Accelerating Iterative SpMYV for the Discrete
Logarithm Problem Using GPUs

Hamza Jeljeli®)

CARAMEL project-team, LORIA, INRIA /CNRS/Université de Lorraine,
Campus Scientifique, BP 239, 54506 Vandceuvre-lés-Nancy Cedex, France
Hamza.Jeljeli@loria.fr

Abstract. In the context of cryptanalysis, computing discrete loga-
rithms in large cyclic groups using index-calculus-based methods, such
as the number field sieve or the function field sieve, requires solving large
sparse systems of linear equations modulo the group order. Most of the
fast algorithms used to solve such systems — e.g., the conjugate gradient
or the Lanczos and Wiedemann algorithms — iterate a product of the
corresponding sparse matrix with a vector (SpMV). This central opera-
tion can be accelerated on GPUs using specific computing models and
addressing patterns, which increase the arithmetic intensity while reduc-
ing irregular memory accesses. In this work, we investigate the implemen-
tation of SpMV kernels on NVIDIA GPUs, for several representations
of the sparse matrix in memory. We explore the use of Residue Number
System (RNS) arithmetic to accelerate modular operations. We target
linear systems arising when attacking the discrete logarithm problem on
groups of size 100 to 1000 bits, which includes the relevant range for cur-
rent cryptanalytic computations. The proposed SpMV implementation
contributed to solving the discrete logarithm problem in GF(2%'?) and
GF(2%%) using the FFS algorithm.

Keywords: Discrete logarithm problem - Sparse-matrix—vector product *
Modular arithmetic + Residue number system + GPUs

1 Introduction

The security of many cryptographic protocols used for authentication, key
exchange, encryption, or signature, depends on the difficulty of solving the dis-
crete logarithm problem (DLP) in a given cyclic group [16]. For instance, we can
rely on the hardness of the DLP in a multiplicative subgroup of a finite field.
There are algorithms, such as Pollard-rho [17] or Baby-Step/Giant-Step [21] that
solve the problem in time exponential in the subgroup size. Another family of
methods, known as Indez-calculus methods [1] propose to solve it in time sub-
exponential or quasi-polynomial in the finite field size. These algorithms require
in their linear algebra step the resolution of large sparse systems of linear equa-
tions modulo the group order [12]. In cryptographic applications, the group order
£ is of size 100 to 1000 bits. The number of rows and columns of the corresponding

© Springer International Publishing Switzerland 2015
C. Kog et al. (Eds.): WAIFI 2014, LNCS 9061, pp. 25-44, 2015.
DOI: 10.1007/978-3-319-16277-5_2

26 H. Jeljeli

matrices is in the order of hundreds of thousands to millions, with only hundreds
or fewer non-zero elements per row. This linear algebra step is a serious limiting
factor in such algorithms. For example, it was reported in [9] that the linear
algebra step of the Function Field Sieve (FFS) implementation to solve the DLP
over GF(35%97) took 80.1 days on 252 CPU cores, which represents 54 % of the
total time.

To solve such systems, ordinary Gaussian elimination is inefficient. While
some elimination strategies aiming at keeping the matrix as sparse as possi-
ble can be used to reduce the input system somewhat, actual solving calls for
the use of other techniques (Lanczos algorithm [13], Wiedemann algorithm [27])
that take advantage of the sparsity of the matrix [18]. For the Lanczos algo-
rithm, the Wiedemann algorithm and their block variants, the iterative sparse-
matrix—vector product is the most time-consuming operation. For this reason,
we investigate accelerating this operation on GPUs.

The paper is organized as follows. Section 2 presents the background related
to the hardware and the context. Section 3 discusses the arithmetic aspects of
our implementation. We present several matrix formats and their corresponding
implementations in Sect. 4. We discuss in Sect. 5 how to adapt these implemen-
tations over large fields. We compare the results of different implementations run
on NVIDIA GPUs in Sect. 6, and present optimizations based on hardware con-
siderations in Sect. 7. Section 8 discusses our reference software implementation.

2 Background

2.1 GPUs and the CUDA Programming Model

CUDA is the hardware and software architecture that enables NVIDIA GPUs
to execute programs written in C, C++, OpenCL and other languages [14].

A CUDA program instantiates a host code running on the CPU and a kernel
code running on the GPU. The kernel code runs according to the Single Program
Multiple Threads (SPMT) execution model across a set of parallel threads. The
threads are executed in groups of 32, called warps. If one or more threads have
a different execution path, execution divergence occurs. The different paths will
then be serialized, negatively impacting the performance.

The threads are further organized into thread blocks and grids of thread
blocks:

— A thread executes an instance of the kernel. It has a unique thread ID within
its thread block, along with registers and private memory.

— A thread block is a set of threads executing the same kernel which can
share data through shared memory and perform barrier synchronization which
ensures that all threads within that block reach the same instruction before
continuing. It has a unique block ID within its grid.

— A grid is an array of thread blocks executing the same kernel. All the threads
of the grid can also read inputs, and write results to global memory.

Accelerating Iterative SpMV for the Discrete Logarithm Problem 27

At the hardware level, the blocks are distributed on an array of multi-core
Streaming Multiprocessors (SMs). Each SM schedules and launches the threads
in groups of warps. Recent NVIDIA GPUs of family name “Kepler” allow for
up to 64 active warps per SM. The ratio of active warps to the maximum sup-
ported is called occupancy. Maximizing the occupancy is important, as it helps
to hide the memory latency. One should therefore pay attention to the usage of
shared memory and registers in order to maximize occupancy.

Another important performance consideration in programming for the CUDA
architecture is coalescing global memory accesses. To understand this require-
ment, global memory should be viewed in terms of aligned segments of 32 words
of 32 bits each. Memory requests are serviced for one warp at a time. If the warp
requests hit exactly one segment, the access is fully coalesced and there will be
only one memory transaction performed. If the warp accesses scattered loca-
tions, the accesses are uncoalesced and there will be as many transactions as the
number of hit segments. Consequently, a kernel should use a coalescing-friendly
pattern for greater memory efficiency.

Despite their high arithmetic intensity and their large memory bandwidth,
GPUs provide small caches. In fact, Kepler GPUs provide the following levels of
cache:

— 1536-kB L2-cache per GPU.

