
Chapter 2
Vector and Tensor Analysis in Euclidean
Space

2.1 Vector- and Tensor-Valued Functions, Differential
Calculus

In the following we consider a vector-valued function x (t) and a tensor-valued
function A (t) of a real variable t . Henceforth, we assume that these functions are
continuous such that

lim
t→t0

[x (t) − x (t0)] = 0, lim
t→t0

[A (t) − A (t0)] = 0 (2.1)

for all t0 within the definition domain. The functions x (t) and A (t) are called
differentiable if the following limits

dx
dt

= lim
s→0

x (t + s) − x (t)

s
,

dA
dt

= lim
s→0

A (t + s) − A (t)

s
(2.2)

exist and are finite. They are referred to as the derivatives of the vector- and tensor-
valued functions x (t) and A (t), respectively.

For differentiable vector- and tensor-valued functions the usual rules of differen-
tiation hold.

(1) Product of a scalar function with a vector- or tensor-valued function:

d

dt
[u (t) x (t)] = du

dt
x (t) + u (t)

dx
dt

, (2.3)

d

dt
[u (t) A (t)] = du

dt
A (t) + u (t)

dA
dt

. (2.4)

(2) Mapping of a vector-valued function by a tensor-valued function:

d

dt
[A (t) x (t)] = dA

dt
x (t) + A (t)

dx
dt

. (2.5)
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38 2 Vector and Tensor Analysis in Euclidean Space

(3) Scalar product of two vector- or tensor-valued functions:

d

dt

[
x (t) · y (t)

] = dx
dt

· y (t) + x (t) · d y
dt

, (2.6)

d

dt
[A (t) : B (t)] = dA

dt
: B (t) + A (t) : dB

dt
. (2.7)

(4) Tensor product of two vector-valued functions:

d

dt

[
x (t) ⊗ y (t)

] = dx
dt

⊗ y (t) + x (t) ⊗ d y
dt

. (2.8)

(5) Composition of two tensor-valued functions:

d

dt
[A (t) B (t)] = dA

dt
B (t) + A (t)

dB
dt

. (2.9)

(6) Chain rule:

d

dt
x [u (t)] = dx

du

du

dt
,

d

dt
A [u (t)] = dA

du

du

dt
. (2.10)

(7) Chain rule for functions of several arguments:

d

dt
x [u (t) ,v (t)] = ∂x

∂u

du

dt
+ ∂x

∂v

dv

dt
, (2.11)

d

dt
A [u (t) ,v (t)] = ∂A

∂u

du

dt
+ ∂A

∂v

dv

dt
, (2.12)

where ∂/∂u denotes the partial derivative. It is defined for vector and tensor
valued functions in the standard manner by

∂x (u,v)

∂u
= lim

s→0

x (u + s,v) − x (u,v)

s
, (2.13)

∂A (u,v)

∂u
= lim

s→0

A (u + s,v) − A (u,v)

s
. (2.14)

The above differentiation rules can be verified with the aid of elementary differential
calculus. For example, for the derivative of the composition of two second-order
tensors (2.9) we proceed as follows. Let us define two tensor-valued functions by

O1 (s) = A (t + s) − A (t)

s
− dA

dt
, O2 (s) = B (t + s) − B (t)

s
− dB

dt
. (2.15)

Bearing the definition of the derivative (2.2) in mind we have

lim
s→0

O1 (s) = 0, lim
s→0

O2 (s) = 0.
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Then,

d

dt
[A (t) B (t)] = lim

s→0

A (t + s) B (t + s) − A (t) B (t)

s

= lim
s→0

1

s

{[
A (t) + s

dA
dt

+ sO1 (s)

] [
B (t) + s

dB
dt

+ sO2 (s)

]

− A (t) B (t)

}

= lim
s→0

{[
dA
dt

+ O1 (s)

]
B (t) + A (t)

[
dB
dt

+ O2 (s)

]}

+ lim
s→0

s

[
dA
dt

+ O1 (s)

] [
dB
dt

+ O2 (s)

]
= dA

dt
B (t) + A (t)

dB
dt

.

2.2 Coordinates in Euclidean Space, Tangent Vectors

Definition 2.1 A coordinate system is a one to one correspondence between vectors
in the n-dimensional Euclidean spaceE

n and a set of n real numbers (x1, x2, . . . , xn).
These numbers are called coordinates of the corresponding vectors.

Thus, we can write

xi = xi (r) ⇔ r = r
(

x1, x2, . . . , xn
)

, (2.16)

where r ∈ E
n and xi ∈ R (i = 1, 2, . . . , n). Henceforth, we assume that the func-

tions xi = xi (r) and r = r
(
x1, x2, . . . , xn

)
are sufficiently differentiable.

Example 2.1 Cylindrical coordinates in E
3. The cylindrical coordinates (Fig. 2.1)

are defined by

r = r (ϕ, z, r) = r cosϕe1 + r sinϕe2 + ze3 (2.17)

and

r =
√

(r · e1)2 + (r · e2)2, z = r · e3,

ϕ =
⎧
⎨

⎩

arccos
r · e1

r
if r · e2 ≥ 0,

2π − arccos
r · e1

r
if r · e2 < 0,

(2.18)

where ei (i = 1, 2, 3) form an orthonormal basis in E
3.
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ϕ

e1

r

x1

e2 x2

x3 = z

e3

r

g 3

g 1

g 2

Fig. 2.1 Cylindrical coordinates in three-dimensional space

The vector components with respect to a fixed basis, say H = {h1, h2, . . . , hn},
obviously represent its coordinates. Indeed, according to Theorem 1.5 of the previous
chapter the following correspondence is one to one

r = xi hi ⇔ xi = r · hi , i = 1, 2, . . . , n, (2.19)

where r ∈ E
n and H′ = {

h1, h2, . . . , hn} is the basis dual to H. The components
xi (2.19)2 are referred to as the linear coordinates of the vector r .

The Cartesian coordinates result as a special case of the linear coordinates (2.19)
where hi = ei (i = 1, 2, . . . , n) so that

r = xi ei ⇔ xi = r · ei , i = 1, 2, . . . , n. (2.20)

Let xi = xi (r) and yi = yi (r) (i = 1, 2, . . . , n) be two arbitrary coordinate
systems in E

n . Since their correspondences are one to one, the functions

xi = x̂ i
(

y1, y2, . . . , yn
)

⇔ yi = ŷi
(

x1, x2, . . . , xn
)

, i = 1, 2, . . . , n (2.21)

http://dx.doi.org/10.1007/978-3-319-16342-0_1
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are invertible. These functions describe the transformation of the coordinate systems.
Inserting one relation (2.21) into another one yields

yi = ŷi
(

x̂1
(

y1, y2, . . . , yn
)

,

x̂2
(

y1, y2, . . . , yn
)

, . . . , x̂n
(

y1, y2, . . . , yn
))

. (2.22)

The further differentiation with respect to y j delivers with the aid of the chain rule

∂yi

∂y j
= δi j = ∂yi

∂xk

∂xk

∂y j
, i, j = 1, 2, . . . , n. (2.23)

The determinant of the matrix (2.23) takes the form

∣∣δi j
∣∣ = 1 =

∣
∣∣∣
∂yi

∂xk

∂xk

∂y j

∣
∣∣∣ =

∣
∣∣∣
∂yi

∂xk

∣
∣∣∣

∣
∣∣∣
∂xk

∂y j

∣
∣∣∣ . (2.24)

The determinant
∣∣∂yi/∂xk

∣∣ on the right hand side of (2.24) is referred to as Jacobian
determinant of the coordinate transformation yi = ŷi

(
x1, x2, . . . , xn

)
(i = 1, 2,

. . . , n). Thus, we have proved the following theorem.

