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Abstract. One popular approach for human action recognition is to
extract features from videos as representations, subsequently followed by
a classification procedure of the representations. In this paper, we inves-
tigate and compare hand-crafted and random feature representation for
human action recognition on YouTube dataset. The former is built on
3D HoG/HoF and SIFT descriptors while the latter bases on random
projection. Three encoding methods: Bag of Feature(BoF), Sparse Cod-
ing(SC) and VLAD are adopted. Spatial temporal pyramid and a two-
layer SVM classifier are employed for classification. Our experiments
demonstrate that: 1) Sparse Coding is confirmed to outperform Bag
of Feature; 2) Using a model of hybrid features incorporating frame-
static can significantly improve the overall recognition accuracy; 3) The
frame-static features works surprisingly better than motion features only;
4) Compared with the success of hand-crafted feature representation, the
random feature representation does not perform well in this dataset.

Keywords: Action recognition - Hand-crafted feature - Random repre-
sentation

1 Introduction

Recognizing human action is a significant branch of computer vision and attract-
ing increasing attentions due to its widely applications like crime monitoring
and human-computer interaction. Generally, the recognition task can be simply
viewed as a combination of two subtasks: extract features as representations from
video frame sequence, and subsequent classification of the video representations.
Among the two subtasks, one key point is to built such a feature representation
which contains the main structure of an action and robust to background clutter-
ing, illumination and scale changes etc. Substantial approaches of exploring the
feature representation have been proposed and proven successful in action recog-
nition, such as 3D HoG [8], HoG/HoF [10], extended SURF [19]. These feature
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representations are all hand-crafted and need to be computed by a specific math-
ematical manner. Recently, random feature representation has been popular in
texture recognition [15], face recognition [20], and medical image analysis [13].
However, little work has been reported on applying the random feature represen-
tation into video based action recognition. Therefore, in this paper, we evaluate
and compare these two different feature representations for action recognition
task. We have three main contributions: (1) a comparative study of different com-
binations of existing schemes for video action recognition based on hand-crafted
feature representation and report the best combination whose performance is
competitive to one of the state-of-art techniques on the same dataset; (2) Inves-
tigate the popular random feature representation to see whether it is a feasible
approach for video based human action recognition; (3) Investigate the role of
frame-static features and motion features for action recognition on the popular
YouTube dataset.

The rest of this paper is organized as follow: Section 2 reviews relevant liter-
ature of approaches for action recognition; Section 3 describes each component
of designed algorithm in details; Section 4 indicates the implementations and
experiment results; Conclusions and future work are given in Section 5.

2 Related Work

The approach for action representations can be generally divided into two cat-
egories: global representations and local representations. For the former, the
human body is first located in the image. Then the person referred as inter-
est of region (ROI) would be encode as a whole. Local representation is a more
popular approach which describes the observation as a collection of local descrip-
tors or patches. Dolldr et al.[5] extract a cuboid by 3D Gabor filter and then
concatenated the gradients for each pixel in the cuboid to form the descrip-
tors. Laptev et al.[10] introduced the HoG/HoF descriptors which compute his-
tograms of both spatial gradient and optic flow accumulated in neighbourhood
regions around the interest points. Klaser et al.[8] extend HoG to 3D and build
the 3D HoG descriptor. It is based on histograms of 3D gradient orientations
which is uniformly quantized by regular polyhedrons in an integral video repre-
sentation. Based on the image SURF descriptor [1], Willems et al.[19] present
the extended SURF descriptors for videos. The 3D patches is uniformly divided
into small girds first then each cell is represented by a vector of weighted sums
of responses of the Haar-wavelets along the three axes. Liu et al.[14] firstly
extract static feature in a video frame as the complementary of motion feature
to build representation of the video, which outperforms using motion feature
only. Le et al.[12] combined with deep learning techniques to use unsupervised
feature learning as a way to learn features directly from unlabelled video data.
Wang et al.[18] extract the dense trajectories and motion boundary descriptors
from the video as the representation. As the motion boundary descriptors can
reduce the affects of camera motions effectively, it makes a huge progress in the
realistic videos based action recognition and can be treated as the state-of-the-
art.



