Chapter 2
Literature Review

2.1 Theories for Nonlinear Multicomponent Liquid
Chromatography

Many researchers have contributed to LC modeling. There exist a dozen or more
theories with different complexities. A comprehensive review on the dynamics and
mathematical modeling of isothermal adsorption and chromatography was given by
Ruthven [1] who classified models into three general categories: equilibrium
theory, plate models, and rate models.

2.1.1 Equilibrium Theory

According to Ruthven, the equilibrium theory of multicomponent isothermal
adsorption was first developed by Glueckauf [2]. The interference theory by
Helfferich and Klein [3] that is mainly aimed at stoichiometric ion-exchange
systems with constant separation factors and the mathematically parallel treatise
for systems with multicomponent Langmuir isotherms by Rhee and coworkers [4,5]
are both extensions of the equilibrium theory.

Equilibrium theory assumes a direct local equilibrium between the mobile phase
and the stationary phase, neglecting axial dispersion and mass transfer resistances.
It effectively predicts experimental retention times for chromatographic columns
with fast mass transfer rates (e.g., high resolution columns). It provides general
locations, or retention times of elution peaks, but it fails to describe peak shapes
accurately if mass transfer effects are significant. Equilibrium theory has been used
for the study of multicomponent interference effects [3] and the ideal displacement
development in LC [5]. Many practical applications have been reported [3,6—10].

© Springer International Publishing Switzerland 2015 7
T. Gu, Mathematical Modeling and Scale-Up of Liquid Chromatography,
DOI 10.1007/978-3-319-16145-7_2



8 2 Literature Review

2.1.2 Plate Models

Generally speaking, there are two kinds of plate models. One is directly analogous
to the tanks in series model for nonideal flow systems [1]. In such a model, the
column is divided into a series of small artificial cells, each with complete mixing.
This gives a set of first-order ordinary differential equations (ODEs) that describes
the adsorption and interfacial mass transfer between the bulk fluid phase and the
particle phase. Many researchers have contributed to this kind of plate model [1,11—
13]. However, plate models of this kind generally are not suitable for
multicomponent LC since the equilibrium stages may not be assumed equal for
different components. Thus, plate models are limited to single-component LC
modeling.

The other kind of plate model is formulated based on distribution factors that
determine the equilibrium of each component in each artificial stage. The model
solution involves recursive iterations, rather than solving ODE systems. The most
popular ones are the Craig distribution models. By considering the so-called
blockage effect, the Craig models are applicable to multicomponent systems.
Descriptions of Craig models were given by Eble et al. [14], Seshadri and Deming
[15], and Solms et al. [16]. The Craig models have been used for the study of
column-overload problems [14,17]. Velayudhan and Ladisch [18] used a Craig
model with a corrected plate count to simulate elution and frontal adsorption.

2.1.3 Rate Models

Rate models refer to models containing a rate expression, or rate equation, which
describes the interfacial mass transfer between the mobile phase and the stationary
phase. A rate model usually consists of two sets of differential mass balance
equations, one for the bulk-fluid phase and the other for the particle phase. Different
rate models have varying complexities [1].

2.1.3.1 Rate Expressions

The solid film resistance hypothesis was first proposed by Glueckauf and Coates
[19]. It assumes a linear driving force between the equilibrium concentrations in the
stationary phase (determined from the isotherm) and the average fictitious concen-
trations in the stationary phase. This simple rate expression has been used by many
researchers [1,20-22] because of its simplicity, but this model cannot describe mass
transfer details in the particle phase, which are important for larger particles used in
preparative- and large-scale LC.

The fluid film mass transfer mechanism with a linear driving force is also widely
used [1]. The driving force is the concentration difference of a component between
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that on the surface of a particle and that in the surrounding bulk fluid. It is assumed
that there is a stagnant fluid film between the particle surface and the bulk fluid. The
fluid film exerts a mass transfer resistance between the bulk fluid phase and the
particle phase, often called the external mass transfer resistance. If the concentra-
tion gradient inside the particle phase is ignored, the LC model then becomes a
lumped particle model, which has been used by some researchers [23-25]. If the
mass transfer Biot number, which reflects the ratio of the characteristic rate of film
mass transfer to that of intraparticle diffusion, is much greater than unity, the
external film mass transfer resistance can be neglected with respect to intraparticle
diffusion. This is usually the case in LC operations using porous beads.