Theorem 2.1 If the transformation of the coordinates yi = ŷi
(
x1, x2, . . . , xn

)

admits an inverse form xi = x̂ i
(
y1, y2, . . . , yn

)
(i = 1, 2, . . . , n) and if J and K

are the Jacobians of these transformations then J K = 1.

One of the important consequences of this theorem is that

J =
∣∣∣∣
∂yi

∂xk

∣∣∣∣ �= 0. (2.25)

Now, we consider an arbitrary curvilinear coordinate system

θi = θi (r) ⇔ r = r
(
θ1, θ2, . . . , θn

)
, (2.26)

where r ∈ E
n and θi ∈ R (i = 1, 2, . . . , n). The equations

θi = const, i = 1, 2, . . . , k − 1, k + 1, . . . , n (2.27)

define a curve in E
n called θk-coordinate line. The vectors (see Fig. 2.2)

gk = lim
s→0

r
(
θk + s

) − r
(
θk
)

s
= ∂r

∂θk
, k = 1, 2, . . . , n (2.28)

are called the tangent vectors to the corresponding θk-coordinate lines (2.27).
One can verify that the tangent vectors are linearly independent and form thus

a basis of E
n . Conversely, let the vectors (2.28) be linearly dependent. Then, there
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Fig. 2.2 Illustration of the
tangent vectors gk

r(θk + s)

r(θk)

θkΔr

are scalars αi ∈ R (i = 1, 2, . . . , n), not all zero, such that αigi = 0. Let further
xi = xi (r) (i = 1, 2, . . . , n) be linear coordinates in E

n with respect to a basis
H = {h1, h2, . . . , hn}. Then,

0 = αigi = αi ∂r
∂θi

= αi ∂r
∂x j

∂x j

∂θi
= αi ∂x j

∂θi
h j .

Since the basis vectors h j ( j = 1, 2, . . . , n) are linearly independent

αi ∂x j

∂θi
= 0, j = 1, 2, . . . , n.

This is a homogeneous linear equation systemwith a non-trivial solutionαi
(
i = 1, 2,

. . . , n
)
. Hence,

∣∣∂x j/∂θi
∣∣ = 0, which obviously contradicts relation (2.25).

Example 2.2 Tangent vectors and metric coefficients of cylindrical coordinates in
E
3. By means of (2.17) and (2.28) we obtain

g1 = ∂r
∂ϕ

= −r sinϕe1 + r cosϕe2,

g2 = ∂r
∂z

= e3,

g3 = ∂r
∂r

= cosϕe1 + sinϕe2. (2.29)

The metric coefficients take by virtue of (1.24) and (1.25)2 the form

[
gi j

] = [
gi · g j

] =
⎡

⎣
r2 0 0
0 1 0
0 0 1

⎤

⎦ ,
[
gi j

]
= [

gi j
]−1 =

⎡

⎣
r−2 0 0
0 1 0
0 0 1

⎤

⎦ . (2.30)

http://dx.doi.org/10.1007/978-3-319-16342-0_1
http://dx.doi.org/10.1007/978-3-319-16342-0_1
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The dual basis results from (1.21)1 by

g1 = 1

r2
g1 = −1

r
sinϕe1 + 1

r
cosϕe2,

g2 = g2 = e3,

g3 = g3 = cosϕe1 + sinϕe2. (2.31)

2.3 Coordinate Transformation. Co-, Contra- and Mixed
Variant Components

Let θi = θi (r) and θ̄i = θ̄i (r) (i = 1, 2, . . . , n) be two arbitrary coordinate systems
in E

n . It holds

ḡi = ∂r

∂θ̄i
= ∂r

∂θ j

∂θ j

∂θ̄i
= g j

∂θ j

∂θ̄i
, i = 1, 2, . . . , n. (2.32)

If gi is the dual basis to gi (i = 1, 2, . . . , n), then we can write

ḡi = g j ∂θ̄i

∂θ j
, i = 1, 2, . . . , n. (2.33)

Indeed,

ḡi · ḡ j =
(

gk ∂θ̄i

∂θk

)

·
(

gl
∂θl

∂θ̄ j

)
= gk · gl

(
∂θ̄i

∂θk

∂θl

∂θ̄ j

)

= δk
l

(
∂θ̄i

∂θk

∂θl

∂θ̄ j

)

= ∂θ̄i

∂θk

∂θk

∂θ̄ j
= ∂θ̄i

∂θ̄ j
= δi

j , i, j = 1, 2, . . . , n. (2.34)

One can observe the difference in the transformation of the dual vectors (2.32) and
(2.33) which results from the change of the coordinate system. The transformation
rules of the form (2.32) and (2.33) and the corresponding variables are referred to as
covariant and contravariant, respectively. Covariant and contravariant variables are
denoted by lower and upper indices, respectively.

The co- and contravariant rules can also be recognized in the transformation of
the components of vectors and tensors if they are related to tangent vectors. Indeed,
let

x = xig
i = xigi = x̄i ḡ

i = x̄ i ḡi , (2.35)

A = Ai jg
i ⊗ g j = Ai jgi ⊗ g j = Ai

· jgi ⊗ g j

= Āi j ḡ
i ⊗ ḡ j = Ā

i j
ḡi ⊗ ḡ j = Ā

i
· j ḡi ⊗ ḡ j . (2.36)

http://dx.doi.org/10.1007/978-3-319-16342-0_1
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Then, by means of (1.28), (1.91), (2.32) and (2.33) we obtain

x̄i = x · ḡi = x ·
(

g j
∂θ j

∂θ̄i

)
= x j

∂θ j

∂θ̄i
, (2.37)

x̄ i = x · ḡi = x ·
(

g j ∂θ̄i

∂θ j

)

= x j ∂θ̄i

∂θ j
, (2.38)

Āi j = ḡi Aḡ j =
(

gk
∂θk

∂θ̄i

)
A
(

gl
∂θl

∂θ̄ j

)
= ∂θk

∂θ̄i

∂θl

∂θ̄ j
Akl , (2.39)

Ā
i j = ḡi Aḡ j =

(

gk ∂θ̄i

∂θk

)

A

(

gl ∂θ̄ j

∂θl

)

= ∂θ̄i

∂θk

∂θ̄ j

∂θl
Akl , (2.40)

Ā
i
· j = ḡi Aḡ j =

(

gk ∂θ̄i

∂θk

)

A
(

gl
∂θl

∂θ̄ j

)
= ∂θ̄i

∂θk

∂θl

∂θ̄ j
Ak

·l . (2.41)

Accordingly, the vector and tensor components xi , Ai j and xi , Ai j are called covariant
and contravariant, respectively. The tensor components Ai

· j are referred to as mixed
variant. The transformation rules (2.37)–(2.41) can similarly be written for tensors
of higher orders as well. For example, one obtains for third-order tensors

Āi jk = ∂θr

∂θ̄i

∂θs

∂θ̄ j

∂θt

∂θ̄k
Arst , Āi jk = ∂θ̄i

∂θr

∂θ̄ j

∂θs

∂θ̄k

∂θt
Arst , . . . (2.42)

From the very beginning we have supplied coordinates with upper indices which
imply the contravariant transformation rule. Indeed, let us consider the transformation
of a coordinate system θ̄i = θ̄i

(
θ1, θ2, . . . , θn

)
(i = 1, 2, . . . , n). It holds:

d θ̄i = ∂θ̄i

∂θk
dθk, i = 1, 2, . . . , n. (2.43)

Thus, the differentials of the coordinates really transform according to the contravari-
ant law (2.33).

