Tasks 1 and 2 are represented by the phase-type model
parameters h;q, hj, and q;, i = 1, 2. For the 4 principal task graph elements we find:

(a) Sequential Processing of two tasks 1 and 2 (Concatenation)

E[T| = E[Ti] + E[T2] = hi1 + qihiz + hoy + goha (9a)
VAR[T] = VAR|T1] + VAR[T;] = q,(2— ql)h122 + q(2- q2)h222 (9b)
¢ = VAR[T]/E[T]>.
(b) Alternative Split of two tasks 1 and 2 followed by Or-Join (Choice)
E[Ti|= qE[Tyl+ (1 —q) E[Ty], 1 =1,2
[Ti] = q E[Tu] + (1 —q) E[Ta], i (10a)

E[T] = q(hi1 +q;hi2) + (1 —q)(h2r + goh22)

E[T2] = q(hi”> + 2q;hio” + 2qihiihay) + (1 —q)(hai® + 2g;h” + 2g;hp1ha)

(10b)
VAR[T] = E[T?] — E[T]? (10c)
¢ = VAR[T]/E[T]*. (10d)

(c) Parallel Processing of two tasks 1 and 2 with synchronization (Concurrency,
And-Split)

In this case, the PDF f(t) of the aggregated random variable T = max(Ty, T,) or
T = min(Ty, T,) acc. to Egs. (3a, b) has to be derived first from which the moments

E[T'] =

\8

(e iy (11)
=0

follow by integration. The variance VAR[T] and the coefficient of variation ¢ follow
acc. to Egs. (10c, d). The explicit results are too voluminous and will be reported in a
forthcoming paper.

(d) Iteration Loop for task 1 (Repetition)

Be J the RV of the number of executions of task 1 with average E[J]. Then we get
for the aggregated RV T in general
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E[T] = E[J]-E[Ty]. (12a)

In case of a geometrically-distributed number of iterations with feedback prob-
ability q we get

o0

E[J]:;(iﬂ)qj(l—q):l/(l—q) (12b)
E[)’] = Jiio (+1)°q(1—q) = (11:?)2 (12¢)
VAR[J] = E[I*] - E[J)° (12d)
VAR[T| = E[J]- VAR[T|] + VAR[J] - E[T|]? (12e)
¢ = VARIT]/E[T]*. (12f)
If J is a constant E[J] = J and VAR[J] = 0, then
VAR[T] = J-VAR[T]. (12¢)

E[T] and c follow from Egs. (12a) and (f).

Remark: If J is an RV, the statistics of T follow from the compound distribution of T,
and J.

3 Task Graph Reductions

3.1 General Aspects and Application Cases

As outlined above, the workload by a specific job will be described by a directed
acyclic graph (DAG) consisting of elementary structural elements expressing arbitrary
workflows. Any DAG can be processed on a single-processor system by following
any possible execution path through the DAG from the initial terminal to the final
terminal. Any feasible execution path through the DAG can be considered as a thread
which is scheduled by the operating system and processed on the single-processor
system without any stop (except for memory I/0 which is not considered here).
Processing of parallel executable instruction paths have to be executed serially in
arbitrary sequence but continuation after the parallel paths depends on the synchro-
nization condition. Parallel processing executed on a single processor does not cause
any “slack times”.

In a multi-processor environment, parallel executable paths can be scheduled
such that the thread is split into multiple parallel threads which can be scheduled by the
operating system and processed simultaneously as long as the synchronization point is
not reached. The degree of processing simultaneity depends on the individual execution
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path durations: The best case is if all parallel threads are of identical durations; how-
ever, with increasing variability, the degree of processing simultaneity decreases and
some processing elements will become idle for a “slack time” until the next syn-
chronization point. This reduces the performance by increasing the total job execution
time. The idea of this paper is to quantify the efficiency of parallel processing by
modeling task execution times by stochastic processes in order to express the influence
on the performance as well as on the energy efficiency.

This can be achieved best if the DAG could be reduced stepwise by aggregating
parallel or serially executable tasks to a single virtual task where the corresponding
execution times of aggregated paths are obtained by application of the basic aggregation
operations introduced in Sect. 2. Reducibility of graphs is a fundamental problem of
graph theory. Graphs resulting out of the use of “go to” statements, e.g., jumps out of a
loop or into another program branch, cause quite complex graph structures which cannot
be reduced stepwise. Modern programming languages and programming styles result
into well-structured programs which support graph reducibility.