In some cases, both external mass transfer and intraparticle diffusion must be
considered. A local equilibrium is often assumed between the concentration in the
stagnant fluid phase inside macropores and the solid phase of the particle. Such a
rate mechanism is adequate to describe the adsorption and mass transfer between
the bulk-fluid and particle phases, and inside the particle phase in most chromato-
graphic processes. The local equilibrium assumption here is different from that
made for the equilibrium theory. The equilibrium theory assumes a direct equilib-
rium of concentrations in the solid and the liquid phases without any mass transfer
resistance.

If the adsorption and desorption rates are not sufficiently high, the local equi-
librium assumption is no longer valid. A kinetic model must be used. Some kinetic
models were reviewed by Ruthven [1] and Lee [26]. Second-order kinetics has been
widely used in kinetic models for affinity chromatography because affinity binding
and dissociation reactions often suffer from slow kinetics. Thus, the reactions may
not be assumed to be at equilibrium for accurate modeling [27-34].

2.1.3.2 Governing Equation for the Bulk-Fluid Phase

The governing partial differential equation (PDE) for the bulk-fluid phase can be
easily obtained from a differential mass balance of the bulk-fluid phase for each
component. Axial dispersion, convection, transient, and the interfacial flux terms
are usually included. Such equations themselves are generally linear if physical
parameters are not concentration dependent. They become nonlinear when coupled
with a rate expression involving nonlinear isotherms or second-order kinetics.

For some rate models, such as models for isothermal, single-component systems
with linear isotherms, analytical solutions may be obtained using the Laplace
transform [1]. For more complex systems, especially those involving nonlinear
isotherms, analytical solutions cannot be derived. Numerical methods must be used
to obtain solutions to complex rate models that consider various forms of mass
transfer mechanisms with nonlinear isotherms. Detailed rate models are becoming
increasingly popular, especially in the study of preparative- and large-scale
LC. With today’s fast personal computers, there is no need to simplify a model to
make it solvable. Simplified models often have mass transfer parameters that are
nonstandard, which means they lack existing correlations for their estimation.
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In this book, all the numerical solved LC models are full-blown mass transfer
models as discussed below. This makes their mass transfer parameters fully com-
patible with classical transport phenomena theories for mass transfer in the chem-
ical engineering literature.

2.1.3.3 General Multicomponent Rate Models

A rate model that considers axial dispersion, external mass transfer, intraparticle
diffusion, and nonlinear isotherms is called a general multicomponent rate model.
Such a model is adequate in most cases to describe the adsorption and mass transfer
processes in multicomponent chromatography. In some cases, surface adsorption,
size exclusion, and adsorption kinetics may have to be included to give an adequate
description of a particular system. Although particle sizes and shapes used in an LC
column are usually not uniform, except in some rare cases with uniform spherical
silica beads, an average particle diameter can be used for modeling. Some
researchers have used models with a particle size distribution term [35], but this
treatment makes parameter estimation for mass transfer coefficients overly com-
plicated since mass transfer correlations usually use a single particle diameter
value. In the particle phase, pore diffusion and surface diffusion mechanisms can
both be modeled. However, surface diffusion coefficient is usually not available
[36]. An “effective” diffusivity is more conveniently used to cover both mecha-
nisms without involving the specifics, although such diffusivity may be concentra-
tion dependent [36]. Parameter sensitivity analysis can always be carried out
through computer simulation. It is possible that changes in some mass transfer
parameters do not cause significant deviations in simulated effluent profiles because
other parameters such as isotherm parameters, bed voidage, and particle porosity
are far more sensitive, or the mass transfer parameters are already in the insensitive
region to start with.