— 16-kB L1-cache (per SM). It can be extended to 48kB, but this decreases
shared memory from 48 kB to 16 kB.

— A texture cache: an on-chip cache for the read-only tezture memory. It can
accelerate memory accesses when neighboring threads read from nearby
addresses.

2.2 Sparse-Matrix—Vector Product on GPUs

Sparse-matrix computations pose some difficulties on GPUs, such as irregular
memory accesses, load balancing and low cache efficiency. Several papers have
focused on choosing suitable matrix formats and appropriate kernels to over-
come the irregularity of the sparse matrix [4,26]. These works have explored
implementing efficiently SpMV over real numbers. Schmidt et al. [19] proposed
an optimized matrix format to accelerate exact SpMV over GF(2), that can be
used in the linear algebra step of the Number Field Sieve (NFS) for integer
factorization [22]. Boyer et al. [8] have adapted SpMV kernels over small finite
fields and rings Z/mZ, where they used double-precision floating-point numbers
to represent ring elements. In our context, since the order of the considered finite
ring is large (hundreds of bits), specific computing models and addressing models
should be used.

In this work, we have a prime /¢, along with an N-by-N sparse matrix A
defined over Z, and we want to solve the linear system Aw = 0 over Z/{Z.
A feature of the index calculus context that we consider here, is that A contains
small values (e.g. 32-bit integers). In fact, around 90 % of the non-zero coefficients
are £1.

28 H. Jeljeli

The very first columns of A are relatively dense, then
the column density decreases gradually. The row den-
sity does not change significantly. We denote by nnz the
number of non-zero elements in A. See Fig. 1 for a typical
density plot of a matrix arising in an FFS computation.

We will use the Wiedemann algorithm as a solver.

This algorithm iterates a very large number of matrix- Fig. 1. Distribution
vector products of the form v < Au, where u and v are of non-zero elements in
dense N-coordinate vectors. The major part of this work an FFS matrix

deals with how to accelerate this product.

In order to carry out this product, we compute the dot product between each
row of A and the vector u. The basic operation is of the form z «+ (x+Ay) mod ¢,
where A is a non-zero coeflicient of A, and = and y are coordinates of the vectors
v and u, respectively. To minimize the number of costly reductions modulo /,
we accumulate computations, and postpone the final modular reduction of the
result as late as possible. When iterating many products (computations of the
form A'u), we can further accumulate several SpMVs before reducing modulo £,
as long as the intermediate results do not exceed the largest representable integer.
As far as arithmetic over Z/¢Z is concerned, we chose to use the Residue Number
System, which appears to be more suited to the fine grained parallelism inherent
to the SPMT computing model than the usual multi-precision representation of
large integers. A comparison of the two representations is given in Subsect. 6.3.

3 Residue Number System and Modular Arithmetic

3.1 A Brief Reminder on RNS

The Residue Number System (RNS) is based on the Chinese Remainder Theorem
(CRT). Let B = (p1,pa,-..,pn) be a set of mutually coprime integers, which we
call an RNS-basis. We define P as the product of all the p;’s. The RNS uses the
fact that any integer « within [0, P — 1] can be uniquely represented by the list

(z1,22,...,2n), where each z; is the residue of modulo p;, which we write as
x; = |z|p,.
If z and y are given in their RNS representations ¥ = (x1,...,x,) and

7 = (y1,-..,Yn), according to B, and such that z,y < P, RNS addition and
multiplication are realized by modular addition and multiplication on each com-
ponent:

—

Pn)’ f;y = (|$1 X yl‘pu---v‘mn X Yn

.'f‘r‘:lj:(ll‘]_ +y1‘p17"'7‘mn+y’ﬂ Pn)

The result (e.g., z+y) should belong to the interval [0, P—1] if we want to obtain
a valid RNS representation. Otherwise, it will be reduced modulo P. Unlike addi-
tion or multiplication, other operations such as comparison or modular reduction
are more subtle in RNS.

Accelerating Iterative SpMV for the Discrete Logarithm Problem 29

We can convert back an RNS vector to the integer form by using the CRT
formula:
3 .. -1 . .
T = Z T; |Pi ’pi Bl o,
=1 P

This number system is particularly interesting for arithmetic over large inte-
gers, since it distributes the computation over several small residues. In other
words, the computation units that will work on the residues are independent and
need no synchronization nor communication, as there is no carry propagation

[23,24].

where P; £ P/p;.

3.2 RNS Reduction Modulo £

In the chosen RNS representation, (P — 1) is the largest representable inte-
ger. So in the case of repeated SpMVs over Z/{Z, we can accumulate at most
log(£=)/log(r) matrix-vector products before having to reduce modulo ,
Where r corresponds to the largest row norm (defined as the sum of the absolute
values of its elements) in the matrix. To reduce the vector v modulo ¢, we use the
method introduced by Bernstein in [6], which allows us to perform the reduction
without having to convert the vector back to the integer form.

We assume that the RNS-basis B contains n moduli p1, ..., p, of k bits each.
We impose that the p;’s are close to 2. The reasons will be detailed in the

following subsection. We want to reduce modulo ¢ an RNS vector (z1,...,z,).
n

We start from the CRT reconstruction: x = Z%P, , where we have defined
=1 P

v & |xiPZ o Let us also define the integer « as follows

n v P; n Yi
(2l 2 7
|- [z "
i=1 =1
n
The vector z can then be written as Z%B — aP and, since v; < p;, we
i=1
have 0 < o < n.
n
Now, if we assume that « is known, we define z = Z Y | Pi|, — |oP|,. We can

i=1
n

easily check that z is congruent to modulo ¢ and lies in the interval [0, £ Z il
i=1
What remains to be done is to determine o Since p; ~ 2*, we approximate
the quotient -;/p; using only the s most significant bits of 7;/2%. Hence, an
estimate for « is proposed as

. |
Gl Z {2’“ SJ : 2)

i=1

30 H. Jeljeli

where s is an integer parameter in [1, k] and A an error correcting term in]0, 1].
Bernstein states in [6] that if 0 <z < (1 — A)P and (e +¢) < A < 1 where

n C: 2kfs_
eéZf; andéénT,thenazd.
i=1
Once « is determined, we are able to perform an RNS computation of z.