Example 2.3 Transformation of linear coordinates into cylindrical ones (2.17). Let
xi = xi (r) be linear coordinateswith respect to an orthonormal basis ei (i = 1, 2, 3)
in E

3:

xi = r · ei ⇔ r = xi ei . (2.44)

By means of (2.17) one can write

x1 = r cosϕ, x2 = r sinϕ, x3 = z (2.45)

http://dx.doi.org/10.1007/978-3-319-16342-0_1
http://dx.doi.org/10.1007/978-3-319-16342-0_1
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and consequently

∂x1

∂ϕ
= −r sinϕ = −x2,

∂x1

∂z
= 0,

∂x1

∂r
= cosϕ = x1

r
,

∂x2

∂ϕ
= r cosϕ = x1,

∂x2

∂z
= 0,

∂x2

∂r
= sinϕ = x2

r
,

∂x3

∂ϕ
= 0,

∂x3

∂z
= 1,

∂x3

∂r
= 0.

(2.46)

The reciprocal derivatives can easily be obtained from (2.23) by inverting the matrix[
∂xi

∂ϕ
∂xi

∂z
∂xi

∂r

]
. This yields:

∂ϕ

∂x1
= −1

r
sinϕ = − x2

r2
,

∂ϕ

∂x2
= 1

r
cosϕ = x1

r2
,

∂ϕ

∂x3
= 0,

∂z

∂x1
= 0,

∂z

∂x2
= 0,

∂z

∂x3
= 1,

∂r

∂x1
= cosϕ = x1

r
,

∂r

∂x2
= sinϕ = x2

r
,

∂r

∂x3
= 0.

(2.47)

It is seen that these derivatives coincide with the components of the dual vectors
(2.31) with respect to the orthonormal basis. This is in view of (2.33) and due to
the fact that the coordinate transformation is applied to the Cartesian coordinates
xi (i = 1, 2, 3).

2.4 Gradient, Covariant and Contravariant Derivatives

Let Φ = Φ
(
θ1, θ2, . . . , θn

)
, x = x

(
θ1, θ2, . . . , θn

)
and A = A

(
θ1, θ2, . . . , θn

)

be, respectively, a scalar-, a vector- and a tensor-valued differentiable function of the
coordinates θi ∈ R (i = 1, 2, . . . , n). Such functions of coordinates are generally
referred to as fields, as for example, the scalar field, the vector field or the tensor
field. Due to the one to one correspondence (2.26) these fields can alternatively be
represented by

Φ = Φ (r) , x = x (r) , A = A (r) . (2.48)

In the following we assume that the so-called directional derivatives of the functions
(2.48)
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d

ds
Φ (r + sa)

∣∣
∣∣
s=0

= lim
s→0

Φ (r + sa) − Φ (r)
s

,

d

ds
x (r + sa)

∣∣∣∣
s=0

= lim
s→0

x (r + sa) − x (r)
s

,

d

ds
A (r + sa)

∣∣∣∣
s=0

= lim
s→0

A (r + sa) − A (r)
s

(2.49)

exist for all a ∈ E
n . Further, one can show that themappings a → d

ds Φ (r + sa)
∣∣
s=0,

a → d
ds x (r + sa)

∣∣
s=0 and a → d

ds A (r + sa)
∣∣
s=0 are linear with respect to the

vector a. For example,we canwrite for the directional derivative of the scalar function
Φ = Φ (r)

d

ds
Φ [r + s (a + b)]

∣∣
∣∣
s=0

= d

ds
Φ [r + s1a + s2b]

∣∣
∣∣
s=0

, (2.50)

where s1 and s2 are assumed to be functions of s such that s1 = s and s2 = s. With
the aid of the chain rule this delivers

d

ds
Φ [r + s1a + s2b]

∣∣∣∣
s=0

=
{

∂

∂s1
Φ [r + s1a + s2b]

ds1
ds

+ ∂

∂s2
Φ [r + s1a + s2b]

ds2
ds

}∣∣∣∣
s=0

= ∂

∂s1
Φ (r + s1a + s2b)

∣∣
∣∣
s1=0,s2=0

+ ∂

∂s2
Φ (r + s1a + s2b)

∣∣
∣∣
s1=0,s2=0

= d

ds
Φ (r + sa)

∣∣∣
∣
s=0

+ d

ds
Φ (r + sb)

∣∣∣
∣
s=0

and finally

d

ds
Φ [r + s (a + b)]

∣∣∣∣
s=0

= d

ds
Φ (r + sa)

∣∣∣∣
s=0

+ d

ds
Φ (r + sb)

∣∣∣∣
s=0

(2.51)

for all a, b ∈ E
n . In a similar fashion we can write

d

ds
Φ (r + sαa)

∣∣∣∣
s=0

= d

d (αs)
Φ (r + sαa)

d (αs)

ds

∣∣∣∣
s=0

= α
d

ds
Φ (r + sa)

∣∣∣∣
s=0

, ∀a ∈ E
n, ∀α ∈ R. (2.52)
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Representing a with respect to a basis as a = aigi we thus obtain

d

ds
Φ (r + sa)

∣∣∣
∣
s=0

= d

ds
Φ
(

r + saigi

)∣∣∣
∣
s=0

= ai d

ds
Φ
(
r + sgi

)
∣∣∣
∣
s=0

= d

ds
Φ
(
r + sgi

)
∣∣
∣∣
s=0

gi ·
(

a jg j

)
, (2.53)

where gi form the basis dual to gi (i = 1, 2, . . . , n). This result can finally be
expressed by

d

ds
Φ (r + sa)

∣∣∣∣
s=0

= gradΦ · a, ∀a ∈ E
n, (2.54)

where the vector denoted by gradΦ ∈ E
n is referred to as gradient of the function

Φ = Φ (r). According to (2.53) and (2.54) it can be represented by

gradΦ = d

ds
Φ
(
r + sgi

)
∣∣∣∣
s=0

gi . (2.55)

Example 2.4 Gradient of the scalar function ‖r‖. Using the definition of the direc-
tional derivative (2.49) we can write

d

ds
‖r + sa‖

∣∣∣∣
s=0

= d

ds

√
(r + sa) · (r + sa)

∣∣∣∣
s=0

= d

ds

√
r · r + 2s (r · a) + s2 (a · a)

∣∣∣
∣
s=0

= 1

2

2 (r · a) + 2s (a · a)
√

r · r + 2s (r · a) + s2 (a · a)

∣∣
∣∣∣
s=0

= r · a
‖r‖ .

