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Abstract Accurate determination of the biomechanical implications of vascular
surgeries or pathologies on patients requires developing patient-specific models of
the organ or vessel under consideration. In this regard, combining the development
of advanced constitutive laws that mimic the behaviour of the vascular tissue with
advanced computer analysis provides a powerful tool for modelling vascular tissues
on a patient-specific basis. Collagen is the most abundant protein in mammals and
provides soft biological tissue, like the vasculature, with mechanical strength,
stiffness and toughness. In several tissues there is a strong alignment of the collagen
fibres with little dispersion in their orientation, but in other cases, such as the artery
wall, there is significant dispersion in the orientation, which has a significant
influence on the mechanical response. Proposed structure-based models was used
by taking into account the spatial dispersion or waviness of collagen fiber direc-
tions. Vascular tissues exhibits simultaneously elastic and viscous material
response. The rate-dependent material behavior of this kind of materials has been
well-documented and quantified in the literature. Furthermore, non-physiological
loads drive soft tissue to damage that may induce a strong reduction of the stiffness.
In this chapter, we have provided a critical review of the fundamental aspects in
modeling this kind of the materials. The application of these constitutive
relationships in the context of vascular system has been presented.
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1 Introduction

The arterial wall is composed of three distinct elements: the vascular smooth
muscles (VSM) that form the cellular part of the vessel, and the extracellular matrix
major components elastin and collagen. Collagen is the main load-bearing com-
ponent within the tissue, while the elastin provides elasticity to the tissue. Identi-
fication of an appropriate strain energy function (SEF) is the preferred method to
describe the complex nonlinear elastic properties of vascular tissues [31]. An ideal
SEF should be based on histological analysis to provide a better description of wall
deformation under load [33, 54]. Early SEFs were purely phenomenological
functions where parameters involved in the mathematical expression are not
physiological meaning [17, 56]. Later, structure-based or constituent-based SEF
were developed, where the parameters means some physical and structural prop-
erties of the different components of the vessel wall [26, 63]. In several tissues there
is a strong alignment of the collagen fibres with little dispersion in their orientation,
but in other cases, such as the artery wall, there is significant dispersion in the
orientation, which has a significant influence on the mechanical response. Proposed
structure-based models was used by taking into account the spatial dispersion or
distribution or waviness of collagen fiber directions [2, 23, 33, 58, 62].

Collagen is the most abundant protein in mammals and provides soft biological
tissue, like the vasculature, with mechanical strength, stiffness and toughness.
Roach and Burton suggested that collagen had a main impact on the mechanical
properties of arterial tissue at higher strain levels, i.e. where mechanical failure is
supposed to appear. Vascular tissues exhibits simultaneously elastic and viscous
material response. The rate-dependent material behavior of this kind of materials
has been well-documented and quantified in the literature [21, 27, 41]. Furthermore,
non-physiological loads drive soft tissue to damage that may induce a strong
reduction of the stiffness [19, 35, 39, 41]. Damage may arise from two possible
mechanisms: tear or plastic deformation of the fibers, or biochemical degradation of
the extracellular matrix from protease release associated with the observed cellular
necrosis.

Since the main modelling effort in the literature has been on the passive response
of arteries, this is also the concern of the major part of this chapter. Taken all this
into account, this chapter is focused on the development of microstructural con-
stitutive models for vascular tissues and organized as follows. In Sect. 2 the con-
stitutive equations of anisotropic hyperelastic materials are reviewed. In Sect. 3, we
present the elastic micro-structurally based models. Section 4 considered a micro-
structural anisotropic damage and softening model for vessel tissues. Finally,
Sect. 5 includes some concluding remarks.
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2 Hyperelastic Behavior

This section deals with the formulation of standard finite strain material models for
soft biological tissues. To clarify the framework it is necessary to summarize the
formulation of finite strain hyperelasticity in terms of invariants with uncoupled
volumetric/deviatoric responses, first suggested by Flory [16], generalized in [52]
and employed for anisotropic soft biological tissues in [26, 59] among others.

Let B0 � E3 be a reference or rather material configuration of a body of interest.
The notation u : B0 �T ! Bt represents the one to one mapping, continuously
differentiable, transforming a material point X 2 B0 to a position x ¼ uðX; tÞ
2 Bt � E3, where Bt represents the deformed configuration at time t 2 T � R.
The mapping u represents a motion of the body that establishes the trajectory of a
given point when moving from its reference position X to x: The two-point
deformation gradient tensor is defined as FðX; tÞ :¼ rXuðX; tÞ, with JðXÞ ¼
detðFÞ[ 0 the local volume variation.

The direction of a fiber at a point X 2 B0 is defined by a unit vector fieldm0ðXÞ,
jm0j ¼ 1. It is usually assumed that, under deformation, the fiber moves with the
material points of the continuum body, that is, it follows an affine deformation.
Therefore, the stretch k of the fiber defined as the ratio between its lengths at the
deformed and reference configurations can be expressed as

kmðx; tÞ ¼ FðX; tÞm0ðXÞ; ð1Þ

where m is the unit vector of the fiber in the deformed configuration and

k2 ¼ m0 � FTF �m0 ¼ m0 � Cm0 ð2Þ

stands for the stretch along the fiber direction at point X (Fig. 1). In (2) C ¼ FTF is
the standard deformation gradient and the corresponding right Cauchy-Green strain
measure. The introduced kinematics for one family of fibers can be applied to a
second fiber family in an analogous manner. We shall denote a second preferred
fiber orientation by the unit vector field n0ðXÞ.

It is sometimes useful to consider the multiplicative decomposition of F

F :¼ J1=3I � �F: ð3Þ

Fig. 1 Kinematics of a unit vector field m0ðXÞ
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Hence, deformation is split into a dilatational part, J1=3I, where I represents the
second-order identity tensor, and an isochoric contribution, �F, so that detð�FÞ ¼ 1
[16]. With these quantities at hand, the isochoric counterparts of the right Cauchy-

Green deformation tensors associated with �F are defined as �C :¼ �FT � �F ¼ J�2=3C.
The free energy function (SEF) is given by a scalar-valued function W defined

per unit reference volume in the reference configuration and for isothermal pro-
cesses. Flory [16] postulated the additive decoupled representation of this SEF in
volumetric and isochoric parts. To differentiate between the isotropic and the
anisotropic parts, the free energy density function can be split up again as

W ¼ Wvol þ �W ¼ Wvol þ �Wiso þ �Wani; ð4Þ

where Wvol describes the free energy associated to changes of volume, �Wiso is the
isochoric isotropic contribution of the free energy (usually associated to the ground
matrix) and �Wani takes into account the isochoric anisotropic contribution (associ-
ated to the fibers) [55].