Algorithm 1 summarizes the steps of the computation.

Algorithm 1. Approximate RNS modular reduction

Precomputed: Vector (!Pj_1|p,) for j € {1,...,n}
J
Table of RNS vectors of |P;|, for i € {1,...,n}
Table of RNS vectors of |aP|, for a € {1,...,n —1}

Input : RNS vector of z, with 0 <z < (1 — A)P

Output : RNS vector of z =z (mod ¢), z < KZpZ-
i=1
1 foreach thread j do

2 i /* 1 RNS product */

-1
T; X ’P4 |
J i lp;

pj
Broadcast of the v;’s by all the threads

w

4 foreach thread j do
5 2j Z% X ||Pi|e|pj /* (n—1) RNS sums & n RNS products */
i=1 ;i
" 5]
k—s
6 o — Z 225 —|—A‘ /* sum of n s-bit terms */
i=1
7 2j — |zj — ||o¢P| | /* 1 RNS subtraction */
J i elp;

Pj

All the operations can be evaluated in parallel on the residues, except for
step 3, where a broadcast of all the «;’s is needed. Even if the obtained result
z is not the exact reduction of z, it is bounded by n2*¢. Thus, we guarantee
that the intermediate results of the SpMV computation do not exceed a certain
bound less than P. Notice that this RNS reduction algorithm imposes that P
be one modulus (k bits) larger than implied by the earlier condition ¢ < P.

In conclusion, P is chosen, such that r x n2*¢ < (1 — A)P, with r is the
largest row norm of the matrix.

3.3 Modular Reduction Modulo p;

The basic RNS operation is z; < (2; + A X y;) mod p;, where 0 < x;,y;, 2; < pj
are RNS residues and A is a positive element of the matrix. So, it consists of an
AddMul (multiplication, then an addition) followed by a reduction modulo p;.

Accelerating Iterative SpMV for the Discrete Logarithm Problem 31

To speed up the reduction modulo p;, the moduli are chosen of the pseudo-
Mersenne form 2F — ¢j, with ¢; as small as possible.

In fact, let us define t; = x; + A x y; as the intermediate result before the
modular reduction. t; can be written as

tj = th +2k X th,Where th £ tj mod 2k7th £ tj/2k. (3)

Since 2¥ = ¢; (mod p;), we have t; =t + t;m x ¢; (mod p;). So, we compute
t; < tjrL +1tjm X c;, then we have to consider two cases:

— if t; < 2%, we have “almost” reduced (z; + A X y;) modulo p;, since the result
lies in [0, 2%[, not in [0, p;[;

— else we have reduced t; by approximately k bits. Thus, we repeat the previous
procedure with t; « t;;, 4+ ¢; X t; i, which then satisfies t; < 2k,

The output lies in [0,2% — 1], so we propose to relax the condition on both
input and output: z;,z; € [0, 2% — 1]. With this approach, the reduction can be
done in a small number of additions and products.

3.4 Possible RNS Mappings on GPU/CPU

We represent the finite ring Z/¢Z as the integer interval [0, ¢ — 1]. Each element
is stored in its RNS form. On GPU, we opted for 64-bit moduli (i.e. k£ = 64),
for performance considerations. Even that floating point instructions have higher
throughput, integer instructions gave better performances, because with floating
point arithmetic, only the mantissa is used and the algorithms are more complex
than with integer arithmetic. We use the PTX (parallel thread ezecution) pseudo-
assembly language for CUDA [15] to implement the RNS operations.

On CPU, we implemented three versions based on:

— MMX instruction set: we map an RNS residue to an unsigned 64-bit integer.

— Streaming SIMD Extensions (SSE2) set: a 128-bit XMM register holds two
residues, so the processor can process two residues simultaneously.

— Advanced Vector Extensions (AVX2) set: we use the 256-bit YMM register to
hold four residues.

4 Sparse Matrix Storage Formats

In this section, we assume that the elements of the matrix, as well as the elements
of the vectors u and v are in a field K (reals, finite fields, etc.). For each format,
we will discuss how to perform the matrix-vector product. We will give a pseudo-
code for the format CSR. Figures that illustrate the other formats and their
corresponding Pseudo-code can be found in Appendix A.

The matrix and vectors are put in global memory, since their sizes are impor-
tant. Temporary results are stored in registers. The shared memory is used when
partial results of different threads are combined. Arithmetic operations are per-
formed in registers and denoted in the pseudo-code by the function addmul ().

32 H. Jeljeli

Coordinate (COQO). The format COO consists of three arrays row_id, col_id
and data of nyz elements. The row index, column index and the value are
explicitly stored to specify a non-zero matrix coefficient. In this work, we propose
to sort the matrix coefficients by their row index.

A typical way to work with the COO format on GPU is to assign one thread
to each non-zero matrix coefficient. This implies that different threads from
different warps will process a same row. Each thread computes its partial result,
then performs a segmented reduction [7,20] to sum the partial results of the other
threads belonging to the same warp and spanning the same row. We followed
the scheme proposed by the library CUSP [5], which performs the segmented
reduction in shared memory, using the row indices as segment descriptors. Each
warp iterates over its interval, processing 32 coefficients at a time. If a spanned
row is fully processed, its result is written to v, otherwise, the row index and
the partial dot product are stored in temporary arrays. Then, a second kernel
performs the combination of the per-warp results.

The main drawbacks of the COO kernel are the cost of the combination of
partial results and excessive usage of global memory. Its advantage is that the
workload distribution is balanced across warps, as they iterate over a constant
length interval.

Compressed Sparse Row (CSR). The CSR format stores the column indices
and the values of the non-zero elements of A into two arrays of nyz elements: id
and data. A third array of pointers, ptr, of length N + 1, is used to indicate the
beginning and the end of each row. Non-zero coefficients are sorted by their row
index. The CSR format eliminates the explicit storage of the row index, and is
convenient for a direct access to the matrix, since ptr indicates where each row
starts and ends in the other two ordered arrays.