Comparing this result with (2.54) delivers

grad ‖r‖ = r
‖r‖ . (2.56)

Similarly to (2.54) one defines the gradient of the vector function x = x (r) and the
gradient of the tensor function A = A (r):

d

ds
x (r + sa)

∣∣∣∣
s=0

= (gradx) a, ∀a ∈ E
n, (2.57)

d

ds
A (r + sa)

∣∣∣∣
s=0

= (gradA) a, ∀a ∈ E
n . (2.58)

Herein, gradx and gradA represent tensors of second and third order, respectively.
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In order to evaluate the above gradients (2.54), (2.57) and (2.58) we represent the
vectors r and a with respect to the linear coordinates (2.19) as

r = xi hi , a = ai hi . (2.59)

With the aid of the chain rule we can further write for the directional derivative of
the function Φ = Φ (r):

d

ds
Φ (r + sa)

∣
∣∣∣
s=0

= d

ds
Φ
[(

xi + sai
)

hi

]∣∣∣∣
s=0

= ∂Φ

∂
(
xi + sai

)
d
(
xi + sai

)

ds

∣∣∣∣∣
s=0

= ∂Φ

∂xi
ai

=
(

∂Φ

∂xi
hi
)

·
(

a j h j

)
=

(
∂Φ

∂xi
hi
)

· a, ∀a ∈ E
n .

Comparing this result with (2.54) and bearing in mind that it holds for all vectors a
we obtain

gradΦ = ∂Φ

∂xi
hi . (2.60)

The representation (2.60) can be rewritten in terms of arbitrary curvilinear coordi-
nates r = r

(
θ1, θ2, . . . , θn

)
and the corresponding tangent vectors (2.28). Indeed,

in view of (2.33) and (2.60)

gradΦ = ∂Φ

∂xi
hi = ∂Φ

∂θk

∂θk

∂xi
hi = ∂Φ

∂θi
gi . (2.61)

Comparison of the last result with (2.55) yields

d

ds
Φ
(
r + sgi

)
∣∣∣∣
s=0

= ∂Φ

∂θi
, i = 1, 2, . . . , n. (2.62)

According to the definition (2.54) the gradient is independent of the choice of
the coordinate system. This can also be seen from relation (2.61). Indeed, tak-
ing (2.33) into account we can write for an arbitrary coordinate system θ̄i =
θ̄i
(
θ1, θ2, . . . , θn

)
(i = 1, 2, . . . , n):

gradΦ = ∂Φ

∂θi
gi = ∂Φ

∂θ̄ j

∂θ̄ j

∂θi
gi = ∂Φ

∂θ̄ j
ḡ j . (2.63)

Similarly to relation (2.61) one can express the gradients of the vector-valued function
x = x (r) and the tensor-valued function A = A (r) by

gradx = ∂x
∂θi

⊗ gi , gradA = ∂A
∂θi

⊗ gi . (2.64)
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Example 2.5 Deformation gradient and its representation in the case of simple shear.
Let x and X be the position vectors of a material point in the current and reference
configuration, respectively. The deformation gradient F ∈ Lin3 is defined as the
gradient of the function x (X) as

F = gradx. (2.65)

For the Cartesian coordinates in E
3 where x = xi ei and X = Xi ei we can write by

using (2.64)1

F = ∂x
∂X j

⊗ e j = ∂xi

∂X j
ei ⊗ e j = Fi

· j ei ⊗ e j , (2.66)

where the matrix
[
Fi

· j

]
is given by

[
Fi

· j

]
=

⎡

⎢⎢⎢⎢⎢
⎢⎢
⎣

∂x1

∂X1

∂x1

∂X2

∂x1

∂X3

∂x2

∂X1

∂x2

∂X2

∂x2

∂X3

∂x3

∂X1

∂x3

∂X2

∂x3

∂X3

⎤

⎥⎥⎥⎥⎥
⎥⎥
⎦

. (2.67)

In the case of simple shear it holds (see Fig. 2.3)

x1 = X1 + γX2, x2 = X2, x3 = X3, (2.68)

X2

X2, x2

X1, x1

X1

X1

ϕ

e2

e1

γX2

Fig. 2.3 Simple shear of a rectangular sheet
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where γ denotes the amount of shear. Insertion into (2.67) yields

[
Fi· j

]
=

⎡

⎣
1 γ 0
0 1 0
0 0 1

⎤

⎦ . (2.69)

Henceforth, the derivatives of the functions Φ = Φ
(
θ1, θ2, . . . , θn

)
, x = x

(
θ1,

θ2, . . . , θn
)
and A = A

(
θ1, θ2, . . . , θn

)
with respect to curvilinear coordinates θi

will be denoted shortly by

Φ,i = ∂Φ

∂θi
, x,i = ∂x

∂θi
, A,i = ∂A

∂θi
. (2.70)

They obey the covariant transformation rule (2.32) with respect to the index i since

∂Φ

∂θi
= ∂Φ

∂θ̄k

∂θ̄k

∂θi
,

∂x
∂θi

= ∂x

∂θ̄k

∂θ̄k

∂θi
,

∂A
∂θi

= ∂A

∂θ̄k

∂θ̄k

∂θi
(2.71)

and represent again a scalar, a vector and a second-order tensor, respectively. The
latter ones can be represented with respect to a basis as

x,i = x j|i g j = x j|i g j ,

A,i = Akl|i gk ⊗ gl = Akl|i gk ⊗ gl = Ak
· l|i gk ⊗ gl , (2.72)

where (•)|i denotes some differential operator on the components of the vector x
or the tensor A. In view of (2.71) and (2.72) this operator transforms with respect
to the index i according to the covariant rule and is called covariant derivative. The
covariant type of the derivative is accentuated by the lower position of the coordinate
index.

On the basis of the covariant derivative we can also define the contravariant one.
To this end, we formally apply the rule of component transformation (1.98)1 as
(•)|i = gi j (•)| j . Accordingly,

x j|i = gik x j|k, x j|i = gik x j|k,
Akl|i = gimAkl|m, Akl|i = gimAkl|m, Ak

· l|i = gimAk
· l|m . (2.73)

For scalar functions the covariant and the contravariant derivative are defined to be
equal to the partial one so that:

Φ|i = Φ|i = Φ,i . (2.74)

In view of (2.63)–(2.70), (2.72) and (2.74) the gradients of the functions Φ =
Φ
(
θ1, θ2, . . . , θn

)
, x = x

(
θ1, θ2, . . . , θn

)
and A = A

(
θ1, θ2, . . . , θn

)
take the

form

http://dx.doi.org/10.1007/978-3-319-16342-0_1
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gradΦ = Φ|i gi = Φ|i gi ,

gradx = x j|i g j ⊗ gi = x j|i g j ⊗ gi = x j|i g j ⊗ gi = x j|i g j ⊗ gi ,

gradA = Akl|i gk ⊗ gl ⊗ gi = Akl|i gk ⊗ gl ⊗ gi = Ak
· l|i gk ⊗ gl ⊗ gi

= Akl|i gk ⊗ gl ⊗ gi = Akl|i gk ⊗ gl ⊗ gi = Ak
· l|i gk ⊗ gl ⊗ gi .