2.1.3.4 Numerical Solutions

A general multicomponent rate model consists of a coupled PDE system with two
sets of mass balance equations, one for the bulk-fluid phase and one for the particle
phase for each component. Several groups of researchers have used different
numerical procedures to solve various general multicomponent rate models
[37—40]. The finite difference method is a simple numerical procedure that can be
directly applied to the discretization of the bulk-fluid phase PDE and the particle
phase PDE [39,41]. To achieve a stable solution with a good accuracy, a huge
number of discretization points are needed for a relatively stiff case. This is
computational demanding. Its efficiency and accuracy are not competitive com-
pared with other more advanced numerical methods, such as orthogonal collocation
(OC), finite element (FE), or orthogonal collocation on finite element (OCFE)
methods. To write an LC simulator for a specific project, simplicity may be a



2.1 Theories for Nonlinear Multicomponent Liquid Chromatography 11

major concern. Computation time is less important. However, if one wants to create
LC software for broad applications with repeated simulation runs that may cover
very stiff systems, an efficient numerical method is critical. This is why commercial
software such as those for computational fluid dynamics use finite element and
finite difference is never an option.

For the particle phase-governing equation, the OC method is the obvious choice.
It is a very accurate, efficient, and relatively simple method for the discretization of
a particle. It has been widely used with success for many particle problems
[42,43]. The formulation of the OC method for particles is readily available in
Finlayson’s book [43].

Unfortunately, concentration gradients in the bulk-fluid phase can be very stiff;
thus the OC method is no longer a desirable choice since global splines using high-
order polynomials are computationally very expensive [43] and sometimes not
stable. The method of OCFE uses linear finite elements for global splines and
collocation points inside each element. No numerical integration for element
matrices is needed because of the use of linear elements. This discretization method
can be used for systems with stiff gradients [43].

The FE method with higher order of interpolation functions (typically quadratic
or occasionally cubic) is a very powerful method for stiff systems. Its highly
streamlined structure provides unsurpassed convenience and versatility. This
method is especially useful for systems with variable physical parameters, as in
radial flow chromatography and nonisothermal adsorption with or without chemical
reactions. Chromatography of some biopolymers also involves a variable axial
dispersion coefficient [44]. The FE method is used throughout this book for the
discretization of the bulk-fluid phase PDE.

2.1.3.5 Solution to the ODE System

If the FE method is used for the discretization of the bulk-fluid phase PDE and the
OC method for the particle phase equations, an ODE system is produced from the
LC model equations. The ODE system with initial values can be readily solved
using an ODE solver such as subroutine “IVPAG” of the commercial IMSL
software package [45], which uses the Gear’s stiff method [40]. Another choice is
the public domain Variable coefficient ODE (VODE) solver [46] freely available
for download from http://computation.linl.gov/casc/software.php. Because the
ODE system is solved as an initial value problem, there is no need to treat the
isotherm equations as algebraic equations with unknowns that have to be coupled
with the ODEs to create an equation system coupling both ODEs and algebraic
equations. That approach would require an ODE-algebraic equation solver that is
less efficient than the more commonplace ODE solvers. The author initially used
IVPAG, but later successfully switched to VODE to avoid the use of a commercial
software package.
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2.2 Scale-Up in Liquid Chromatography

Currently, LC scale-up is carried out largely based on trial-and-error and experi-
ence, with the help of some general scale-up rules that are not necessarily accurate
[47]. Some of these rules were discussed by Snyder and Kirkland [48], Ladisch
[47], and others [1,45,49]. They are mostly empirical or semiempirical relationships
about particle size, flow rate, column length, and resolution. The correlations are
more of a “rule of thumb” nature when they are used for scale-up. Knox and Pyper
[50] did an extensive study on column overload. Some of their results on concen-
tration and volume overload are also helpful in the scale-up of LC. There are many
papers in this area.

Instead of following these scale-up rules, a rate model can be used to simulate
chromatograms of a larger column a priori, i.e., before it is built or purchased. The
model uses only few experimental data from a small column with the same packing
as a large column. This step is necessary unless packaging structure data such as
bed voidage and particles porosity, as well as isotherm parameters, are already
available. Although rate models hold great potentials in more accurate scale-up of
liquid chromatography, most papers in the literature have been on the investigation
of LC behaviors and simulation of smaller columns to match experimental chro-
matograms. This book attempts to describe parameter estimation methods and
modeling steps that lead to a priori predictions of the performances of larger LC
columns based on some experimental work [51-53]. It is hoped that more and more
chromatographers will come to realize that it is actually not that difficult to use the
software for various LC models in this work for scale-up of LC after digesting the
examples in this book. There is no need for them to get involved in the details of the
numerical methods since the models have already been solved. However, an
understanding of the effects of isotherm parameters and mass transfer-related
parameters is essential.
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