This strain-energy density function must satisfy the principle material frame
invariance WðC;M;NÞ ¼ WðQ � C;Q �M;Q � NÞ for all C; Q½ � 2 S3þ �Q3

þ
� �

.
Because of the directional dependence on the deformation, we require that the
function W explicitly depends on both the right Cauchy-Green tensor C and the
fibers directions in the reference configuration (m0 and n0 in the case of two fiber
families). Since the sign ofm0 and n0 is not significant,W must be an even function
ofm0 and n0 and so it may be expressed byW ¼ WðC;M;NÞ whereM ¼ m0 �m0

and N ¼ n0 � n0 are structural tensors [55]. In terms of the strain invariants [55], W
can be written as

W ¼ WvolðJÞ þ �Wisoð�I1;�I2Þ þ �Wanið�I4;�I5;�I6;�I7;�I8;�I9Þ ð5Þ

with �I1 and �I2 the first two modified strain invariants of the symmetric modified
Cauchy-Green tensor �C (note that I3 ¼ J2). Finally, the anisotropic invariants
�I4; . . .;�I9 characterize the constitutive response of the fibers [55]:

�I4 ¼ �C : M ¼ �k2m; �I5 ¼ �C2
: M

�I6 ¼ �C : N ¼ �k2n; �I7 ¼ �C2
: N

�I8 ¼ ½m0 � n0�m0 � �Cn0 �I9 ¼ ½m0 � n0�2:
ð6Þ

Remark While the invariants�I4 and�I6 have a clear physicalmeaning, the square of the
stretch k in the fibers directions, the influence of�I5,�I7 and�I8 is difficult to evaluate due
to the high correlation between them [28]. For this reason and the lack of sufficient
experimental data it is usual not to include these invariants in the definition ofWfor soft
biological tissues. Finally, �I9 does not depend on the deformation.
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The second Piola-Kirchhoff stress tensor is obtained by derivation of (4) with
respect to the right Cauchy-Green tensor [37]. Thus, the stress tensor consists of a
purely volumetric and a purely isochoric contribution, i.e. Svol and �S, so the total
stress is

S ¼ Svol þ �S ¼ 2
@WvolðJÞ

@C
þ 2

@ �Wð�C;M;NÞ
@C

¼ @WvolðJÞ
@J

@J
@C

þ @ �Wð�C;M;NÞ
@ �C

@ �C
@C

� �

¼ JpC�1 þ
X

j¼1;2;4;6

P : 2
@ �W
@�Ij

@�Ij
@ �C

¼ JpC�1 þ P : ~S; ð7Þ

where the second Piola-Kirchhoff stress S consists of a purely volumetric contri-
bution and a purely isochoric one. Moreover, one obtains the following noticeable
relations @CJ ¼ 1

2 JC
�1 and P ¼ @C �C ¼ J�2=3½I� 1

3C� C�1�. P is the fourth-order
projection tensor and I denotes the fourth-order unit tensor, which, in index nota-
tion, has the form IIJKL ¼ 1

2 ½dIKdJL þ dILdJK �. The projection tensor P furnishes the
physically correct deviatoric operator in the Lagrangian description, i.e.

DEV ½�� ¼ �ð Þ � 1=3 �C : �ð Þ� �
�C�1.

Note that it is possible to obtain the Cauchy stress tensor by applying the push-
forward operation to (7) r ¼ J�1v�ðSÞ [37]. Hence:

r ¼ rvol þ �r ¼ p1þ 1
J
dev �F~S�FT

h i
¼ p1þ 1

J
dev½~r� ¼ p1þP : ~r; ð8Þ

where we have introduced the projection tensor P ¼ J�1½I� 1
3 1� 1� which fur-

nishes the physically correct deviatoric operator in the Eulerian description, i.e.
dev½�� ¼ ð�Þ � 1

3 tr½��1.
Based on the kinematic decomposition of the deformation gradient tensor, the

tangent operator, also known as the elasticity tensor when dealing with elastic
constitutive laws, is defined in the reference configuration as

C ¼ 2
@SðC;M;NÞ

@C
¼ Cvol þ �C ¼ 2

@Svol
@C

þ 2
@�S
@C

¼ 4
@2WvolðJÞ
@C� @C

þ @2 �Wð�C;M;NÞ
@C� @C

� �
; ð9Þ

where

Cvol ¼ 2C�1 � p
@J
@C

þ J
@p
@C

þ 2Jp
@C�1

@C

� 	
¼ J~pC�1 � C�1 � 2JIC�1 ; ð10Þ
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with IC�1ð ÞIJKL¼ � C�1 	 C�1� �
IJKL¼ � 1

2 C�1
IK C�1

JL þ C�1
IL C�1

JK

� �
, and ~p ¼ pþ J dp

dJ.

The term �C corresponding to the deviatoric part is given by:

�C ¼ � 4
3
J�

4
3

@ �W

@ �C
� �C�1 þ �C�1 � @ �W

@ �C

� 	
þ 4
3
J�

4
3

@ �W

@ �C
: �C

� 	

� I�C�1 � 1
3
�C�1 � �C�1

� 	
þ J�

4
3 �C�w; ð11Þ

where term �C�w is defined as:

�C�w ¼ 4
@2 �W

@ �C@ �C
� 4
3

@2 �W

@ �C@ �C
: �C

� 	
� �C�1

�
þ�C�1 � @2 �W

@ �C@ �C
: �C

� 	�

þ 4
9

�C :
@2 �W

@ �C@ �C
: �C

� 	
�C�1 � �C�1

: ð12Þ

Note that its spatial counterpart of (9) is obtained from the application of the
push-forward operation to (9) c ¼ J�1v�ðCÞ [8]. Hence:

c ¼ cvol þ �c; ð13Þ

where:

cvol ¼ ð~p1� 1� 2pIÞ: ð14Þ

The deviatoric term, �c, can be obtained using the expression

�c ¼ 2
3
trð~rÞP � 2

3
ð1� devð�rÞ þ devð�rÞ � 1Þ þ �c�w; ð15Þ

where �c�w in (15) is the weighted push forward of �C�w

�c�w ¼P: �c :P : ð16Þ

For a more detailed derivation of the material and spatial elasticity tensors for
fully incompressible or compressible fibered hyperelastic materials and their
explicit expressions, see i.e. [26] or [42].