(2.75)

2.5 Christoffel Symbols, Representation of the Covariant
Derivative

In the previous section we have introduced the notion of the covariant derivative but
have not so far discussed how it can be taken. Now, we are going to formulate a
procedure constructing the differential operator of the covariant derivative. In other
words, we would like to express the covariant derivative in terms of the vector or
tensor components. To this end, the partial derivatives of the tangent vectors (2.28)
with respect to the coordinates are first needed. Since these derivatives again represent
vectors inE

n , they can be expressed in terms of the tangent vectors gi or dual vectors
gi (i = 1, 2, . . . , n) both forming bases of E

n . Thus, one can write

gi , j = �i jkg
k = �k

i jgk, i, j = 1, 2, . . . , n, (2.76)

where the components �i jk and �k
i j (i, j, k = 1, 2, . . . , n) are referred to as the

Christoffel symbols of the first and second kind, respectively. In view of the rela-
tion gk = gklgl (k = 1, 2, . . . , n) (1.21) these symbols are connected with each
other by

�k
i j = gkl�i jl , i, j, k = 1, 2, . . . , n. (2.77)

Keeping the definition of tangent vectors (2.28) in mind we further obtain

gi , j = r,i j = r, j i = g j ,i , i, j = 1, 2, . . . , n. (2.78)

With the aid of (1.28) the Christoffel symbols can thus be expressed by

�i jk = � j ik = gi , j · gk = g j ,i · gk, (2.79)

�k
i j = �k

ji = gi , j · gk = g j ,i · gk, i, j, k = 1, 2, . . . , n. (2.80)

For the dual basisgi (i = 1, 2, . . . , n)one further gets bydifferentiating the identities
gi · g j = δi

j (1.15):

http://dx.doi.org/10.1007/978-3-319-16342-0_1
http://dx.doi.org/10.1007/978-3-319-16342-0_1
http://dx.doi.org/10.1007/978-3-319-16342-0_1
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0 =
(
δi

j

)
,k =

(
gi · g j

)
,k = gi ,k · g j + gi · g j ,k

= gi ,k · g j + gi ·
(
�l

jkgl

)
= gi ,k · g j + �i

jk, i, j, k = 1, 2, . . . , n.

Hence,

�i
jk = �i

k j = −gi ,k · g j = −gi , j · gk, i, j, k = 1, 2, . . . , n (2.81)

and consequently

gi ,k = −�i
jkg

j = −�i
k jg

j , i, k = 1, 2, . . . , n. (2.82)

By means of the identities following from (2.79)

gi j ,k = (
gi · g j

)
,k = gi ,k · g j + gi · g j ,k = �ik j + � jki , (2.83)

where i, j, k = 1, 2, . . . , n and in view of (2.77) we finally obtain

�i jk = 1

2

(
gki , j + gk j ,i − gi j ,k

)
, (2.84)

�k
i j = 1

2
gkl (gli , j + gl j ,i − gi j ,l

)
, i, j, k = 1, 2, . . . , n. (2.85)

It is seen from (2.84) and (2.85) that all Christoffel symbols identically vanish in the
Cartesian coordinates (2.20). Indeed, in this case

gi j = ei · e j = δi j , i, j = 1, 2, . . . , n (2.86)

and hence

�i jk = �k
i j = 0, i, j, k = 1, 2, . . . , n. (2.87)

Example 2.6 Christoffel symbols for cylindrical coordinates in E
3 (2.17). By

virtue of relation (2.30)1 we realize that g11,3 = 2r , while all other derivatives
gik, j

(
i, j, k = 1, 2, 3

)
(2.83) are zero. Thus, Eq. (2.84) delivers

�131 = �311 = r, �113 = −r, (2.88)

while all other Christoffel symbols of the first kind �i jk (i, j, k = 1, 2, 3) are
likewise zero. With the aid of (2.77) and (2.30)2 we further obtain

�1
i j = g11�i j1 = r−2�i j1, �2

i j = g22�i j2 = �i j2,

�3
i j = g33�i j3 = �i j3, i, j = 1, 2, 3. (2.89)
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By virtue of (2.88) we can further write

�1
13 = �1

31 = 1

r
, �3

11 = −r, (2.90)

while all remaining Christoffel symbols of the second kind �k
i j (i, j, k = 1, 2, 3)

(2.85) vanish.

Now, we are in a position to express the covariant derivative in terms of the vector
or tensor components by means of the Christoffel symbols. For the vector-valued
function x = x

(
θ1, θ2, . . . , θn

)
we can write using (2.76)

x, j =
(

xigi

)
, j = xi , j gi + xigi , j

= xi , j gi + xi�k
i jgk =

(
xi , j + xk�i

k j

)
gi , (2.91)

or alternatively using (2.82)

x, j =
(

xig
i
)

, j = xi , j gi + xig
i , j

= xi , j gi − xi�
i
k jg

k =
(

xi , j − xk�
k
i j

)
gi . (2.92)

Comparing these results with (2.72) yields

xi| j = xi , j + xk�i
k j , xi| j = xi , j − xk�

k
i j , i, j = 1, 2, . . . , n. (2.93)

Similarly, we treat the tensor-valued function A = A
(
θ1, θ2, . . . , θn

)
:

A,k =
(
Ai jgi ⊗ g j

)
,k

= Ai j ,k gi ⊗ g j + Ai jgi ,k ⊗g j + Ai jgi ⊗ g j ,k

= Ai j ,k gi ⊗ g j + Ai j
(
�l

ikgl

)
⊗ g j + Ai jgi ⊗

(
�l

jkgl

)

=
(
Ai j ,k + Al j�i

lk + Ail�
j
lk

)
gi ⊗ g j . (2.94)

Thus,

Ai j|k = Ai j ,k + Al j�i
lk + Ail�

j
lk, i, j, k = 1, 2, . . . , n. (2.95)

By analogy, we further obtain

Ai j|k = Ai j ,k − Al j�
l
ik − Ail�

l
jk,

Ai
· j|k = Ai

· j ,k + Al
· j�

i
lk − Ai

·l�
l
jk, i, j, k = 1, 2, . . . , n. (2.96)

Similar expressions for the covariant derivative can also be formulated for tensors of
higher orders.
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From (2.87), (2.93), (2.95) and (2.96) it is seen that the covariant derivative taken
in Cartesian coordinates (2.20) coincides with the partial derivative:

xi| j= xi , j , xi| j= xi , j ,

Ai j|k= Ai j ,k , Ai j|k= Ai j ,k , Ai
· j|k= Ai

· j ,k , i, j, k = 1, 2, . . . , n. (2.97)

Formal application of the covariant derivative (2.93) and (2.95), (2.96) to the tangent
vectors (2.28) and metric coefficients (1.93)1,2 yields by virtue of (2.76), (2.77),
(2.82) and (2.84) the following identities referred to as Ricci’s Theorem:

gi| j = gi , j − gl�
l
i j = 0, gi| j = gi , j + gl�i

l j = 0, (2.98)

gi j|k = gi j ,k − gl j�
l
ik − gil�

l
jk = gi j ,k −�ik j − � jki = 0, (2.99)

gi j|k = gi j ,k + gl j�i
lk + gil�

j
lk = gilg jm (−glm,k + �mkl + �lkm) = 0, (2.100)

where i, j, k = 1, 2, . . . , n. The latter two identities can alternatively be proved
by taking (1.25) into account and using the product rules of differentiation for the
covariant derivative which can be written as (Exercise 2.7)

Ai j|k = ai|k b j + ai b j|k for Ai j = ai b j , (2.101)

Ai j|k = ai|k b j + ai b j|k for Ai j = ai b j , (2.102)

Ai
j|k = ai|k b j + ai b j|k for Ai

j = ai b j , i, j, k = 1, 2, . . . , n. (2.103)

2.6 Applications in Three-Dimensional Space: Divergence
and Curl

Divergence of a tensor field. One defines the divergence of a tensor field S (r) by

divS = lim
V →0

1

V

∫

A

SndA, (2.104)

where the integration is carried out over a closed surface area A with the volume V
and the outer unit normal vector n illustrated in Fig. 2.4.