16 H. Shen et al.

3 Method

Motived by [14] and consider the large variation in realistic videos, we strongly
believe that static feature like a static pose in a single frame also contains impor-
tant action contextual information which can provide strong cues and thus be
served as a complementary of motion feature for action recognition. Motivated
by this observation, we investigate the role of motion and static feature for action
recognition and build a hybrid model upon them for both hand-crafted and ran-
dom feature representation. The flowchart of our work is shown in Figure 1. We
will follow this flowchart to describe our algorithm in details.

Input Interesting Points Descriptors Descriptors SVM
[ Videos ]_)[ Extraction - Building - Encoding - classifier — | Results

Fig. 1. The flowchart of video based recognition

3.1 Spatial-Temporal Interest Points Detection

Spatial-temporal interest points are the locations in space and time domain
where a significant variation occurs in the local neighborhood. We apply the
extension of Gabor filter proposed by Dollar et al. [5] to extract the 3D inter-
est cuboids, which capture the most important characteristics of the movement
occurring in the video. The response function has the form:

Rz(I*g*hev)2+(I*g*hod)2 (1)

where g(z,y; o) is the 2D Gaussian smoothing kernel for spatial dimensions, and
hey and h,q are a quadrature pair of 1D Gabor filters applied temporally. They
are defined as: .

hew(t; Ty w) = —cos(2mtw)e ™t /™ (2)

hoa(t; T,w) = —sin(%rtw)eft?/rz 5

where w = 4/7. The interest points are located in the local maxima correspond-
ing to the response function. The parameter o and 7 correspond to the spatial
and temporal scale of the detected cuboid. We set the size of the cuboid to 19 x
19 x 11 pixels. Some examples of interest cuboids detected by the 3D Gabor
detector on video frame sequence are shown in Figure 2.

3.2 Hand-Crafted Feature Representation

The visual content of a video segment can be represented by a set of descriptors
computed at every interest point position within its near cuboid region. It is
obvious that the oriented gradient can capture spatial information while optic
flow is able to catch the movement information. Therefore, we adopt the 3D
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(b)

Fig. 2. Example of 3D interest cuboids detection. (a) original frames; (b) cuboids
detected by 3D Gabor filter (best viewed in colour).

HoG /HoF descriptor similar to Laptev et al. [10], which computes histograms of
both oriented gradient and optic flow accumulated in spatial-temporal interest
cuboids.

Specifically, the 3D interest cuboid is firstly smoothed and divided into
3 x 3 x 2 grid of cells; for each cell, 4-bin histograms of gradient (HoG) and
5-bin histograms of optic flow (HoF') are calculated based on the oriented direc-
tion. Then the normalized histograms from each small grid are concatenated to
form the local descriptor. We employ PCA to reduce the dimensionality to 200
experimentally.

Using motion feature only may not be distinct enough, especially for the
unrestricted videos like YouTube action dataset. Intuitively, The static feature
can be viewed as a very strong complementary. To extract static feature, we
sample temporally at every 15 frames from the frame sequence of the video. For
each frame, we build SIFT descriptors [16] upon dense sampling grid. Addition-
ally, multi-scale static feature is achieved by changing the size of the static image
by multiplying 1/v/2.

3.3 Random Feature Representation

We employ random projection to build random feature representation. The key
idea of random projection originated from the Johnson-Lindenstrauss lemma [4]: if
points in a high dimension are projected onto a randomly selected subspace of suit-
able dimension, then the distance between points are approximately preserved. In
practice, the original d-dimensional data is projected to a k-dimensional (k << d)



18 H. Shen et al.

subspace using a random matrix k x d matrix R whose columns have unit lengths.
It can be represented by:
X n = RyxaXaxn (4)

As before, we apply the random projection on both motion feature and static
feature to form the random feature representation. Specifically, for each extracted
cuboid, we first normalize the intensity of each pixel within the cuboid and then
uniformly divide the cuboid into 2 x 2 x 2 grids. Assume the size of each grid is
w x h x t pixels so for each grid we identify gray-scale vector v € R%(d = wht)
by stacking the intensities; then use random projection to reduce dimensionality
and form the random feature descriptor. The random matrix R is defined as
the Gaussian measurement matrix whose elements are independent, zero-mean,
unit-variance Gaussian random variables. Finally the projected vectors for each
sub-cuboid are concatenated to form the local descriptor of the whole cuboid.