The assumption that the anisotropic terms only contribute to the global
mechanical response of the tissue when fibers are stretched, that is, �Ii [�Ii0 is related
to the waving of the collagen fibers [39] and represents a very simple framework to
consider this waving. However, from a continuum mechanics point of view, a more
elegant formulation to consider the waving is the dual mechanism constitutive
theory initially proposed for polymeric and elastomeric materials by Tobolsky et al.
[57] and Wineman and Rajagopal [60], respectively, and for biological tissues by
Wulandana and Robertson [61]. The first mechanism is associated to the matrix
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tissue and the second mechanism, associated to the fibers, has a different unloaded
configuration, corresponding to non-zero loading of the original material.

A brief discussion of the kinematics necessary for the dual mechanism consti-
tutive equation is given below. A schematic of relevant reference configurations is
given in Fig. 2. The section of fibred tissue will be represented by a three-dimen-
sional body B which initially, say at time t ¼ t0, is stress free and occupies a region
that will be referred to as the undeformed reference configuration B0. We consider
a typical material particle, X 2 B0, in the body B. Using this notation, the motion of
an arbitrary material particle can be described through the relationship
x ¼ uBðX; tÞ. The deformation gradient F at time t for an arbitrary material particle

relative to the reference configurationB0 is given by FðX; tÞ ¼ FBðX; tÞ :¼ @uBðX;tÞ
@X .

The mechanical response of the first mechanism (matrix) will only be a function of
F. At some critical level of deformation, the second mechanism (fibers) is presumed
to commence load bearing. The contribution of the second mechanism to load
bearing is presumed to be a function of the deformation relative to B0. Let X0

denote the coordinates of the particle that was in position X in B0. If the config-
uration B0 is reached at some time t ¼ t1, then X0 ¼ uB0 ðX; t1Þ. The motion of an
arbitrary material particle may then be described relative to the B0 configuration in
standard form or B0 as x ¼ u0

BðX0; t0Þ with t0 ¼ t � t1. The deformation gradient F0,
relative to the reference configuration B0 is given by F0ðX0; t0Þ ¼
F0

BðX1; t0Þ :¼ @u0
B0 ðX0;t0Þ
@X0 . After operations, we obtain that F0ðX0; t0Þ ¼ FBðX; tÞ�

F�1
B ðX; t1Þ. The fiber activation occurs (second mechanism) when ki ¼ ki0 and both

mechanisms will be active as load bearing components.
By particularization of this framework to fibred soft biological tissues, we have

that the matrix is associated to the first mechanics and collagen fibers with the
second and deform with FðX; tÞ and F0ðX0; t0Þ respectively. In this context, the SEF
presented in (4) is

Fig. 2 Schematic of relevant
reference configurations for
the dual mechanism
constitutive model [40]
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W �CðX; tÞ;M;N
� � ¼ Wiso

�CðX; tÞ� �þWani
�C0ðX0; t0Þ;M;N


 �
¼ l1 �I1ðX; tÞ � 3½ � þ l2 �I2ðX; tÞ � 3½ �
þ c
ag

exp g �I1ðX; tÞ � 3½ �a� �� f ð�I1ðX; tÞ; aÞ
� �

þ
X
i¼4;6

ci�3

bci�2
exp ci�2½�IiðX0; t0Þ � 1�b


 �
� gð�IiðX0; t0Þ; bÞ

h i
;

ð17Þ

where �IiðX0; t0Þ ¼ �k2i ðX0; t0Þ and �kiðX0; t0Þ ¼ �kiðX; tÞ=�kiðX; t1Þ ¼ kiðX; tÞ=�ki0 .
Finally, �ki0 
 1 is regarded as the initial crimping of the fibers. From the next and
for simplicity of the nomenclature, we denote �IiðX; tÞ ¼ �Ii and �IiðX0; t0Þ ¼ �Ii0 , so
�ki0 ¼ �ki=�ki0 and

�W �C1; M; N
� � ¼ l1 �I1 � 3½ � þ l2 �I2 � 3½ � þ c

ag
exp g �I1 � 3½ �a� �� f ð�I1; aÞ
� �

þ
X
i¼4;6

ci�3

bci�2
exp ci�2½�I 0i � 1�b


 �
� gð�I 0i ; bÞ

h i
: ð18Þ

3 Micro-Structurally Based Models: Elastic Behavior

The models proposed for soft tissues could be classified into two groups. The first
comprises the macroscopic models previously presented, in which a SEF is
obtained disregarding the nature of the micro-structural components of the tissue.
Second, a group of micro-structurally based models are presented in this section, in
which the macroscopic mechanical properties are obtained by assuming a consti-
tutive relation for the microscopic components along each direction, whereas the
macroscopic behaviour is obtained by integration of the contributions in all
directions of space.

Gasser et al. [23] proposed the SEF

�WðC;M;NÞ ¼ l½�I1 � 3� þ k1
2k2

½expðk2½j�I1 þ ½1� 3j��I4 � 1�2Þ � 1� ð19Þ

þ k3
2k4

½expðk4½j�I1 þ ½1� 3j��I6 � 1�2Þ � 1�; ð20Þ

where j 2 ½0; 1=3� is a measure of the dispersion of the fibers around the preferred
orientations. This parameter is a result of considering the fibers oriented following
the von Mises orientation density function. Thus, j ¼ 1=3 means isotropy and
j ¼ 0 no fiber dispersion.

26 E. Peña



Anisotropy can straightforwardly introduced in micro-structurally based models
by considering an orientation density function, q, weighting the contribution of the
fibers in space

�W ¼ 3
4p

Z
U2

q �WdA: ð21Þ

First contributions considering this approach are due to Lanir [33], who pro-
posed a structural model for planar tissues assuming that fibers are arranged in
three-dimensional but almost planar wavy array. Thus, collagen fibers were
restricted to a plane in which they were oriented following a Gaussian distribution
around a mean preferred direction. The same assumption was adopted for the elastin
fibers, which were oriented following a different distribution.