For the integration we consider a curvilinear parallelepiped with the edges formed
by the coordinate lines θ1, θ2, θ3 and θ1 + �θ1, θ2 + �θ2, θ3 + �θ3 (Fig. 2.5). The
infinitesimal surface elements of the parallelepiped can be defined in a vector form by

http://dx.doi.org/10.1007/978-3-319-16342-0_1
http://dx.doi.org/10.1007/978-3-319-16342-0_1
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dA

n

V

Fig. 2.4 Definition of the divergence: a closed surface with the area A, volume V and the outer
unit normal vector n

P

A(1)

Δθ3

s1(θ1)

s1(θ1 + Δθ1)

A(2)

dA(1)(θ1)
A(3)

θ3

g3

g2
g1

Δθ1

Δθ2

dA(1)(θ1 + Δθ1)

θ1

θ2

Fig. 2.5 Derivation of the divergence in three-dimensional space

dA(i) = ±
(

dθ jg j

)
×
(

dθkgk

)
= ±ggi dθ j dθk, i = 1, 2, 3, (2.105)

where g = [
g1g2g3

]
(1.31) and i, j, k is an even permutation of 1, 2, 3. The corre-

sponding infinitesimal volume element can thus be given by (no summation over i)

http://dx.doi.org/10.1007/978-3-319-16342-0_1
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dV = dA(i) ·
(

dθigi

)
=

[
dθ1g1 dθ2g2 dθ3g3

]

= [
g1g2g3

]
dθ1dθ2dθ3 = gdθ1dθ2dθ3. (2.106)

We also need the identities

g,k = [
g1g2g3

]
,k = �l

1k

[
glg2g3

] + �l
2k

[
g1glg3

] + �l
3k

[
g1g2gl

]

= �l
lk

[
g1g2g3

] = �l
lkg, (2.107)

(
ggi

)
,i = g,i gi + ggi ,i = �l

liggi − �i
liggl = 0, (2.108)

following from (1.39), (2.76) and (2.82). With these results in hand, one can express
the divergence (2.104) as follows

divS = lim
V →0

1

V

∫

A

SndA

= lim
V →0

1

V

3∑

i=1

∫

A(i)

[
S
(
θi + �θi

)
dA(i)

(
θi + �θi

)
+ S

(
θi
)
dA(i)

(
θi
)]

.

Keeping (2.105) and (2.106) in mind and using the abbreviation

si
(
θi
)

= S
(
θi
)

g
(
θi
)

gi
(
θi
)

, i = 1, 2, 3 (2.109)

we can thus write

divS = lim
V →0

1

V

3∑

i=1

θk+�θk∫

θk

θ j +�θ j∫

θ j

[
si
(
θi + �θi

)
− si

(
θi
)]

dθ jdθk

= lim
V →0

1

V

3∑

i=1

θk+�θk∫

θk

θ j +�θ j∫

θ j

θi +�θi∫

θi

∂si

∂θi
dθidθ jdθk

= lim
V →0

1

V

3∑

i=1

∫

V

si ,i

g
dV, (2.110)

where i, j, k is again an even permutation of 1, 2, 3. Assuming continuity of the
integrand in (2.110) and applying (2.108) and (2.109) we obtain

divS = 1

g
si ,i = 1

g

[
Sggi

]
,i = 1

g

[
S,i ggi + S

(
ggi

)
,i

]
= S,i gi , (2.111)

which finally yields by virtue of (2.72)2

divS = S,i gi = S i
j ·|i g j = S j i|i g j . (2.112)

http://dx.doi.org/10.1007/978-3-319-16342-0_1
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Example 2.7 The momentum balance in Cartesian and cylindrical coordinates. Let
us consider a material body or a part of it with a mass m, volume V and outer
surface A. According to the Euler law of motion the vector sum of external volume
forces f dV and surface tractions tdA results in the vector sum of inertia forces ẍdm,
where x stands for the position vector of a material element dm and the superposed
dot denotes the material time derivative. Hence,

∫

m

ẍdm =
∫

A

tdA +
∫

V

f dV . (2.113)

Applying the Cauchy theorem (1.77) to the first integral on the right hand side and
using the identity dm = ρdV it further delivers

∫

V

ρẍdV =
∫

A

σndA +
∫

V

f dV, (2.114)

where ρ denotes the density of the material. Dividing this equation by V and con-
sidering the limit case V → 0 we obtain by virtue of (2.104)

ρẍ = divσ + f . (2.115)

This vector equation is referred to as the momentum balance.
Representing vector and tensor variables with respect to the tangent vectors

gi (i = 1, 2, 3) of an arbitrary curvilinear coordinate system as

ẍ = aigi , σ = σi jgi ⊗ g j , f = f igi

and expressing the divergence of the Cauchy stress tensor by (2.112) we obtain the
component form of the momentum balance (2.115) by

ρai = σi j| j + f i , i = 1, 2, 3. (2.116)

With the aid of (2.95) the covariant derivative of the Cauchy stress tensor can further
be written by

σi j|k = σi j ,k + σl j�i
lk + σil�

j
lk, i, j, k = 1, 2, 3 (2.117)

and thus,

σi j| j = σi j , j + σl j�i
l j + σil�

j
l j , i = 1, 2, 3. (2.118)

By virtue of the expressions for the Christoffel symbols (2.90) and keeping in mind
the symmetry of the Cauchy stress tensors σi j = σ j i (i �= j = 1, 2, 3) we thus
obtain for cylindrical coordinates:

http://dx.doi.org/10.1007/978-3-319-16342-0_1
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σ1 j| j = σ11,ϕ + σ12,z + σ13,r + 3σ31

r
,

σ2 j| j = σ21,ϕ + σ22,z + σ23,r + σ32

r
,

σ3 j| j = σ31,ϕ + σ32,z + σ33,r − rσ11 + σ33

r
. (2.119)

The balance equations finally take the form

ρa1 = σ11,ϕ + σ12,z + σ13,r + 3σ31

r
+ f 1,

ρa2 = σ21,ϕ + σ22,z + σ23,r + σ32

r
+ f 2,

ρa3 = σ31,ϕ + σ32,z + σ33,r − rσ11 + σ33

r
+ f 3. (2.120)

In Cartesian coordinates, where gi = ei (i = 1, 2, 3), the covariant derivative coin-
cides with the partial one, so that

σi j| j = σi j , j = σi j , j . (2.121)

Thus, the balance equations reduce to

ρẍ1 = σ11,1 + σ12,2 + σ13,3 + f1,

ρẍ2 = σ21,1 + σ22,2 + σ23,3 + f2,

ρẍ3 = σ31,1 + σ32,2 + σ33,3 + f3, (2.122)

where ẍi = ai (i = 1, 2, 3).