0 apl 0 aps 0 0
0 ay O 0 aua ars data - {”()l Gp3 ailp ai4 G1s
0 0 0
0 a1 0 0 as O id - [1 3 1 45 }

0 a41 42 0 0 aqs
0 0 aso 0 0 ass

(a) S trix A (b) CSR representation
a) Sparse matrix

Scalar Approach (CSR-S). To parallelize the product for the CSR, format, a
simple way is to assign each row to a single thread (scalar approach). For each
non-zero coefficient, the thread performs a read from global memory, an addmul
and a write in registers. Final result is written to global memory.

Accelerating Iterative SpMV for the Discrete Logarithm Problem 33

Vector Approach (CSR-V). The wvector approach consists in assigning a
warp to each row of the matrix [4]. The threads within a warp access neighbor-
ing non-zero elements, which makes the warp accesses to id and data contiguous.
Each thread computes its partial result in shared memory, then a parallel reduc-
tion in shared memory is required to combine the per-thread results (denoted
reduction_csr_v() in Algorithm 2). No synchronization is needed, since threads
belonging to a same warp are implicitly synchronized.

Algorithm 2. CSR-V for row i executed by thread of index tid in its warp

Inputs : data: array of nyz elements of K, id: array of nyz positive integers,
ptr: array of N positive integers and u: vector of N elements of K.
Output: v: vector of N elements of K.

sum « 0;
j < ptr; + tid; // position of beginning for each thread
While j < ptriy; do

sum < addmul (sum,data; > Uid;);

J—J+3%
reduction_csr_v(sum,tid); // reduction in shared memory
If tid= 0 then // first thread of the warp writes in global memory
‘ v; «— sum;

Compared to COO kernel, the two CSR kernels reduce the usage of global
memory and simplify the combination of partial results. The CSR kernels suffer
from load unbalance, if the rows have widely varying lengths. To improve the
load balance, one possibility is to order the rows by their lengths. So, the warps
launched simultaneously have almost the same load.

If we compare the two CSR kernels. The threads of CSR-S have non con-
tiguous access to data et id, as they do not work on the same rows. Thus, their
memory accesses are not as efficient as the accesses of the CSR-V. However, the
CSR-V kernel requires a combination of partial results which increases the use
of registers and shared memory (cf. Subsect. 6.2).

ELLPACK (ELL). The ELL format extends the CSR arrays to N-by-K
arrays, where K corresponds to the maximum number of non-zero coefficients
per row. The rows that have less than K non-zero coefficients are padded. Since
the padded rows have the same length, only column indices are explicitly stored.
This format suffers from the overhead due to the padding when the percentage
of zeros is high. An optimization was proposed by Véazquez et al. with a format
called ELLPACK-R (ELL-R) [26]. This variant adds an array len of length N
that indicates the length of each row. Thus, the zeros added by the padding are
not considered when performing the matrix-vector product.

34 H. Jeljeli

The partitioning of the work is done by assigning a thread to a row of the
matrix. The kernel takes advantage from the column-major ordering of the ele-
ments to improve the accesses on the vector u. However, it suffers from thread
divergence.

Sliced Coordinate (SLCOO). The SLCOO format was introduced on GPUs
by Schmidt et al. for integer factorization, in the particular case of matrices
over GF(2) [19] and was inspired by the CADO-NFS [2] software for CPUs.
The aim of this format is to increase the cache hit rate that limits the CSR and
COO performance. Like COQO, the SLCOO representation stores the row indices,
column indices and values. However, it divides the matrix into horizontal slices,
where the non-zero coefficients of a slice are sorted according to their column
index in order to reduce the irregular accesses on source vector u, if they had been
sorted by their row indices. A fourth array ptrSlice indicates the beginning and
end of each slice. We denote this format SLCOO-o, where the parameter o is
the number of rows in a slice.

For the SLCOO kernel, each warp works on a slice. Since each thread works
on more than one row, it needs to have individual storage for its partial per-row
results, or to be able to have exclusive access to a common resource. In [19],
Schmidt et al. mentionned the two possibilities of either using the shared mem-
ory or having atomic accesses. While these needs can be fulfilled in [19] for
the context of linear algebra over GF(2), we will observe in Sect.6 that these
constraints hamper the efficiency of the SLCOO in the context of large fields.

There are other SpMV formats in the literature, such as DIA (Diagonal)
format, that are appropriate only for matrices that satisfy some sparsity patterns,
which is not our case.

5 SpMYV Kernels Over Large Fields

In the context of our application, the matrix elements are “small” (32 bit inte-
gers) and the vectors elements are in Z/¢Z. In this section, we study how we
adapt the kernels to this context. We assume that an element of Z/¢Z holds in
n machine words. Thus, processing a non-zero coefficient A at row 7 and column
j of the matrix implies reading the n words that compose the j** element in the
input vector u, multiply them by A and adding them to the n words that compose
the i*" element in the output vector v. In the following pseudo-code, we denote
the arithmetic operation that applies to a word by the function addmul _word ().
Pseudo-code is therefore given without details regarding the representation sys-
tem of the numbers and the resulting arithmetic.

Sequential Scheme. A first approach would be that each thread processes a
coefficient. We would call this scheme sequential. To illustrate this scheme, we
apply it on the CSR-~V kernel.

Accelerating Iterative SpMV for the Discrete Logarithm Problem 35

Algorithm 3. CSR-V-seq for row i executed by thread of index tid in its warp

Inputs : data: array of nyz signed integers, id: array of nyz positive integers,
ptr: array of N positive integers, u: vector of N x n machine words.
Output: v: vector of N x n machine words.

Declare array sum < {0}; // m machine words initialized to 0
J « ptr; + tid;
While j < ptr;4+1 do
For k — 0 to n do
‘ sumy <« addmul,word(sumk,dataj,uide,H_k); // process k™ word
J—J+32
reduction_csr_v_seq(sum,tid);
If tid= 0 then
For k — 0 to n do
‘ Vixntk < SUlk; // store k™ word in global memory

This scheme suffers from several drawbacks. The first one is that the thread
processes the n machine words corresponding to the coefficient, i.e. reads and
writes the n machine words and makes n arithmetic operations. Thus, the thread
consumes more registers. The second is that the threads of the same warp access
non-contiguous zones of the vectors u and v, as their accesses are always spaced
by n words.