More recently, Alastrue et al. [1] proposed a hyperelastic microsphere-based
model with statistically distributed fibers. In that model, it is assumed the existence
of a uniaxial orientation distribution function qðr; aÞ ¼ qð�r; aÞ for r 2 U2 a
referential unit vector and U2 the unit sphere surface. The macroscopic strain
energy density corresponding to one family of fibers associated with the so-called
preferred direction a and with n fibers per unit volume is then defined as

�Wf ¼
Xn
i¼1

qðri; aÞ �Wi
f ; ð22Þ

where ri are referential unit vectors associated with the direction of the ith fiber, and
Wi

f is the fiber’s strain energy according to the deformation in the direction of ri.
When expanding this expression in order to account for N preferred orientations aI
related to different families of fibers one obtains

�Wani ¼
XN
I¼1

�W
I
f ¼

XN
I¼1

hnqI �Wfð�kÞi ¼ 1
4p

Z
U2

nqI �WfdA: ð23Þ

Apart from the symmetry condition qðr; aÞ ¼ qð�r; aÞ it was considered that
fibers are rotationally symmetrically distributed with respect to the preferred mean
orientation a—in other words, qðQ � r; aÞ ¼ qðr; aÞ 8 Q 2 Q3

þ with rotation axis a.
As a consequence of the uniaxial distribution assumed for the one family of fibers
considered, q can be defined as a function of the so-called mismatch angle
x ¼ arccosða � rÞ.

In Alastrue et al. [1], it was adopted the frequently applied p-periodic von Mises
orientation distribution function (ODF)
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qðhÞ ¼ 4

ffiffiffiffiffiffi
b
2p

r
exp b cosð2hÞ þ 1½ �ð Þ

erfið ffiffiffiffiffi
2b

p Þ ; ð24Þ

where the positive concentration parameter b constitutes a measure of the degree of
anisotropy. Moreover, erfiðxÞ ¼ �ierfðxÞ denotes the imaginary error function with
erfðxÞ given by

erfðxÞ ¼
ffiffiffi
2
p

r Zx

0

expð�n2Þdn: ð25Þ

Recently, the ODF Bingham [7] was proposed by Alastrue et al. [5] to account
for the dispersion of the collagen fibrils with respect to their preferential orientation.
That function is expressed as

q r;Að Þ dA
4p

¼ KðAÞ½ ��1 exp rt � A � rð Þ dA
4p

; ð26Þ

where A is a symmetric 3� 3 matrix, dA is the Lebesgue invariant measure on the
unit sphere, r 2 U2 and K Að Þ is a normalizing constant. As its main features, it is
worth noting that this distribution always exhibits antipodal symmetry, but not
rotational symmetry for the general case.

Applying straightforward transformations, Eq. (26) can be rewritten as

qðr; Z;QÞ dA
4p

¼ F000ðZÞ½ ��1etr Z � Qt � r � rt � Qð Þ dA
4p

; ð27Þ

where etr �ð Þ � exp tr �ð Þð Þ, Z is a diagonal matrix with eigenvalues j1;2;3, Q 2 Q3

such that A ¼ Q � Z � QT and F000ðZÞ may be written as

F000 Zð Þ ¼ 4p½ ��1
Z
U2

etr Z � r � rtð ÞdA ¼ 1F1ð12 ;
3
2
; ZÞ; ð28Þ

with 1F1 a confluent hypergeometric function of matrix argument as defined by
Herz [25].

Thus, the probability concentration is controlled by the eigenvalues of Z, which
might be interpreted as concentration parameters. Specifically, the difference
between pairs of j1;2;3—i.e., ½j1 � j2�, ½j1 � j3� and ½j2 � j3�—determines the
shape of the distribution over the surface of the unit sphere, Fig. 3. Therefore, the
value of one of these three parameters may be fixed to a constant value without
reducing the versatility of (27). In fact, setting two of the parameters equal to zero
the Von Mises ODF is obtained and when two parameters come close up, a rota-
tional symmetry is achieved.
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Measurements of 3D organization of the collagen fibers, which are birefringent,
can be made with the universal stage, an attachment to the polarizing microscope.
The calibrated rotational movement, in three dimensions, of the inner stage of the
universal stage permits the measurement of directional alignment of individual
fibers, relative to the reference plane of the section [11, 12, 15, 53]. The experi-
mental data obtained by Garcia [18] was fitted using the ODF Bingham, Table 1.

Once the ODF is fitted by means of microstructural observations [18, 22], it is
necessary to fit the rest of the material constitutive parameters. For the isotropic
component of elastin, we use two different SEF for �Wiso, the classical Neo-Hookean
model

�Wiso ¼ l½�I1 � 3�; ð29Þ

and the Demiray’s SEF [13]

�Wiso ¼ c1
c2

exp
c2
2
½�I1 � 3�


 �
� 1

h i
: ð30Þ

Fig. 3 Representation of the Bingham ODF for different sets of parameters with j1 ¼ 0:0 [5].
a j2 ¼ 0:0;j3 ¼ 5:0: b j2 ¼ 0:0;j3 ¼ 50:0: c j2 ¼ 40:0; j3 ¼ 50:0: d j2 ¼ 49:0;j3 ¼ 50:0:
e j2 ¼ 10:0; j3 ¼ 10:0: f j2 ¼ 50:0;j3 ¼ 49:0
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Finally, phenomenological strain energy density function proposed by Holzapfel
et al. [26] was used to approach the fiber response

n�wi
f ð�kiÞ ¼

k1
2k2

ðek2ðð�kiÞ2�1Þ2 � 1Þ if �ki 
 1 ð31Þ

where �ki ¼ �ti



 


 defines the isochoric stretch in the fiber direction ri and assuming

n�wi
f ð�kiÞ ¼ 0 when �ki

� �
\1, since it is known that collagen fibers only affects to the

global mechanical behavior in tensile states. Basically the parameters l or c1 and c2
corresponding to the mechanical behavior of the isotropic part (Neo-Hookean or
Demiray’s SEF) and k1 and k2 for anisotropic one.