From the application point of view, many problems are adequate for parallel
execution and reducibility. Examples are:

(1) Parallel execution of a program for multiple input parameter sets. Each parameter
set can be executed in parallel by a multi-processor system providing results of a
whole parameter range instantaneously.

(2) Batch simulation methods where a simulation is subdivided in (typically) 10
“batches”, each for a certain number of “events”, e.g., 100.000 events. For such
programs, we find a simple program structure of one task at the beginning to
configure the “batch” programs and initializing counters for statistic data, then
executing all “batch” simulations in parallel, and one task after the execution of all
“batches” for processing of the final results out of each “batch” execution. Such a
program consists of a simple DAG-structure of the form fork and join and allows
a speed-up factor close to the number of “batches”.

(3) Searching within large unstructured data sets, a typical problem of “Big Data”. In
such cases, the data sets can be partitioned and each partition can be executed
in parallel. This approach can be repeatedly applied on reduced data sets, etc.

In most of such applications, execution times of parallel threads may depend on the
properties of data or may affect the number of iterations for a certain precision; these
execution time variations are modeled best by random variables.

3.2 Example of a Task Graph Reduction

A simple example of a model task graph as shown in Fig. 2(a) will be considered. In a
first step, m serially or parallel executable tasks are combined successively by aggre-
gation of two tasks in each step either in a linear sequence by (m—1) iterations or in a
binary-tree fashion by aggregating each time 2 tasks resulting in log m iterations; in the
latter case, the aggregations themselves can be executed in parallel, too. By these steps,
the task graph Fig. 2(a) results in a reduced task graph shown in Fig. 2(b). In a second
step, all loops are aggregated and finally replaced by one task resulting in the further
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reduced task graph shown in Fig. 2(c). In the final step, only a series of sequential tasks
has to be aggregated in a single resulting “virtual task” for the whole job, see Fig. 2(d).

In a tree-structured task graph, the above outlined reduction strategy is applied at
first on all branches of the tree or of subtrees, followed by combining the tasks rep-
resenting the whole branch at the root point of subtrees, repeatedly in bottom-up
direction, starting at the leaf-level.

Remark 1: All described steps are performed on two parameters of each task (the mean
value and the coefficient of variation) as outlined in Sect. 2 of this paper. For this, we
need only to program the basic operations which are implemented in a procedure and
are applied repeatedly.

Remark 2: As outlined above, the virtual tasks include automatically the parallel exe-
cution on multiple processors. If the degree of task parallelism exceeds the number of
available processors, the task graph has to be restructured first by combining maximally
possible parallel aggregations and repeat these results sequentially for the remaining
parallel tasks which (of course) adds to an increased task graph execution time.

4 Performance Evaluation and Energy Efficiency

Task graph processing on a multi-processor system will be considered under two
different aspects, performance and energy efficiency. For comparison, we will distin-
guish between two modes in each case:

Mode PP: Parallel processing of each job on the n-processor system.
Mode SP: Serial processing of each job on one processor of the n-processor system.

4.1 Performance Evaluation

The classical performance criterion for parallel computing was formulated by (13a)
(Amdahl’s Law [15]): If o is the fraction of non-parallelizable parts of a program, the
ideal speed-up factor is

S(n) =1/[(1 —a)/n + . (13a)

As a consequence of the introduced job description by a DAG, the speed-up factor
has to be re-defined as the fraction of job processing times for n = 1 (single processor)
and n, i.e.,

(13b)

Note, that this approach is more general as individual task execution time variations
and limitations in parallelization are taken into consideration, where (13a) holds for an
idealized case of constant parallelization degree of n only. Under the special case of a
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constant parallelization degree n we get for o the result oo = (nE[T|n]— E[T|1])/(n — 1);
inserting this in Eq. (13b), the result coincides with Amdahl’s Law Eq. (13a).

As a second performance metric, we will consider the response time Tr measured
between the arrival instant of a job and the instant when the job is executed, i.e.,

TR = TW + TV (143.)

where Ty is the waiting time and T, the virtual processing time of the job.