Divergence and curl of a vector field. Now, we consider a differentiable vec-
tor field t

(
θ1, θ2, θ3

)
. One defines the divergence and curl of t

(
θ1, θ2, θ3

)
respec-

tively by

divt = lim
V →0

1

V

∫

A

(t · n) dA, (2.123)

curlt = lim
V →0

1

V

∫

A

(n × t) dA = − lim
V →0

1

V

∫

A

(t × n) dA, (2.124)

where the integration is again carried out over a closed surface area Awith the volume
V and the outer unit normal vector n (see Fig. 2.4). Considering (1.66) and (2.104),
the curl can also be represented by

curlt = − lim
V →0

1

V

∫

A

t̂ndA = −div t̂. (2.125)

http://dx.doi.org/10.1007/978-3-319-16342-0_1
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Treating the vector field in the same manner as the tensor field we can write

divt = t,i · gi = t i|i (2.126)

and in view of (2.75)2 (see also Exercise 1.45)

divt = tr (gradt) . (2.127)

The same procedure applied to the curl (2.124) leads to

curlt = gi × t,i . (2.128)

By virtue of (1.36), (2.72)1, (2.80), (2.93)2 and (1.44) we further obtain (see also
Exercise 2.8)

curlt = ti| j g j × gi = ti , j g j × gi = e jik 1

g
ti| j gk = e jik 1

g
ti , j gk . (2.129)

With respect to the Cartesian coordinates (2.20) with gi = ei (i = 1, 2, 3) the
divergence (2.126) and curl (2.129) simplify to

divt = t i ,i = t1,1 + t2,2 + t3,3 = t1,1 + t2,2 + t3,3, (2.130)

curlt = e jik ti , j ek

= (t3,2 − t2,3 ) e1 + (t1,3 − t3,1 ) e2 + (t2,1 − t1,2 ) e3. (2.131)

Now, we are going to discuss some combined operations with a gradient, divergence,
curl, tensor mapping and products of various types (see also Exercise 2.12).

(1) Curl of a gradient:

curl gradΦ = 0. (2.132)

(2) Divergence of a curl:

div curlt = 0. (2.133)

(3) Divergence of a vector product:

div (u × v) = v · curlu − u · curlv. (2.134)

(4) Gradient of a divergence:

grad divt = div (gradt)T , (2.135)

http://dx.doi.org/10.1007/978-3-319-16342-0_1
http://dx.doi.org/10.1007/978-3-319-16342-0_1
http://dx.doi.org/10.1007/978-3-319-16342-0_1
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grad divt = curl curlt + div gradt = curl curlt + �t, (2.136)

where the combined operator

�t = div gradt (2.137)

is known as the Laplacian.
(5) Laplacian of a gradient and of a curl

� gradΦ = grad�Φ, � curlt = curl�t. (2.138)

(6) Skew-symmetric part of a gradient

skew (gradt) = 1

2
ĉurlt. (2.139)

(7) Divergence of a (left) mapping

div (tA) = A : gradt + t · divA. (2.140)

(8) Divergenceof a product of a scalar-valued function and avector-valued function

div (Φ t) = t · gradΦ + Φdivt. (2.141)

(9) Divergence of a product of a scalar-valued function and a tensor-valued function

div (ΦA) = AgradΦ + ΦdivA. (2.142)

(10) Curl of a product of a scalar-valued function and a vector-valued function

curl (Φ t) = − t̂gradΦ + Φcurlt. (2.143)

We prove, for example, identity (2.132). To this end, we apply (2.75)1, (2.82) and
(2.128). Thus, we write

curl gradΦ = g j ×
(
Φ|i gi

)
, j = Φ,i j g j × gi + Φ,i g j × gi , j

= Φ,i j g j × gi − Φ,i �i
k jg

j × gk = 0 (2.144)

taking into account that Φ,i j = Φ, j i , �l
i j = �l

j i and gi × g j = −g j × gi

(i �= j, i, j = 1, 2, 3).

Example 2.8 Balance of mechanical energy as an integral form of the momentum
balance. Using the above identities we are now able to formulate the balance of
mechanical energy on the basis of the momentum balance (2.115). To this end, we
multiply this vector relation scalarly by the velocity vector v = ẋ
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v · (ρẍ) = v · divσ + v · f .

Using (2.140) we can further write

v · (ρẍ) + σ : gradv = div (vσ) + v · f .

Integrating this relation over the volume of the body V yields

d

dt

∫

m

(
1

2
v · v

)
dm +

∫

V

σ : gradvdV =
∫

V

div (vσ) dV +
∫

V

v · f dV,

where again dm = ρdV and m denotes the mass of the body. Keeping in mind
the definition of the divergence (2.104) and applying the Cauchy theorem (1.77)
according to which the Cauchy stress vector is given by t = σn, we finally obtain
the relation

d

dt

∫

m

(
1

2
v · v

)
dm +

∫

V

σ : gradvdV =
∫

A

v · tdA +
∫

V

v · f dV (2.145)

expressing the balance ofmechanical energy. Indeed, the first and the second integrals
on the left hand side of (2.145) represent the time rate of the kinetic energy and the
stress power, respectively. The right hand side of (2.145) expresses the power of
external forces i.e. external tractions t on the boundary of the body A and external
volume forces f inside of it.

Example 2.9 Axial vector of the spin tensor. The spin tensor is defined as a skew-
symmetric part of the velocity gradient by

w = skew (gradv). (2.146)

By virtue of (1.161) we can represent it in terms of the axial vector

w = ŵ, (2.147)

which in view of (2.139) takes the form:

w = 1

2
curlv. (2.148)

Example 2.10 Navier-Stokes equations for a linear-viscous fluid in Cartesian and
cylindrical coordinates. A linear-viscous fluid (also called Newton fluid or Navier-
Poisson fluid) is defined by a constitutive equation

σ = −pI + 2ηd + λ (trd) I, (2.149)

http://dx.doi.org/10.1007/978-3-319-16342-0_1
http://dx.doi.org/10.1007/978-3-319-16342-0_1
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where

d = sym (gradv) = 1

2

[
gradv + (gradv)T

]
(2.150)

denotes the rate of deformation tensor, p is the hydrostatic pressure while η and λ
represent material constants referred to as shear viscosity and second viscosity coef-
ficient, respectively. Inserting (2.150) into (2.149) and taking (2.127) into account
delivers

σ = −pI + η
[
gradv + (gradv)T

]
+ λ (divv) I. (2.151)

Substituting this expression into the momentum balance (2.115) and using (2.135)
and (2.142) we obtain the relation

ρv̇ = −gradp + ηdiv gradv + (η + λ) grad divv + f (2.152)

referred to as the Navier-Stokes equation. By means of (2.136) it can be rewritten as

ρv̇ = −gradp + (2η + λ) grad divv − ηcurl curlv + f . (2.153)

For an incompressible fluid characterized by the kinematic condition trd = divv = 0,
the latter two equations simplify to

ρv̇ = −gradp + η�v + f , (2.154)

ρv̇ = −gradp − ηcurl curlv + f . (2.155)

With the aid of the identity �v = v,i|i (see Exercise 2.15) we thus can write

ρv̇ = −gradp + ηv,i|i + f . (2.156)

In Cartesian coordinates this relation is thus written out as

ρv̇i = −p,i + η (vi ,11 + vi ,22 + vi ,33) + fi , i = 1, 2, 3. (2.157)

For arbitrary curvilinear coordinates we use the following representation for the
vector Laplacian (see Exercise 2.17)

�v = gi j
(

vk,i j + 2�k
li v

l , j − �m
i j v

k,m + �k
li , j vl + �k

mj�
m
li vl − �m

i j �
k
lmvl

)
gk .