Similarly, for the static feature extraction, we use dense sampling as before on
each sampled video frame sequence. For each dense point, the patch whose size
is the same as that of SIFT descriptors is extracted and the gray-scale vector
is formed by stacking the intensities. Then random projection is employed to
generate the local static random descriptors.

3.4 Descriptors Encoding

As the number of local descriptors extracted by the above methods varies from
each video, distinguishing these descriptors from different classes of action directly
is not straightforward. A popular approach is to firstly learn a codebook contain-
ing a fixed number of visual words based on the training descriptors set, then
encode the descriptors with the codebook.

A simple but effective method to learn the codebook is K-means clustering
algorithm. The main idea is to minimize the sum of squared Euclidean distances
between points x; and their nearest cluster vy:

k
argmin 3" 37 [y — v (5)

=1 X eV,

where V. = [vy,...,vi] | are the target codebook with K cluster centers. We
propose 2-level K-means clustering to generate the codebook: for each class of
action, apply K-means for the first level clustering, then based on the first level
results, the K-means clustering is applied again to create the final codebook.
The size of codebook is set to 256.

We mainly evaluate two popular encoding methods: Bag of Feature (BoF)
and Sparse Coding (SC) [21] for both feature representations. Moreover, we
extra evaluate Vector of Locally Aggregated Descriptors (VLAD) [7] for random
feature representation.
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Bag of Feature. Let X be a set of descriptors in a D-dimensional feature space,
X = [X1,...,xp]" € RM*P The Bag of Feature quantization problem can be
re-formulated into a matrix factorization problem:

M
i m mV 2
min m§::1 E—— “

subject to  Card(um) =1, |um| = 1,u,, = 0,Ym

where U = [uy,...,ups] T is the cluster membership indicators and V is the pre-
calculated codebook. The cardinality constraint Card(uy,) = 1 means that only
one element of u,, is nonzero, and |uy,| indicates that the summation of the
absolute value of each element in u,,. After obtaining the encoded descriptor set
U, the video can be represented by frequencies of each visual word. Since the
number of visual words is fixed for all descriptors sets, a video with arbitrary
number of descriptors is then converted into a single histogram vector whose
length equals to the number of visual words. This provides extreme convenience
for the future classification processing.

Sparse Coding. The constraint for BoF model Card(umy,) = 1 is too restrictive
to reconstruction X with low error. We can relax the constraint by making uy,
to have a small number of nonzero element. Meanwhile, the number of nonzero
element is enforced to be minimum. Then the BoF is turned into another problem
known as Sparse Coding:

M
min xm—umV2+)\u

subject to  ||vk|| < 1,VE=1,2,.., K

Similar to BoF, in the training stage a set of training descriptors are used
to solve Equation 7 with respect to U and V. The conventional way for such a
optimization problem is to iteratively optimize either over U or V while fixing the
other. We set the initial codebook V of Sparse Coding as the result generated by
K-means algorithm described above instead of using a random initialization. This
processing can make the objective function more optimized when the number of
iteration is fixed.

Each column of U corresponds to the coefficients of all the local descriptors to
one specific visual word in the codebook V, we adopt the max pooling function
for SC, which has been well established by biophysical evidence and empirically
justified by many image categorization algorithms. It can be represented by:

Zj :max{\ul,ﬂ7‘“2,j|7---7‘UM7j|} (8)

where z; is the j-th element of z, u; ; is the matrix element at i-th row and j-th
column of U.
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Vector of Locally Aggregated Descriptors. Besides BoF and SC, we eval-
uate another encoding method: vector of locally aggregated descriptors (VLAD)
[7] for random feature representation. The idea of the VLAD is to accumulate the
difference between each visual word v; and the descriptor x; which is assigned to
that visual word. Note that VLAD can be viewed as a non-probabilistic version
of the Fisher Vector [17]. Therefore, if the local descriptor is d-dimensional, the
dimension D of VLAD would be D = k x d. A component u; ; of VLAD can be
obtained by summing over all the local random feature descriptors:

wij= > mi—vi 9)

x belong to v;

where the indices ¢ = 1...k and j = 1...d index the visual word and the local
descriptor component respectively.