Mode PP: Parallel Processing

The parallel processing system is represented by a virtual single-server system upon
completion of the graph reduction method outlined in Sect. 3.2. Ty follows from a GI/
G/1 queuing model, e.g., for Poisson job arrivals according to the Pollaczek-Khintchine
formula for the M/G/1 delay system [6]:

(1 + c%,)
(1—pv)

Note, that the maximum capacity of this system is reached for

E[Tw] = py - E[T|n], with load factor py= X - E[T|n]. (14b)

1
A = — 1
Amax,PP E[T|n] ( 58)

The average processing time of a job under Mode PP is E[T|n]. The average of the
slack time Ts follows from the balance equation E[Ts] = n - E[T|n] — E[T|1] and
reduces the capacity for high loads to Amaxpp acc. to (15a).

Mode SP: Serial Processing

If each job is assigned to be processed by one processor, the n-processor system is
modeled by a GI/G/n system, where G describes the job processing time T on a single
processor which follows from the original task graph by adding all processing phases
resulting in a mean processing time E[T|1]. The response time Ty follows from (14a),
where Ty is represented by two moments h = E[T|1], ¢ from a task graph reduction for
1 processor, and Ty from queuing system GI/G/n; for Poisson arrivals from the delay
system M/G/n (exact closed-form solutions and tabled results are known for M/M/n
and M/D/n only).

The maximum capacity of this n-server system is reached for

n n
/lmax = = > ﬂmax. 15b
SP T E[T[1]  nE[T|n] — E[Tg] ~ ™ (150)

Note, that in Mode SP the full capacity of the n servers is available, where PP
suffers from enforced idle times (slack times).
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4.2 Energy Efficiency

As outlined in Sect. 2, we will assume for both Modes PP and SP that all jobs are
processed on an n-processor machine in batch processing mode. Under low load,
parallel processing results in shorter job execution times and is superior to job pro-
cessing serially on a single processor. Idle phases of a processing element due to a
limited parallelization degree (1 — «) will be considered as sleep phases (“slack times™)
with reduced power Py; P; > Py denotes the power consumption of a running processor
executing a task. Parallel processing of tasks and serial processing of tasks are neutral
with respect to energy consumption as both modes require the same amount of energy
in total, whereas parallel processing and serial processing differ with respect to the
maximum job rate for saturation as well as with respect to the response time, i.e., there
is a trade-off between parallel and serial processing. This effect has been observed in
other energy-efficiency studies as well, where energy efficiency and performance
reduction behave reciprocally [16, 17]. The energy consumptioncan, however, can be
reduced by low-power operation of idle resources, e.g., by Dynamic Voltage and
Frequency Scaling (DVFS) [18].

The energy consumption in an arbitrary large interval #, of time amounts for Modes
PP and SP as follows:

_ E[T[1] E[Ts]
Epp =ty - py nnE[T|n] Py +nnE[T|n] +to(1 — py) -nPgy (16a)
Esp = to[APl + (l‘l — A)Po}, (16b>

where py = A - E[T|n] denotes the utilization factor of the virtual GI/G/1 delay system
and A = E[X] = A - E[T|1] the offered (and carried) traffic value of the GI/G/n delay
system, respectively. With these relationships both expressions for Epp and Egp of
Eq. (16a, b) are identical Esp = Epp = E.

The energy efficiency n will be defined as the fraction of energy saved by DVFS
relative to the energy consumption without DVFES:

where Ey = nPty is the energy consumption without DVFS.

4.3 Trade-off Between the Operation Modes PP and SP

The observation that both operation modes differ in their maximum capacities gives rise
for a trade-off discussion between them. This will be exemplified in the following by a
numerical example for the generic task graph example for concurrency between two
tasks 1 and 2 acc. to the model of Fig. 3c extended by constant common tasks at the
beginning and end of the task graph with total length h,. Two special cases of concurrent
task execution times will be considered with identical average task execution times
D (deterministic) and negative-exponentially distributed times (M) with parameters
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1 Parameters
T,. Ty Type D.E[T|] = E[T,] = hi2
(1,)
./ T5. T3  Type D.(Casc 1), Type M (Case 2)
I E[T,]=E[T3]=h=1/e
h Unit of Task Execution Times
Kr'-\' l.\\
\ T o / PP Parallel Processing of Job Tasks
+ ; on both Processors (Mode 1)
l S
-/']' \ Sp Serial Processing of Job Tasks
o J/ on one Processor (Mode 2)
1: 2 n Number of Processors n = 2 (P,.P,)