Due to lack of experimental data of the specimens analyzed in this work,
experimental uniaxial tension tests previously developed in our group for porcine
carotids in a proximal and distal regions were fitted [20]. The fitting of the
experimental mechanical data was developed by using a Levenberg-Marquardt type
minimization algorithm [36], by defining the objective function considering an
isochoric tissue, Eq. (32). In this function, rhh and rzz are the Cauchy (true) stress

data obtained from the tests, r ~W
hh and r ~W

zz are the Cauchy stresses for the ith point
computed following Eq. (33), and n is the number of data points.

v2 ¼
Xn
i¼1

rhh � rWhh
� �2

iþ rzz � rWzz
� �2

i

h i
; ð32Þ

where

rWhh ¼ kh
@W
@kh

rWzz ¼ kz
@W
@kz

: ð33Þ

The goodness of the fitting was measured by computing the coefficient of
determination of the normalized mean square root error e was computed for each

fitting e ¼
ffiffiffiffiffi
v2

n�q

q
l . In this equation l the mean value of the measured stresses

l ¼ Rn
i¼1 rð Þi
n , q is the number of parameters of the SEF, so n� q is the number of

degrees of freedom, and l the mean stress already defined above.
Figure 4 illustrates the results of the mean of the proximal and distal specimens

which was fitted based on the isotropic Neo-Hookean or Demiray SEFs. In this

Table 1 Bingham
distribution parameters that
determine the collagen
orientation density in the
porcine wall [18]

Family 1 Family 2

j1 j2 j3 j1 j2 j3
All proximal 9.6 0.0 22.4 18.6 0.0 30.3

All distal 18.6 0.0 30.6 15.5 0.0 28.4
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case, the Neo-Hookean model resulted in an excellent fit for the distal specimen,
showing a e ¼ 0:110. However, it substantially underestimated the proximal results
in the longitudinal curve with a e ¼ 0:145. This shows that although the linear
model of the isotropic part can very well describe the distal, it falls when proximal
data is considered. The nonlinear model for the isotropic part improve the numerical
fitting. It can be seen that the proposed nonlinear model can describe both proximal
and distal data. The fit based on the Demiray SEF for elastin gave smaller nor-
malized mean square root error (e ¼ 0:124 and e ¼ 0:095). The material coeffi-
cients corresponding to the fitting results are shown in the Table 2.

4 Micro-structurally Based Models: Softening and Damage
Behavior

4.1 Probabilistic Damage Model

Histological studies performed in a number of soft tissues [14, 30] have shown that
elastic fibers appear to be wavy and distributed about preferential directions [34].
Thus, as the load is applied, more and more fibers start to bear load. However, the
degree of straightening of each fiber will also depend upon its orientation relative to
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Fig. 4 Stress-stretch curves fitting [18] of the uniaxial tension tests from [20]. a Proximal
specimens. b Distal specimens

Table 2 Structural material coefficients for the both SEF considered [18]

Neo-Hookean SEF Specimen l (kPa) k1 (kPa) k2(−) e

Proximal 46 5.1 1.42 0.145

Distal 40 20 3.2 0.1574

Demiray’ SEF Specimen c1 (kPa) c2(−) k1 (kPa) k2 (−) e

Proximal 7.640 1.250 5.910 1.955 0.095

Distal 14.98 0.830 21.04 2.995 0.124
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the loading and the interstitial matter which might avoid its complete straightening.
A model that consider the wavy nature of elastic fibers was proposed by Rodriguez
et al. [45, 46]. Each bundle of fibers is assumed to behave following the worm-like
eight-chain model proposed by Arruda and Boyce [6]

n �Wfð�kÞ ¼
0 if �k\1
B½2 �r2

L2 þ 1
1��r=L � �r

L

� lnð�k4r20 Þ
4r0L

½4 r0
L þ 1

½1�r0=L�2 � 1� �Wr� if �k� 1

8>><
>>: ; ð34Þ

with B ¼ 1
4 nKHr0=A a stress-like material parameter, L the maximum fiber length,

r0 the fiber length in the undeformed configuration, �r ¼ �kr0\L the actual fiber
length, �k the actual isochoric fiber stretch, and

Wr ¼ 2
r20
L2

þ 1
1� r0=L

� r0
L
; ð35Þ

being a repository constant accounting for a zero strain energy at �k ¼ 1. This model
considers the maximum fiber length, L, as a Beta random variable, and assumes the
same average orientation for all fibers within the bundle as well as that fibers do not
bear compressive loads. Hence, the strain energy density function for a bundle of
fibers is given by

�Wbunð�k; �kt� Þ ¼
0; �k\1;R�k
1

Ri
aðr0�kt� Þ

�W0
f n; xð Þ‘LðxÞdxdn; �k
 1;

8><
>: ð36Þ

where aðr0�kt� Þ is a monotonically increasing function that determines the minimal
fiber length within the bundle for which failure has not yet occurred,1

W0
f ¼ n@Wf=@�k, and ‘LðxÞ is a Beta probability density function with parameters c

and g

‘LðxÞ ¼ 1
i� r0

Cðgþ cÞ
CðgÞCðcÞ

x� r0
i� r0

� �c�1

1� x� r0
i� r0

� �g�1

; x 2 ½r0; i�: ð37Þ

The parameter �kt� in (36) corresponds to the maximum isochoric fiber stretch
attained by the bundle over the past history up to time t 2 Tþ. Therefore, the
damage of the fiber bundle increases whenever �kt � �kt� 
 0 and, therefore, it is
strain driven. On the other hand, function aðr0�kt� Þ determines the minimum fiber
length within the bundle for which failure has not yet occurred, and is given by

1 Notice that x is a dummy variable used for integration purposes.
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aðr0�kt� Þ ¼ exp
r0�kt�

d

� �-� 	
r0�kt� ; ð38Þ

where - and d are dimensionless model parameters. Note that with this form of
aðr0�kt� Þ, the bundle will degrade faster as the deformation gets larger (i.e., longer
fiber will fail at a smaller fraction of their maximum length).

With these considerations at hand, fiber damage is quantified as

Df ¼ 1
i� r0

C gþ cð Þ
C gð Þ þ C cð Þ

Za r0�ktð Þ

r0

x� r0
i� r0

� �c�1

1� x� r0
i� r0

� �g�1

dx

¼ Beta
aðr0�ktÞ
i� r0

; c; g

� 	
:

ð39Þ

Rodriguez et al. [45] used the damage model to study the balloon inflation of a
coronary artery 40 mm long, with an inner diameter of 2.7 mm and a thickness of
1.8 mm. The artery has been simulated as a multi-layer composite material by
considering the media, and adventitia layers and included the residual stresses.
Figure 5 shows the damage distributions in the arterial wall under balloon inflation.
The balloon induces large longitudinal and circumferential stretching in the artery
which causes larger fiber deformation in the adventitia than in the media leading to
larger stresses and more rapid damage of this layer.