3.5 Spatial-Temporal Pyramid

All the encoding methods described above only capture the statistical character-
istic of the descriptors set. None of spatial and temporal layout of geometrical
features has been taken into consideration. Spatial Pyramid Matching (SPM)
proposed by [11] overcomes this limitation in still image classification. It works
by partitioning the image into increasingly fine sub-regions and computes his-
tograms of local descriptors over the resulting sub-regions. The final feature
vector is formed by concatenating histograms of each sub-region with the corre-
sponding weight of each level of pyramid. The spatial pyramid is a simple and
computationally efficient complement of an orderless BoF image representation.
It has shown significantly improved performance over the standard BoF model
as it describes the observations as a collection of local representations, which are
somewhat invariant to changes in scale, illumination and partial occlusions.

We extend this approach to 3D by adding subregions with respect to temporal
domain. The spatial-temporal pyramid is built by uniformly dividing the frame
sequence of video into 2 x 2 x 2 grids for the first level and 3 x 3 x 3 grids
for the second level. The descriptor set of each subregion is a set of descriptors
whose corresponding interest points are located within such a subregion. Then
the local characteristics in totally 36 subregions are calculated by BoF or SC
or VLAD with corresponding local descriptors set. Finally, for BoF or VLAD,
we concatenate the weighted histograms of each subregion of video to form a
feature vector of the video; while for SC, the corresponding coefficients to the
local descriptor sets in each subregion are concatenated, then the max pooling
function is applied to form the representation of the video.

3.6 Support Vector Machine

The size of feature vectors of videos generated by Spatial-Temporal Pyramid
(STP) approach would be very large. For example, a feature vector of a video
constructed by 3-level uniformly distributed pyramid and 256 visual words would
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have 9216 attributes. If these feature vectors are directly classified by SVM
classifiers, it would be very computationally expensive on the training stage,
especially for large dataset involving thousands of videos.

We build a two-layer SVM classifiers system for classification processing
based on [22]. The structure of the two-layer SVM classifiers system is shown in
Figure 3. In the first layer, the vectors produced by the same pyramid level in
different videos are classified separately using x2 kernel. The decision values out-
putted by the first layer for each video against the corresponding class label can
be viewed as an abstract descriptors of the particular pyramid level of videos.

Then the decision values from each pyramid level are concatenated and classified
again by RBF kernel.

Spatial Temporal Descriptors First layer Second layer
Pyramid encoding SVM SVM

R
| . —| svm2 |—
1l

A Level 2
| SVM Final
video ||‘> — —| SVM1 |— T Results
Tevel 1
—> | SVMO

AN _I
\
Fig. 3. The two layer SVM classifier structure

Level 0

The two-layer SVM classifiers have the following attractive properties: 1) The
decision values represent the descriptors set in a more concise way and are more
robust to the effect of noise. 2) it can combine different types of feature effectively.
In our case, it is better to match the kernel in different spatial temporal pyramid.
3) the second layer SVM assigns weights based on action classes for each pyramid
level instead of assigning it to the visual words of different levels directly. 4) this
would enable parallelized computing to make the overall process more efficient.
All these properties leads to better results than the standard SPM method with
traditional one-layer SVM classifier.

4 Experiments

4.1 Dataset

The video dataset we used is the YouTube action dataset from [14]. The videos
in this dataset are mostly collected from YouTube and captured under uncon-
trolled condition so they contain significant camera motion, background clutter,
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illumination changes, viewpoint changes and objects scale changes. All these
properties of this video dataset make it closer to the realistic video data, but
also push precise recognition more highly challenging.

YouTube action dataset contains 11 action categories: basketball shooting,
cycling, diving, golf swing, horse-back riding, soccer juggling, swinging, tennis
swinging, trampoline jumping, volleyball spiking and walking with a dog. In
order to remove the unfair effect of the same background in recognition, the
videos in each kind of action are split into 25 groups, where each group has
different actors, backgrounds, viewpoints. Our experiments setup is the same as
that proposed in [14]. There are totally 1168 videos for use and leave-one-out
group cross validation is used. All the colorful videos are convert into gray-level
before further processing.