Parallel Scheme. To overcome the limitations of the previous approach, a
better scheme would be that a nonzero coefficient is processed by n threads.
We refer to the scheme by the parallel scheme. Threads of the same warp are
organized in ngpg of n threads, where ngps X n is closest to 32, the number of
threads per warp. Each group is associated to a non-zero matrix coefficient. For
example, for n = 5, we take ngps = 6, so the first 5 threads process in parallel
the 5 words of the 15 source vector element, threads 5 to 9, process the words
of the 2" source vector element, and so on, and we will have two idle threads
per warp.

Algorithm 4. CSR-V-par for row ¢ executed by thread of index tid in its warp

Inputs : data: array of nyz signed integers, id: array of nyz positive integers,
ptr: array of N positive integers, u: vector of N X n mots machines.
Output: v: vector of N X n mots machines.

sum « 0; // 1 machine word initialized to 0
j « ptr; +| tid / n; // position of beginning for each thread
While j < ptriy1 do

sum « addmul _word(sum,data; ,Uid;xn+tid mod n); // process 1 word

J < J +ncpes;
reduction_csr_v_par (sum,tid);
If tid< n then // first group of the warp writes in global memory
‘ Vixn+tid < Sum;

36 H. Jeljeli

For the other kernels, both schemes are applicable and the parallel scheme
always performs significantly better than the sequential scheme.

6 Comparative Analysis of SpMV Kernels

In this section, we compare the performances of the kernels that we presented.
The objective is to minimize the time of a matrix-vector product. The experi-
ments were run on an NVIDIA GeForce GTX 680 graphics processor (Kepler).
Each SpMV kernel was executed 100 times, which is large enough to obtain
stable timings. Our measurements do not include the time spent to copy data
between the host and the GPU, since the matrix and vectors do not need to be
transferred back and forth between each SpMYV iteration. The reduction modulo
¢ happens only once every few iterations, which is why the timing of an iteration
includes the timing of the reduction modulo ¢ kernel multiplied by the frequency
of its invocation. The reported measurements are based on NVIDIA developer
tools.

Table 1 summarizes the consid-

. ; Table 1. Properties of test matrix
ered matrix over Z/¢Z. The matrix

. . . ize of the matrix (IV k x k
was obtained during the resolution Size of the mat ,() 650 650
. . . #Non-zero coefficients 65M
of discrete logarithm problem in
. ; Max (row norm) 492
the 217-bit prime order subgroup
619Y % .. - Percentage of £1 92.7%
of GF(2°19)* using the FFS algo- |_. L
. . Size of ¢ (in bits) 217
rithm. The Z/¢Z elements fit in |_. L
: . . Size of M (in bits) 320
four RNS 64-bit residues. Since, an |, Ky e
extra residue is needed for the mod Size of n27((in bits) 283
Frequency of reduction mod{ 1/4

ular reduction (cf. Subsect.3.2),
the total number of RNS residues is n = 5.

6.1 Comparison of Schemes Sequential and Parallel

We compare the application of the two schemes on the CSR-V kernel. The
sequential kernel consumes more registers and shared memory, which limits the
maximum number of warps that can be run on a SM to 24. In our application,
CSR-S was limited to 24 warps/SM, for a bound of 64 warps/SM. This is reported
in the column Theoretical Occupancy of the following table. The low occupancy
significantly decreases the performance. Concerning the global memory access
pattern, the column Load/Store efficiency gives the ratio of requested memory
transactions to the number of transactions performed, which reflects the degree
to which memory accesses are coalesced (100 % efficiency) or not. For sequen-
tial kernel, uncoalesced accesses cause the bandwidth loss and the performance
degradation. The parallel kernel makes the write accesses coalesced (100 % store
efficiency). For the loads, it reaches only 47 % due to irregular accesses on the
source vector.

Accelerating Iterative SpMV for the Discrete Logarithm Problem 37

Registers | Shared memory | (Theoretical) Load/Store Timing
per thread | per SM occupancy efficiency in ms
Sequential | 27 49152 35.1% (37.5%) 7.5%/26 % 141.1
Parallel |21 15360 70.3 % (100 %) | 47.2%/100% | 41.4

It is clear that the parallel scheme is better suited to the context of large
integers. We apply this scheme to other formats and compare their performance
in the following subsection.

6.2 Comparison of Kernels CSR, COO, ELL and SLCOO

Due to the segmented reduction, the COO kernel performs more instructions
and requires more registers. Thread divergence happens more often, because of
the several branches that threads belonging to the same warp can take.

As far as the ELL kernel is concerned, the padded rows have the same length.
This yields a good balancing across the warps and the threads (cf. Occupancy
and Branch divergence in the following table). The column-major ordering makes
this kernel reach the highest cache hit rate.

The CSR-S kernel suffers from low efficiency of memory access compared
to CSR-V. In fact, with the kernel CSR-S, the threads with the same warp
work on several lines simultaneously, which makes their access to tables id and
data not contiguous. The kernel CSR-V better satisfies the GPU architectural
specificities.

Registers | Branch (Theoretical) Load/Store Cache | Timing

per thread | divergence | occupancy efficiency hit rate | in ms
coO |25 47.1% (66.7%) 65.2% | 34.3%/37.8% |34.4% |88.9
CSR-S |18 28.1% (100 %) 71.8% 29.2%/425% |354% |72.3
CSR-V |21 36.7% (100 %) 70.3% | 47.2%/100 % | 35.4 % | 41.4
ELL-R | 18 44.1% (100%) 71.8% | 38.1%/42.5% |40.1% |45.5

The next table compares the CSR-V kernel with several SLCOO kernels for
different slice sizes. We remark that increasing the slice size improves the cache
hit rate, since accesses on the source vector are less irregular. However, by making
the slices larger, we increase the usage of shared memory proportionally to the
slice size, which limits the maximum number of blocks that can run concurrently.
This limitation of the occupancy yields poor performance compared to the CSR-
V kernel. Here, we consider an L1-oriented configuration (48 kB L1, 16 kB shared)
of the on-chip memory. It is possible to move to a shared-oriented configuration
(16 kB L1, 48 kB shared). This improves the occupancy, but degrades the cache
hit rate, and finally does not improve the performances.