Fig. 5 Damage distribution in the arterial wall under balloon inflation from [45]
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4.2 Deterministic Damage Model

If an uniaxial tension is developed six distinct stages A-H should be considered,
Fig. 6—for clarity only one family of fibers is considered when furnished with
matrix (light grey background) and fibers (wavy dark solid lines)—. Stage A is
defined by k ¼ 1. After that, stage B, the uniaxial loading is small and the collagen
fibers to become less wavy without contributing significantly to load bearing—only
first mechanism— k\koð Þ. When k
 ko, the tissue has been loaded just to the level
where the fibers have straightened and will resist further extension—both mecha-
nism are bearing load (stage C). If the strip offibred tissue is unloaded, the fibers had
not returned to the original unstrained wave pattern but remained in a straightened
state—this fact means that the reference configuration for the second mechanism has
changed k�o

� �
—a softened behavior until free-stress state (stage D)—. Subsequent

reloading follows the former unloading curve until the previous maximum stretch is
reached. However, during stage E the fibers are less wavy, so critical level of
deformation for the second mechanism to start load bearing has also change and this
stage D is characterized by k\k�o. When k
 k�o fibers again resist further extension,
however if loading level kmin is reached some fibers are disrupted, stage G, with
partial collagen disruption. Upon further loading, only some fibers will resist stretch
until k ¼ kmax where bond rupture and complete damage is produced (stage H).

(a) (b) (c)

(d) (e) (f)

(g)

(h)

Fig. 6 Schematic representation of stages of tissue deformation. a Initial unloaded tissue. b Only
matrix load bearing Iio ¼ k2o

� �
: c Fibers load bearing. d Initial state after unloading. e Only matrix

load bearing after unloading wiki ¼ k�o
� �

: f Fibers load bearing after unloading. g Partial disruption
of fibers. h Total disruption of the fibers, [40]
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The experimental results suggest that just like the elastic properties, the inelastic
behavior of soft tissues is also characterized by anisotropy [3, 41, 43, 44]. Accord-
ingly, a suitable constitutive model should account for this directional dependence
and take into account the different alteration mechanisms associated with this
anisotropy. The phenomenological inelastic model should include the Mullins effect,
the permanent set resulting from the residual strains after unloading, and the fibre and
matrix disruption associated to supraphysiological loads or strains [9].

To model these inelastic processes, we apply the following considerations:

• We have introduced the �ki0ði ¼ 4; 6Þ parameter that governs the anisotropic
contribution to the global mechanical response of the tissue only when stretched,
that is, �k0i ¼ �ki=�ki0 
 1. We modified this parameter by a weight factor wi

associated to �ki0 that changes independently from each direction to take into
account structural alterations along the fibers direction, that is, k�o ¼ wi � �ki0 .
With this modification, we can reproduce at the same time the softening
behavior and the permanent set presented in this kind of tissue.

• The preconditioning until “saturated’’ state is modelled using a continuous
damage model that accumulates within the whole strain history of the defor-
mation process by a weight factor Drk ðk ¼ m; 4; 6Þ associated to the matrix (�I1
and �I2) and the fibers �Iið Þ [44].

• Finally, the softening as a result of the bond rupture and complete damage is
accomplished by using the classical Continuum Damage Mechanics (CDM)
theory using the well-known reduction factors [50], Dsk ðk ¼ m; 4; 6Þ, associated
to the matrix (�I1 and �I2) and the fibers Iið Þ [10].
With these considerations, the free energy for the fibers is assumed to be of the

form

�Wanihnq�wfðkÞi ¼ ½1� D� 1
4p

Z
U2

nq�w0ðk
iÞdA



XN
j¼1

1� Dj
� � Xm

i¼1

nqiw
i�wi

j;0ðk
iÞ

" # ð40Þ

with Dj ¼ Da
j þ Db

j the normalized scalars referred to as the damage, Da
j : Rþ !

Rþ and Db
j : Rþ ! Rþ are monotonically increasing smooth functions with the

following properties Da
j ð0Þ ¼ 0, Db

j ð0Þ ¼ 0 and Da
j þ Db

j 2 ½0; 1� and �w0ðk
jÞ the

effective strain energy density functions of each j family of fibers.
The second law of thermodynamics asserts a non-negative rate of entropy pro-

duction. Using standard arguments based on the Clausius-Duhem inequality [37]
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Dint ¼ � _Wþ 1
2
S : _C
 0 ð41Þ

yields

Dint ¼ �
XN
j¼1

@�wj;0

@Da
j

_Da
j þ

@�wj;0

Db
j

_Db
j þ

@�wj;0

@wj
_wj

" #

 0 ð42Þ

where the thermodynamic forces are

f aj ¼ � @�wj;0ð�kiÞ
Da

j
¼ �wj;0ð�kiÞ f bj ¼ � @�wj;0ð�kiÞ

Db
j

¼ �wj;0ð�kiÞ

fwj ¼ � @�wj;0ð�kiÞ
@wj

¼ @�wj;0ð�kiÞ
ð43Þ

The thermodynamic forces fa, fb and fwj are conjugated to the internal variables
Da

j , D
b
j and wj respectively.

4.2.1 Evolution of the Internal Variables

Continuous damage variables Da
j


 �
The continuous damage Da

j is assumed that accumulate within the whole strain
history of the deformation process which is also governed by the local effective
strain energy and have the form

Da
j ¼ d j

1 1� exp � a
fj

� 	� �

where

a¼:
Z t

0

j_fjðsÞjds _rj ¼ j_fjj ¼ signð _�W0

j;0Þ ð44Þ

with the initial condition að0Þ ¼ 0. Finally, fj is the damage saturation parameters
and the parameters d j

1 describe the maximum possible continuous damage, thus we
have the constraint d j

1 2 ½0; 1� [44].
Discontinuous damage variables Db

j


 �
We define a damage criterion in the strain space by the condition that, at any

time t of the loading process, the following expression is fulfilled [49]
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UjðkðsÞ;N�
s;jÞ ¼ Nj � N�

j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�wj;0ðk

iðsÞÞ
q

� N�
j � 0; ð45Þ

where N�
j ¼ maxseð�1;t�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�wj;0ðk

iðsÞÞ
q� 	

signifies damage threshold (energy bar-

rier) at current time t (i.e. the radius of the damage surface). If Uj\0, no damage
occurs while Uj ¼ 0 defines the damage surface. Note that Uj [ 0 is an impossible
situation. Update of this surface is needed when the free energy density of a
material point or fiber goes up over N�

j

N�
j ¼

_f bj ¼ _�wj;0ð�kiÞ if Uj ¼ 0 and _f bj [ 0
0 otherwise

�
ð46Þ

The last equation needed for a complete definition of the model is the irreversible
rate of the damage variable Db

i

dDb
j

dt
¼ hj Nj

� �
_Nj if Uj ¼ 0 and _f bj [ 0

0 otherwise

�
ð47Þ

where hj Nj
� � ¼ dDb

j =dNj are the functions that characterize the damage evolution
in the material.