Fig. 5a. Generic taskgraph for numeric example

Job | Job 2
N I T T W///////\\\\\\\ K \\\t
P L/////% - - | - - I" —t
ke E(T12) d
| !. E(TI) J|
sv:pl i n I 1, idle \'|‘l Job 1
P idle T T2 T ‘||l Mo

Fig. 5b. Grant-charts for job PP and SP models handed fields are slack times in PP

hj = h, = h =1/¢andc = 0 (deterministic) and ¢ = 1 (Markovian), respectively.
Jobs arrive in both cases according to a Poisson process with arrival rate A. Figures Sa
and 5b shows the example task graph and two Gantt-Charts for PP and SP schedules.

The performance analysis of Mode 1 (PP) follows the procedure of stepwise task
graph reduction resulting in a virtual queuing system of the type GI/G/1. The analysis
of Mode 2 (SP) follows from a standard queuing system of the type GI/G/n.
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Table 1. Queuing system parameters
Mode Case | Av. Serv. Time |SCOV Utilization Mmax Qu.System
1 (PP) |1 hy,=2h =0 p, = 2\h 172 h M/D/1
2 h, =25h =02 |p,=25 [125h |M/G/1
2(Sp) |1 E[T|1]=3h =0 p=3/h 1/1.5h |M/D/2
2 E[T|1] =3 h c>=2/9 |p=3ih 1/1.5h | M/G/2
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The parameters of the corresponding queuing models are summarized in Table 1. Data

Fig. 6. Mean Response Time vs. Job Arrival Rate

center job arrivals are assumed to follow a Poisson distribution (Type M).

The results for the normalized average response times tg/h are shown for both
scheduling Modes 1 (PP) and 2 (SP) for the two parameter cases of constant task
execution times (Case 1) and negative-exponentially distributed task execution times

(Case 2) of Tasks 2 and 3, respectively (Fig. 6).
Note first the different maximum load levels for PP and SP and the different

maximum load levels for PP for constant and for exponentially distributed virtual task
times acc. to Case 1 and Case 2 which define the load limits of stationary system

operation where the response times increase to infinity asymptotically.
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The results underline the following general properties

e The maximum capacities for PP are lower than for SP.

e The maximum capacity for PP reduces with increasing slack times caused by task
execution time variations.

e Trade-off of the performance results between PP and SP with smaller response
times for PP in the low-load region and for SP in the high-load region.

5 Conclusions

The main contribution of this paper is a novel method by which parallel and serial
processing of jobs on a multi-core/multi-processor system can be analyzed for gener-
ally-distributed task execution times by stepwise reduction of directed acyclic task
graphs. The reductions are performed by task aggregations for four principal structure
elements of computation programs: concatenation, alternative splitting, iterative repe-
titions, and concurrency of tasks. The mathematical operations are based on generally-
distributed random task execution times. The principal four structure elements are used
for the exact aggregation based on the theory of functions of random variables. For an
efficient computational implementation, the generally-distributed task execution times
are represented by a mixed phase-type model for the first and second order moments.
The method allows to represent the multi-core/multi-processor system to standard
queuing models of the types GI/G/1 and GI/G/n, where the service times are repre-
sented by their averages and coefficients of variation. From the application’s point of
view, the new method allows the extension of Amdahl’s Law to more realistic con-
ditions of random task execution times and arbitrary degrees of parallelization as well
as real-time performance metrics as the average job response times. The trade-off
between the two major schedules for parallel and serial processing of jobs on an
n-server system leads to the most important conclusion, that parallel processing is only
superior for low- and medium-load ranges, while serial processing outperforms parallel
processing for high loads with respect to the maximum capacity and response times.
Both job execution modes are neutral with respect to energy efficiency; the only way to
increase energy efficiency is by low-power operation of idle processors through
Dynamic Voltage and Frequency Scaling (DVFS). The current paper reflects the status
of “work in progress”; ongoing work addresses the development of general analysis
tools for the analytical solution as well as for simulations.
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