38 H. Jeljeli

Shared memory | Blocks | (Theoretical) Cache | Timing

per Block per SM | occupancy hit rate | in ms
CSR-V 1920 8 (100 %) 70.3% |35.4% 41.4
SLCOO-2 | 3840 6 (75 %) 68.4% 36.1% |46.9
SLCOO-4| 7680 4 (50 %) 44.5% 36.9% | 58.6
SLCOO-8 | 15360 2 (22.5%) 22.3% |37.8% |89.9

Combinations of different formats have been tested. However they do not
give better results. Splitting the matrix into column major blocks, or processing
separately the first dense columns did not improve the performance either.

For our matrix, the main bottleneck is memory access. In the CSR-V kernel,
72% of the time is spent in reading data, 2% in writing data and 26 % in
computations.

6.3 Comparison of RNS and Multi-precision Arithmetics

We also implemented the RNS and the multi-precision (MP) arithmetics on
GPU. For the MP representation, to perform the reduction modulo ¢, we use
a precomputed inverse of ¢ so as to divide by ¢ using a single multiplication.
For the 217-bit prime order subgroup, choosing the largest representable integer
M = 2%56 _1 is sufficient to accumulate a few number of SpMVs before reducing
modulo £. In fact, the maximum row norm that we have (492) allows to do up to
4 iterative SpMVs before having to reduce.

For MP kernel, the reduction kernel takes only 0.37 ms, which corresponds to
less than 0.1 ms per iteration. In RNS, we can accumulate 4 SpMVs before the
reduction modulo ¢ (cf. Table1). The reduction kernel takes 1.6ms (i.e., 0.4ms
per iteration).

The idea behind the use of RNS rather than MP arithmetic is that RNS can
significantly decrease data sharing between the threads and arithmetic opera-
tions required for the carry generation/propagation. The RNS kernel allows us to
reach higher occupancy and better performance. The speed-up of RNS compared
to multi-precision on the SpMV timing is around 15 %.

Registers | Shared memory | Executed (Theoretical) Timing

per thread | per Block instructions | occupancy in ms
MP |21 2880 6.1 x 108 (83.3%) 51.2% | 46.6
RNS 18 1920 5.8 x10% | (100%) 70.3% |41.4

7 Improvements on CSR-V Kernel

To further improve the kernel performance, one should take into account the
GPU architectural characteristics: the management of the memory accesses, the
partitioning of the computations and the specificities of the problem considered.

Accelerating Iterative SpMV for the Discrete Logarithm Problem 39

Texture caching. Although our SpMV kernel suffers from irregular load accesses,
a thread is likely to read from an address near the addresses that nearby threads
(of the same group) read. For this reason, we bind on texture memory and
replace reads with texture fetches. This improves the global memory efficiency
and consequently the SpMV delay.

Reordering the non-zero coefficients of a row. Since most of the coeffi-
cients of the matrix are £1, it seems promising to treat multiplications by these
coefficients differently from other coefficients: additions and subtractions are less
expensive than multiplications. All these separations result in code divergence,
that we fix by reordering the non-zero coefficients in the matrix such that val-
ues of the same category (+1,—1,> 0,< 0) are contiguous. This decreases the
branch divergence and decreases the total SpMV delay.

Compressing the values array data. Since the majority of the coefficients are
+1, after reordering the coefficients per row, we can replace the +1 coefficients
by their occurrence count. This reduces the length of the values array data by
more than 10 times, and so reduces the number of reads.

Improving warp balancing. In the CSR-V kernel, each warp processes a single
row. This requires launching a large number of warps. Consequently, there is a
delay to schedule those launched warps. Instead, we propose that each warp
iterates over a certain number of rows. To further increase the occupancy, we
permute the rows such that each warp roughly gets the same work load.

Performance effects Timing in ms
(speedup)
Texture caching Global Load efficiency: 47.2 % — 84 % 32 (+30%)
Non-zeros reordering | Branch Divergence: 36.7 % — 12.9% 30.5 (+5%)
Compressing data | Executed Instructions (x10%): 5.8 — 5.72| 27.6 (+11 %)
Multiple iterations | Occupancy: 70.3 % — 74.9 % 27.4 (+0.5%)
Rows permutation | Occupancy: 74.9 % — 81.8 % 27.1 (+1%)

8 Reference Software Implementation

For comparison purposes, we implemented SpMV on the three software instruc-
tion set architectures MMX, SSE and AVX, based on the RNS representation
for the arithmetic and the CSR format for the storage of the matrix. We have
not explored other formats that can be suitable for CPU. Probably blocked for-
mats that better use the cache can further improve the performance on CPU.
Unlike for GPU, processing separately the first dense columns accelerates the
CPU SpMV of around 5 %.

40 H. Jeljeli

We can report the computational throughput in terms of GFLOP /s, which
we determine by dividing the number of required operations (twice the number
of non-zero elements in the matrix A multiplied by 2 x n) by the running time.
We will use this unit of measure for the throughput even for integer instructions.

The experiment was run on an Intel CPU i5-4570 (3.2 GHz) using 4 threads
on 4 cores. The AVX2 implementation using integers is the fastest implemen-
tation and reaches the highest throughput. However, the fact that the number
of moduli is a multiple of four entail overheads. When comparing the software
performance with the GPU one, the fastest software implementation is 4 to 5
times slower than on one graphics processor.

Length of | Number of | Timing | Throughput
modulus | moduli (n) |in ms |in GFLOP/s

MMX (integer) 64 5 306 5.3

MMX (double-precision floats) | 52 6 351 3.7

SSE2 (integer) 63 6 154 12.1

SSE2 (double-precision floats) | 52 6 176 10.6

AVX2 (integer) 63 8 117 | 21.2

AVX2 (double-precision floats) | 52 8 135 18.3

GPU (integer) 64 5 27 57.6

9 Conclusion

We have investigated different data structures to perform iterative SpMV for
DLP matrices on GPUs. We have adapted the kernels for the context of large
finite fields and added optimizations suitable to the sparsity and the specific
computing model. The CSR-V kernel based on the parallel scheme appears to
be the most efficient one. The SLCOO poses for the sizes that we use some
hardware difficulties that nullify its contribution on increasing the cache hit
rate. Future GPUs may enhance the performance. We have shown that using
RNS for finite field arithmetic provides a considerable degree of independence,
which can be exploited by massively parallel hardware. This implementation
contributed to solving the discrete logarithm problem in GF(26?) and GF(28%9)
(See Appendix B and [3,10] for further details).