Following previous work [38], we consider the discontinuous damage evolution
equation

Db
j ¼ 1

1þ expð�-j½Nj � cj�Þ
; ð48Þ

where the parameter -j controls the slope and cj defines the value N such that

Db
j ¼ 0:5.

Softening variables wj
� �

For the softening variables wj, we consider the following criteria

� jðCðtÞ;CjtÞ ¼
@wj;0ðk

iÞ
@k

i � Cjt ¼ Cj � Cjt � 0 ð49Þ

where Cj ¼ @wj;0ðk
iÞ

@k
i is the softening stress release rate at time t 2 Rþ and Cjt sig-

nifies the softening threshold (stress barrier) at current time t for matrix and fibers

Cjt ¼ max
sr2ð�1;tÞ

@wj;0 k
i


 �
@k

i ð50Þ
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The equation � jðCðtÞ;CjtÞ ¼ 0 defines a softening surface in the strain space.
With these means at hand, we finally propose the following set of rate equations for
an evolution of the softening variables

_wj ¼: jj _Cjt if � ¼ 0 and Nj : _C[ 0
0 otherwise

�
ð51Þ

Let us now consider softening functions of the simple form

wj ¼ jjCjt þ 1 ð52Þ

where jj is the only parameter to define the softening mechanism in each fiber
direction.

4.2.2 Computational Aspects

If the material state is known at a time tn and the deformation is known at a time
tnþ1 ¼ tn þ Dt, we may write [32]

Snþ1 ¼ Jnþ1pnþ1C�1
nþ1 þ J

�2
3

nþ1

X
k¼m;f1;f2

1� Djnþ1

� �
�S0ðjÞnþ1; ð53Þ

where the subscripts n and nþ 1 denote quantities evaluated at times tn and tnþ1.
The iterative Newton procedure to solve a nonlinear finite element problem

requires the determination of the consistent tangent material operator. This can be
derived analytically for the given material Eq. (53). The symmetric algorithmic
material tensor is expressed as [49, 51]

Cnþ1 ¼ 2
@Snþ1ðCnþ1;M;N;DðjÞnþ1;wðjÞnþ1Þ

@Cnþ1
¼ Cvolnþ1 þ �Cnþ1

¼ 4
@2Wvolnþ1ðJnþ1Þ
@Cnþ1 � @Cnþ1

þ @2 �Wnþ1ð�Cnþ1;M;N;DðjÞnþ1;wðjÞnþ1Þ
@Cnþ1 � @Cnþ1

� �

¼ Cvolnþ1 þ
X

j¼m;f1;f2

½1� DðjÞnþ1��C0
ðjÞnþ1 � �SðjÞnþ1

h i
ð54Þ

where

�SðjÞnþ1 ¼
D0a

ðjÞnþ1 þ D0b
ðjÞnþ1 signð_fðjÞnþ1Þ

h i
�SðjÞnþ1 � �SðjÞnþ1� if / ¼ 0

�4J�
2
3
jj
Ij0
~Cj

@2 �Wnþ1

@�I 0 jnþ12
~M� ~M and NðjÞnþ1 : _Cnþ1 [ 0

D0b
ðjÞnþ1signð_fðjÞnþ1Þ�SðjÞnþ1 � �SðjÞnþ1 otherwise

8>>><
>>>:

ð55Þ
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where ~M ¼ P : M. Note that the present formulation results in a symmetric algo-
rithmic tangent modulus Eq. (54) with a low computational cost [49].

Following plasticity nomenclature, further examination of Eqs. (45–49) results
in the observation that if Uj\0 or Kj\0, then no damage or softening evolution
takes place with respect to the jth damage or softening surface. Algorithmically, this
motivates the notation of a “trial’’ elastic predictor state defined by _rjt ¼ 0 for all k
or _Cjt ¼ 0 for all j [24]. The trial stress is given by

rtrial
nþ1 ¼ pnþ11þ

X
j¼m;f1;f2

1� Djn

� �
�r0ðjÞnþ1 ð56Þ

the trial damage is given by

Da trial
jnþ1

¼ Da
jn and wtrial

jnþ1
¼ wjn ð57Þ

and the symmetric algorithmic material tensor

Ctrial
nþ1 ¼ C0

vol nþ1 þ
X

j¼m;f1;f2

1� Djn

� �
C0

ðjÞnþ1 ð58Þ

A predictor-corrector type algorithmic can now be defined as follows:

1. For each j check whether Ujnþ1 � 0. If so, then assume the surface is inactive, so
Da

ðjÞnþ1 ¼ Da trial
ðjÞnþ1.

2. If Ujnþ1 [ 0, then assume that the surface is active and update Da
ðjÞnþ1 using

Eq. (48).
3. For each j check whether KðjÞnþ1 � 0. If so, then assume the surface is inactive,

so wjnþ1 ¼ wtrial
jnþ1

.
4. If KðjÞnþ1 [ 0, then assume that the surface is active and update wj using

Eq. (52).