4.2 Hand-Crafted Feature Representation

Firstly, we evaluated BoF and SC encoding combined with spatial temporal
pyramid based on the motion feature only. The results are shown in Figure 4. As
expected, it can be observed that SC achieves higher accuracies in most classes
of action as well as the overall accuracy 64.98% than that 60.10% of BoF. We
explained this improvement as that SC can achieve a much lower reconstruction
error due to the less restrictive constraint, although it is more computationally
expensive.
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Fig. 4. The classification accuracies generated by BoF and SC based on the motion
feature.

The number of static local descriptors can be tens of thousands. Because of
the high memory requirement, the static feature is built by only BoF due to its
low computational complexity. The overall accuracy based on static feature built
on original frames is 65.33%, while the accuracy based on static feature built
on multi-scale frames is 66.52%. There is no significant improvement between
multi-scale and original static feature. Therefore, we discard multi-scale static
feature for decreasing the computational complexity and use the original static
feature only for the rest experiments.
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We also evaluated the motion model, static model and hybrid model. The
motion model is based only on motion feature encoded by SC while the static
model is based only on static feature encoded by BoF. The hybrid model is to
combine the motion feature and static feature. The results are shown in Figure 5.
Intuitively, motion feature and static feature are complementary for action recog-
nition. And this has been proven by our experiment that the accuracy of hybrid
model is higher than eithor motion or static model in every class of action recog-
nition as well as the overall accuracy, which is 75.51%, 64.98%, 65.33% for hybrid,
motion and static model respectively. The hybrid model has the better perfor-
mance over 10% than both motion and static model, which is impressive. Hence,
it can be concluded that the hybrid model can achieve the best results, and
not only motion feature but also static feature plays a significant role in action
recognition. It can be also observed that the static model works surprisingly bet-
ter than motion model. We explain this improvement by the fact that the dense
feature contain more useful information than the interest points based feature.
The confusion table for classification using hybrid model is shown in Figure 6.
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Fig. 5. The classification accuracies generated by motion, static and hybrid model

Lastly, we compared our method based on hand-crafted feature representa-
tion with the state-of-art on the same dataset (see Table 1). It can be clearly
seen that our method is competitive with the state-of-art. Specifically, our frame-
work is quite similar with Liu et al. [14] but our overall accuracy (75.51%) is
higher than theirs (71.2%). Note that the highest accuracy (85.4%) proposed by
Wang et al. [18] is much higher (over 10%) than all other methods because they
adopted the dense trajectories feature on building motion feature, which is very
computational intensive and memory consuming.

4.3 Random Feature Representation

The parameter settings for building random feature representation is the same as
building the hand-crafted feature representation described above. We also eval-
uated the parameters of random feature representation by grid search. Firstly,
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basketball 01 .04 .03 .05 .00 .10 .06
biking 04 .00 .01 .00 .00 .00 .13
diving 01 .00 .02 .00 .00 .01 .01

golf swing .00 B

horse riding |.01 .10 .00 .
soccer juggling [.04 .08 .02 .
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tennis swing |.12 .09 .00 .
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volleyball spiking |.02 .00 .01 .
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Fig. 6. The confusion table for classification using hybrid model

Table 1. The comparison with the state-of-art

Liu et al. (200) [14] 71.2%
Ikizler-Cinbis and Sclaroff (2010) [6]| 75.21%
Brendel and Todorovic (2010) [3] | 77.8%

Le et al. (2011) [12] 75.8%

Bhattacharya et al. (2011) [2] 76.5%

Wang et al. (2013) [18] 85.4%
Our method 75.51%

we searched for the appropriate projected dimension n. The sub-feature vector
is projected into 25, 50, 100, 200 dimensions so that the dimensionality of the
final local descriptor would be 200, 400, 800 and 1600 respectively. Note that for
the descriptors with 1600 dimensionality, we sampled 400 descriptors from each
video to generate the codebook due to the high memory requirement. Another
parameter we try to optimize is the size of the cuboid, the size employed in
building hand-crafted feature representation (19 x 19 x 11 pixels) is taken as the
benchmark.