Accelerating Iterative SpMV for the Discrete Logarithm Problem 41

A Formats and GPU Kernels of SpMV

0 an 0 aps O 0 agy apz * 1 3
0 ann 0 0 au as a1l a4 ais 1 4 5
0 0 0) [‘)]
0 a1 0 0 asp O data = azy azq ¥ id = 1 4 len =[2 33232
0 aq1 az2 0 0 ays a1 Qa2 45 125
as2 55 * 2 5 %

0 0 as2 0 0 ass
(s) Sparse matrix A (b) ELL-R representation

data = | Qo1 @11 Qo3 G14 Q15 G20 A31 Q22 A23 434 ...

row_id =

0o 1 0 1 12 3 2 2 3 }

ptrSlice =

col_id = [l 13 4 5 0 1 2 3 4 }
{() 5 10

(¢) SLCOO-2 representation

Algorithm 5. ELL-R for row i executed by one thread

Inputs : data: array of K x N elements of K, id: array of K X N positive
integers,
len: array of N positive integers and u: vector of N elements of K.
Output: v: vector of N elements of K.

sum « 0;
For j < 0 to len; do
‘ sum <« addmul(sum,dataNXj+row,uidNXj+row);

V; «— sum;

Algorithm 6. SLCOO-o for slice i executed by thread of index tid in its warp

Inputs : data: array of nyz elements of K, row_id, col_id: arrays of nyz
positive integers, ptrSlice: array of IV positive integers and u: vector
of N elements of K.

Output: v: vector of N elements of K.

Declare array sum < {0}; // array of o elements of K
i «— ptrSlice; + tid; // position of beginning for each thread
While j < ptrSlice;+; do

Su-mrow,idj mod o < addmul (Su-mrow,idj mod o)dataj > ucol,idj mod a);

J—=7J+3%
reduction_slcoo(sum,tid); // reduction in shared memory
If tid= 0 then // first thread of warp writes in global memory

For j — 0 to o do
Vi x o+ < Sully;

42 H. Jeljeli

B Resolution of Linear Algebra of the Function Field
Sieve

The linear algebra step consists of solving the system Aw = 0, where A is the
matrix produced by the filtering step of the FFS algorithm. A is singular and
square. Finding a vector of the kernel of the matrix is generally sufficient for the
FFS algorithm.

The simple Wiedemann algorithm [27] which resolves such a system, is com-
posed of three steps:

— Scalar products: It consists on the computation of a sequence of scalars a; =
txAly, where 0 < i < 2N, and z and y are random vectors in (Z/¢Z)N. We
take = in the canonical basis, so that instead of performing a full dot product
between ‘& and A’y, we just store the element of A’y that corresponds to the
non-zero coordinate of x.

— Linear generator: Using the Berlekamp-Massey algorithm, this step computes
a linear generator of the a;’s. The output F' is a polynomial whose coefficients
lie in Z/¢Z, and whose degree is very close to N.

— EBvaluation: The last step computes Zfi%(F) A'Fyy, where Fj is the i*" coef-
ficient of F. The result is with high probability a non-zero vector of the
kernel of A.

The Block Wiedemann algorithm [11] proposes to use m random vectors for
z and n random vectors for y. The sequence of scalars is thus replaced by a
sequence of m x n matrices and the numbers of iterations of the first and third
steps become (N/n + N/m) and N/n, respectively. The n subsequences can
be computed independently and in parallel. So, the block Wiedemann method
allows to distribute the computation without an additional overhead [25].

B.1 Linear Algebra of FFS for GF(2619)

The matrix has 650k rows and columns. The prime ¢ is 217 bits. The com-
putation was completed using the simple Wiedemann algorithm on a single
NVIDIA GeForce GTX 580. The overall computation needed 16 GPU hours
and 1 CPU hour.

B.2 Linear Algebra of FFS for GF(28%9)

The matrix has 3.6M rows and columns. The prime £ is 202 bits. We run a Block
Wiedemann on a cluster of 8 GPUs. We used 4 distinct nodes, each equipped with
two NVIDIA Tesla M2050 graphics processors, and ran the Block Wiedemann
algorithm with blocking parameters m = 8 and n = 4. The overall computation
required 4.4 days in parallel on the 4 nodes.

These two computations were part of record-sized discrete logarithm compu-
tations in a prime-degree extension field [3,10].

Accelerating Iterative SpMV for the Discrete Logarithm Problem 43

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Adleman, L.: A subexponential algorithm for the discrete logarithm problem with
applications to cryptography. In: Proceedings of the 20th Annual Symposium on
Foundations of Computer Science, Washington, DC, USA, pp. 55-60 (1979)

Bai, S., Bouvier, C., Filbois, A., Gaudry, P., Imbert, L., Kruppa, A., Morain,
F., Thomé, E., Zimmermann, P.: Cado-nfs: Crible algébrique: Distribution,
optimisation - number field sieve. http://cado-nfs.gforge.inria.fr/

Barbulescu, R., Bouvier, C., Detrey, J., Gaudry, P., Jeljeli, H., Thomé, E., Videau,
M., Zimmermann, P.: Discrete logarithm in GF(2809) with FFS. In: Krawczyk, H.
(ed.) PKC 2014. LNCS, vol. 8383, pp. 221-238. Springer, Heidelberg (2014)

Bell, N., Garland, M.: Efficient sparse matrix-vector multiplication on CUDA.
Technical report NVR-2008-004, NVIDIA Corporation, December 2008

Bell, N., Garland, M.: Cusp: Generic parallel algorithms for sparse matrix and
graph computations (2012). http://code.google.com/p/cusp-library/