To update softening and damage variables, we summarize the computational

algorithm for the case of Cinþ1 ¼ @WichðiÞnþ1

@�I 0 i
and explicit actualization of winþ1 in

Table 3.
In this example, we compare the model here presented with experimental stress-

stretch data from uniaxial cyclic loading tests on vein tissue [3]. These experiments
were developed in our laboratory in order to study the properties of ovine vena cava
tissue. Two families of fibers oriented in circumferential (collagen) and longitudinal
(elastin) directions were considered. The material is treated as incompressible
C ¼ �C
� �

, with the matrix modelled using the following strain energy
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�W �C;M;N;Dj;wj
� � ¼ l½1� Dm� �I1 � 3½ � þ ½1� Df4 �

k1
2k2

exp k2 �I 04 � 1½ �2

 �

� 1
h i

þ ½1� Df6 �
k3
2k4

exp k4 �I 06 � 1½ �2

 �

� 1
h i

: ð59Þ

Table 3 Algorithmic procedure and explicit actualization of damage and softening variables

1. Database at each Gaussian point Dskn , Ξ(kt )n, Drkn , Ψ̄0
(k)n, win , Γitn

2. Compute the initial elastic stress tensors (σ 0
(k)n+1) and the initial elastic modulus (c0n+1)

3. Compute the current equivalent measures

Ξkn+1 = 2Ψ̄0
(k)n+1 and Γin+1 =

∂Ψ̄(i)n+1
∂ Ī i

4. Check the discontinuous damage criterion

Φkn+1 (C̄n+1,Ξ(kt )n) = 2Ψ̄0
(k)n+1 −Ξ(kt )n = Ξkn+1 −Ξ(kt )n > 0

YES: update discontinuous damage internal variables

Dskn+1 = 1
1+exp(−αk [Ξkn+1

−γk ])

S̄
sk
(k)n+1 = Dskn+1

S̄0(k)n+1 ⊗ S̄0(k)n+1

Ξ(kt )n+1 = Ξkn+1

NO: no additional damage Dskn+1 = Dskn and S̄
sk
(k)n+1 = 0.

5. Update continuous damage internal variables
rkn+1 = rkn + |Ψ̄0

(k)n+1 − Ψ̄0
(k)n|.

Drkn+1 = d
rk∞ 1− exp − rkn+1

ζk

S̄
rk
(k)n+1 = D(rk)n+1sign( ḟ(k)n+1)S̄0(k)n+1 ⊗ S̄0(k)n+1

6. Check the softening criterion

Λi(C(t),Γit ) =
∂ Ψ̄(i)
∂ Ī i

(C̄(t),M,N)−Γit = Γi −Γit ≤ 0

YES: update softening internal variables

win+1 = κi
Ii0

Γin+1 +1

S̄
wi
(i)n+1 = −4J− 2

3
κi
Ii0

Γ̃i
∂2Ψ̄n+1
∂ Ī in+12

M̃⊗M̃

Γitn+1 = Γin+1

NO: no additional damage win+1 = win and S̄
wi
(i)n+1 = 0.

7. Compute the Cauchy stress tensor

pn+1 =
dΨvol (Jn+1)

dJ |n+1

σ n+1 = pn+11+∑k=m, f1 , f2
[1−Dkn+1 ]dev(σ

0
(k)n+1)

8. Compute the extra term of the elastic modulus

S̄(k,i)n+1 = S̄
sk
(k)n+1+ S̄

rk
(k)n+1+ S̄

wi
(i)n+1

9. Compute the elastic modulus

cn+1 = c0voln+1+∑k=m, f1 , f2
[1−Dkn+1 ]c̄

0
(k)n+1 − s̄(k)n+1 with s̄(k)n+1 = J−1χ∗(S̄(k)n+1)
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Both pairs of curves—circumferential and longitudinal direction tests for Indi-
viduals I and II—were fitted using the representative set of uniaxial data in both
axial and circumferential directions with the optimization procedure previously
described. The optimized parameters obtained are included in Table 4 and exper-
imental and numerical results for loading and unloading are shown in Fig. 7.

The purpose of this simulation was to present a numerical example of arterial
angioplasty with relevance to modeling vascular tissue to demonstrate the capa-
bilities of the model. The model consists of a 10 (mm) length phantom with an
external diameter of De ¼ 5 (mm) and an internal diameter of Di ¼ 3:7 (mm)
corresponding to coronary arteries. Only one layer was considered since no
experimental data were available for the separates layers and the material param-
eters are presented in Table 5. The load steps were applied sequentially as follows:
(i) Imposition of an initial deformation gradient [4], (ii) Application of an internal
pressure of 13.3 (kPa) in the vessel assuming this as the average physiological
hemodynamic pressure and (iii) Imposition of pressure to the internal face of the
balloon [47] (Fig. 8).
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Fig. 7 Experimental and numerical simulation of loading and unloading curves at different load
limits in cava tissue [40]. a Individual I. b Individual II

Table 5 Elastic and damage parameters for the uniaxial test from [47]

l (kPa) k1 (kPa) k2 (−) b (−) - (−) c (kPa) a (deg)

1.051 286.36 1.40 10.62 0.41 20.10 47.77

l, k1 and c are in MPa, and other parameters are dimensionless
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5 Conclusions

It is well known that vascular tissues are subject to finite deformations and that their
mechanical behavior is highly nonlinear, anisotropic and essentially incompressible
with non-zero residual stress and in the non-physiological domain presents viscous
and damage behavior and there is significant dispersion in the orientation, which
has a significant influence on the mechanical response. The high complexity of
biological tissues requires mechanical models that include information of the
underlying constituents and look for the physics of the whole processes within the
material. This behavior of the micro-constituents can be taken into macroscopic
models by means of computational homogenization. It is in this context where the
microsphere-based approach acquires high relevance.

In this chapter, we have provided a critical review of the fundamental aspects in
modeling this kind of the materials. The application of these constitutive rela-
tionships in the context of vascular system has been presented. The increasing effort
devoted to studies of mechanical models for soft fibred tissues and the applications
aimed at refining basic and clinical analysis demonstrates the vitality of the field of
biomechanics [29]. With this approach, a more realistic response of the inelastic
evolution is expected due to a smoother transition of the damage in the micro scale.
We have limited ourself to an affine model, without taking into account the existing
cross-links between fibrils nor the sliding between fibers and matrix [48]. Models
presented herein are based on purely passive baseline elasticity. Smooth muscle
cells display an important active response, the myogenic tone, which allows the
arterial wall to contract or expand acutely to maintain a baseline lumen.

Computational models can help to understand the underlying mechanochemical
processes and provide a framework for biological and clinical researchers to jointly
enhance the pharmagolocial or surgical management.

Fig. 8 Stress and average damage at the end of the analysis [47]. a Maximal principal Cauchy
stress map. b Average damage map
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