The results based on the diverse projected dimensions are shown in Figure 7.
It can be seen that the accuracies over diverse dimensions of descriptors are all
fluctuated around 50% and there is no significant difference between each dimen-
sionality. In addition, no obvious tendency of improvement or decreasing over the
diverse dimensions can be observed. Therefore, we conclude that the projected
dimension is not an important factor that affects the final classification accuracy.
The projected dimension is then fixed to 200 as same as hand-crafted descriptors
due to its lower computational complexity and for the sake of comparisons.
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1.54%
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Fig. 7. The accuracies based on the descriptors projected to 200, 400, 800 and 1600
dimensions by random projection on the extracted cuboid with the size of 19 x 19 x 11
pixels

To investigate the effect of size of cuboid, we conducted a set of experiments
based on 3 different spatial size and 2 different temporal size. The results of total
6 experiments with different cuboid sizes are shown in Table 2. Again, all the
results fluctuated between 45% and 50% and there is no significant improvement
among them. The best result we got is 51.97% with the 19 x 19 x 11 pixels cuboid
size. Therefore, changing the size of the extracted cuboid would not improve the
performance.

In addition, the result applying VLAD encoding method is 55.65% based on
the 200 dimension random descriptors and 128 visual words, which is similar to
that of using SC (55.31%). As expected, the result of VLAD is better than BoF
(51.97%) and the computational time is much less than SC but at the cost of
consuming memory.

Table 2. The results based on different sizes of the cuboid with a fixed projected 200
dimension

11 x 11 x 11 11 x 11 x 23
50.26% 45.89%
19 x 19 x 11 19 x 19 x 23
51.97% 48.03%
39 x 39 x 11 39 x 39 x 23
44.09% 46.40%

4.4 Comparisons

We also evaluated the random descriptors on the static model and the hybrid
model. Again, the hybrid model can achieve about 8% improvement on overall
accuracy over the motion and static model. The best results we obtained for
random feature representation and the corresponding results generated by the
hand-crafted feature are list in Table 3.
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Table 3. The comparison between the random feature and the hand-crafted feature
representation

Method [Random Feature[Hand—crafted Featurel

motion - BoF 51.97% 60.10%
motion - SC 55.31% 64.98%
static - BoF 51.54% 65.33%

Combined 62.50% 75.51%

From the Table 3, we can see that there is a big difference between results
from the two proposed feature representations. For each evaluation of encoding
method, the performance of hand-crafted feature is over 10% higher than that
of random feature, which cannot be ignored. As the framework, encoding and
classifiers parameter settings are totally the same for evaluating both feature
representation, we can conclude that the random feature representation does
not perform well in this YouTube action dataset although it is simple to be
implemented and successful in other recognition domains. Recall that random
projection is a power tool in dimensionality reduction and should be benefi-
cial in the cases where the distances of the original high dimensional data are
meaningful. Therefore, we explained this failure of random feature representa-
tion for possibly one reason that the original distance or similarities information
contained by the extracted cuboids are themselves suspect so that the random
feature descriptors are not distinct enough to be classified.

5 Conclusions

In this paper, we investigate and compare two different feature representations
for video based human action recognition: hand-crafted and random feature rep-
resentation. The former is built by 3D HoG/HoF descriptors for motion feature
and SIFT descriptors for static feature while the latter is based on random pro-
jection. Three popular approaches of encoding descriptors: BoF, SC and VLAD
are applied. Additionally, spatial temporal pyramid and a two-layer SVM clas-
sifier are employed for classification processing.

For the motion feature of both representations, we evaluated both BoF and
SC encoding methods. The results confirms that SC outperforms BoF as indi-
cated in object recognition community. Based on the performance of the motion,
static and hybrid model, we found that using hybrid features of motion and
static can significantly improve the overall recognition accuracy which only uses
motion features. Therefore, as complementary of the motion feature, the static
feature plays an essential role in action recognition on this dataset and supris-
ingly it even works better than motion feature only. Compared with the success
of the popular hand-crafted feature representation such as 3D HoG/HoF, SIFT
descriptors for action recognition, the proposed random feature representation
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based on random projection does not perform well in this dataset. This is proba-
bly due to the suspect of original information contained by the extracted cuboids
as well as the random error.

The overall accuracies over YouTube action dataset based on random features
is far behind the state-of-art performance. For the future work, the random fea-
ture based approach would be experimented on other datasets, such as HMDB51
dataset [9] and Hollywood movie dataset [10].
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