Bernstein, D.J.: Multidigit modular multiplication with the explicit chinese remain-
der theorem. Technical report (1995). http://cr.yp.to/papers/mmecrt.pdf
Blelloch, G.E., Heroux, M.A., Zagha, M.: Segmented operations for sparse matrix
computation on vector multiprocessors. Technical report CMU-CS-93-173, School
of Computer Science, Carnegie Mellon University, August 1993

Boyer, B., Dumas, J.G., Giorgi, P.: Exact sparse matrix-vector multiplication on
GPU’s and multicore architectures. CoRR abs/1004.3719 (2010)

Hayashi, T., Shimoyama, T., Shinohara, N., Takagi, T.: Breaking pairing-based
cryptosystems using n: pairing over GF(397). Cryptology ePrint Archive, Report
2012/345 (2012)

Jeljeli, H.: Resolution of linear algebra for the discrete logarithm problem using
GPU and multi-core architectures. In: Silva, F., Dutra, I., Santos Costa, V. (eds.)
Euro-Par 2014. LNCS, vol. 8632, pp. 764-775. Springer, Heidelberg (2014)
Kaltofen, E.: Analysis of coppersmith’s block wiedemann algorithm for the parallel
solution of sparse linear systems. Math. Comput. 64(210), 777-806 (1995)
LaMacchia, B.A., Odlyzko, A.M.: Solving large sparse linear systems over finite
fields. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp.
109-133. Springer, Heidelberg (1991)

Lanczos, C.: Solution of systems of linear equations by minimized iterations. J.
Res. Natl. Bur. Stand 49, 33-53 (1952)

NVIDIA Corporation: CUDA Programming Guide Version 4.2 (2012). http://
developer.nvidia.com/cuda-downloads

NVIDIA Corporation: PTX: Parallel Thread Execution ISA Version 3.0 (2012).
http://developer.nvidia.com/cuda-downloads

Odlyzko, A.M.: Discrete logarithms in finite fields and their cryptographic signif-
icance. In: Beth, T., Cot, N., Ingemarsson, 1. (eds.) EUROCRYPT 1984. LNCS,
vol. 209, pp. 224-314. Springer, Heidelberg (1985)

Pollard, J.M.: A monte carlo method for factorization. BIT Numer. Math. 15,
331-334 (1975)

Pomerance, C., Smith, J.W.: Reduction of huge, sparse matrices over finite fields
via created catastrophes. Exp. Math. 1, 89-94 (1992)

Schmidt, B., Aribowo, H., Dang, H.-V.: Iterative sparse matrix-vector multiplica-
tion for integer factorization on GPUs. In: Jeannot, E., Namyst, R., Roman, J.
(eds.) Euro-Par 2011, Part II. LNCS, vol. 6853, pp. 413—424. Springer, Heidelberg
(2011)

http://cado-nfs.gforge.inria.fr/
http://code.google.com/p/cusp-library/
http://cr.yp.to/papers/mmecrt.pdf
http://developer.nvidia.com/cuda-downloads
http://developer.nvidia.com/cuda-downloads
http://developer.nvidia.com/cuda-downloads

44

20.

21.

22.

23.

24.

25.

26.

27.

H. Jeljeli

Sengupta, S., Harris, M., Zhang, Y., Owens, J.D.: Scan primitives for GPU com-
puting, pp. 97-106, August 2007

Shanks, D.: Class number, a theory of factorization, and genera. In: 1969 Number
Theory Institute (Proc. Sympos. Pure Math., Vol. XX, State Univ. New York,
Stony Brook, N.Y., 1969), pp. 415-440. Providence, R.I. (1971)

Stach, P.: Optimizations to nfs linear algebra. In:CADO Workshop on Integer
Factorization. http://cado.gforge.inria.fr/workshop/abstracts.html

Szabo, N.S., Tanaka, R.I.: Residue Arithmetic and Its Applications to Computer
Technology. McGraw-Hill Book Company, New York (1967)

Taylor, F.J.: Residue arithmetic a tutorial with examples. Computer 17, 50-62
(1984)

Thomé, E.: Subquadratic computation of vector generating polynomials and
improvement of the block wiedemann algorithm. J. Symbolic Comput. 33(5),
757775 (2002)

Véazquez, F., Garzén, E.M., Martinez, J.A., Ferndndez, J.J.: The sparse matrix
vector product on GPUs. Technical report, University of Almeria, June 2009
Wiedemann, D.H.: Solving sparse linear equations over finite fields. IEEE Trans.
Inf. Theor. 32(1), 54-62 (1986)

http://cado.gforge.inria.fr/workshop/abstracts.html

2 Springer
http://www.springer.com/978-3-319-16276-8

Arithmetic of Finite Fields

S5th International Workshop, WAIFI 2014, Gebze, Turkey,
September 27-28, 2014, Revised Selected Papers

Kog, C.K.; Mesnager, S.; Savas, E. (Eds.)

2015, X, 213 p. 18 illus., Softcover

ISBN: 978-3-319-16276-8

	Accelerating Iterative SpMV for the Discrete Logarithm Problem Using GPUs
	1 Introduction
	2 Background
	2.1 GPUs and the CUDA Programming Model
	2.2 Sparse-Matrix--Vector Product on GPUs

	3 Residue Number System and Modular Arithmetic
	3.1 A Brief Reminder on RNS
	3.2 RNS Reduction Modulo
	3.3 Modular Reduction Modulo pj
	3.4 Possible RNS Mappings on GPU/CPU

	4 Sparse Matrix Storage Formats
	5 SpMV Kernels Over Large Fields
	6 Comparative Analysis of SpMV Kernels
	6.1 Comparison of Schemes Sequential and Parallel
	6.2 Comparison of Kernels CSR, COO, ELL and SLCOO
	6.3 Comparison of RNS and Multi-precision Arithmetics

	7 Improvements on CSR-V Kernel
	8 Reference Software Implementation
	9 Conclusion
	A Formats and GPU Kernels of SpMV
	B Resolution of Linear Algebra of the Function Field Sieve
	B.1 Linear Algebra of FFS for GF(2619)
	B.2 Linear Algebra of FFS for GF(2809)

	References