(2.158)

For the cylindrical coordinates it takes by virtue of (2.30) and (2.90) the following
form
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�v =
(

r−2v1,11 + v1,22 + v1,33 + 3r−1v1,3 + 2r−3v3,1
)

g1

+
(

r−2v2,11 + v2,22 + v2,33 + r−1v2,3
)

g2

+
(

r−2v3,11 + v3,22 + v3,33 − 2r−1v1,1 + r−1v3,3 − r−2v3
)

g3.

Inserting this result into (2.154) and using the representations v̇ = v̇igi and f = f igi
we finally obtain

ρv̇1 = f 1 − ∂ p

∂ϕ
+ η

(
1

r2
∂2v1

∂ϕ2 + ∂2v1

∂z2
+ ∂2v1

∂r2
+ 3

r

∂v1

∂r
+ 2

r3
∂v3

∂ϕ

)
,

ρv̇2 = f 2 − ∂ p

∂z
+ η

(
1

r2
∂2v2

∂ϕ2 + ∂2v2

∂z2
+ ∂2v2

∂r2
+ 1

r

∂v2

∂r

)
,

ρv̇3 = f 3 − ∂ p

∂r
+ η

(
1

r2
∂2v3

∂ϕ2 + ∂2v3

∂z2
+ ∂2v3

∂r2
− 2

r

∂v1

∂ϕ
+ 1

r

∂v3

∂r
− v3

r2

)
.

(2.159)

Example 2.11 Compression and shear waves in an isotropic linear-elastic medium.
The isotropic linear-elastic medium is described by the generalized Hooke’s law
written by (see also (5.92))

σ = 2Gε + λtr (ε) I, (2.160)

where G and λ denote the so-called Lamé constants while ε represents the Cauchy
strain tensor. It is defined in terms of the displacement vector u similarly to
(2.150) by

ε = sym (gradu) = 1

2

[
gradu + (gradu)T

]
. (2.161)

Substitution of this expression into (2.160) yields in analogy to (2.151)

σ = G
[
gradu + (gradu)T

]
+ λ (divu) I. (2.162)

Inserting this result into the momentum balance (2.115) and assuming no volume
forces we further obtain

ü = G

ρ
�u + G + λ

ρ
grad divu (2.163)

taking (2.135), (2.137) and (2.142) into account.
We look for solutions of this equation in the form

u = f (n · x − νt) m, (2.164)

http://dx.doi.org/10.1007/978-3-319-16342-0_5
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where n and m denote constant unit vectors which define the directions of wave
propagation and polarization, respectively. f is a twice differentiable scalar valued
function of the argument n · x −νt , where ν represents the wave speed and t denotes
time. First, we express the directional derivative of f (n · x − νt) as

d

ds
f [n · (x + sa) − νt]

∣∣∣∣
s=0

= d

ds
f [n · x + sn · a − νt]

∣∣∣∣
s=0

= f ′n · a,

(2.165)

which leads to the identities

grad f = f ′n, gradu = f ′m ⊗ n. (2.166)

By means of (2.141) and (2.142) one can also write

�u = div grad ( f m) = div
(

f ′m ⊗ n
)

= (m ⊗ n) grad f ′ = (m ⊗ n) f ′′n = f ′′m, (2.167)

divu = div ( f m) = m · grad f = (m · n) f ′, (2.168)

grad divu = grad
(
m · n f ′) = (m · n) grad f ′ = f ′′ (m · n) n. (2.169)

Utilizing these equalities by inserting (2.164) into (2.163) we obtain:

ν2 f ′′m = G

ρ
f ′′m + G + λ

ρ
f ′′ (m · n) n. (2.170)

We consider non-trivial solutions of this equation if f ′′ �= 0. These solutions are
possible if m is either parallel or orthogonal to n. Inserting into (2.170) either m = n
for the first case or m · n = 0 for the second one yields the speeds

ν1 =
√
2G + λ

ρ
, ν2 =

√
G

ρ
(2.171)

of the compression and shearwaves, respectively. One can show that the compression
waves do not propagate in an incompressible material characterized by the condition

divu = 0. (2.172)

Indeed, in this case (2.163) reduces to

ü = G

ρ
�u, (2.173)
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resulting in (2.171)2. Inserting further (2.164) into the incompressibility condition
(2.172) yields in view of (2.168) also m · n = 0.

Alternatively, equation (2.163) can be satisfied by means of the following repre-
sentation for the displacement field

u = gradΦ + curlΨ , (2.174)

where Φ = Φ̂ (r) and Ψ = Ψ̂ (r) are a scalar and a vector field, respectively.

Inserting this representation into (2.163) and using (2.171) we can write by virtue of
(2.133) and (2.138)

ν21grad�Φ + ν22curl�Ψ = gradΦ̈ + curlΨ̈ . (2.175)

Keeping in mind thatΦ andΨ are independent of each other we obtain the equations
of the form

�Φ − ν−2
1 Φ̈ = 0, �Ψ − ν−2

2 Ψ̈ = 0, (2.176)

whichyield a nontrivial solutionof (2.163) and thus describe propagationof compres-
sion and shear waves in a linear elastic medium. The coefficients of these equations
represent the corresponding wave speeds. Finally, one can show that the solution of
these differential equations in the form

Φ = g (n · x − ν1t) , Ψ = h (n · x − ν2t) l (2.177)

lead to the same representation (2.164). Indeed, inserting (2.177) into (2.174) yields
by virtue of (2.143) and (2.166)1

u = g′ (n · x − ν1t) n − h′ (n · x − ν2t) l × n. (2.178)

Exercises

2.1 Evaluate tangent vectors, metric coefficients and the dual basis of spherical
coordinates in E

3 defined by (Fig. 2.6)

r (ϕ,φ, r) = r sinϕ sin φe1 + r cosφe2 + r cosϕ sin φe3. (2.179)

2.2 Evaluate the coefficients
∂θ̄i

∂θk
(2.43) for the transformation of linear coordinates

in the spherical ones and vice versa.
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x2

g3

g 1

e2

r

e1

x3

g2

e3

x

φ
x1

ϕ

Fig. 2.6 Spherical coordinates in three-dimensional space

2.3 Evaluate gradients of the following functions of r:

(a)
1

‖r‖ , (b) r · w, (c) rAr , (d) Ar , (e) w × r ,

where w and A are some vector and tensor, respectively.

2.4 Evaluate the Christoffel symbols of the first and second kind for spherical coor-
dinates (2.179).

2.5 Verify relations (2.96).

2.6 Prove identities (2.99) and (2.100) by using (1.94).

2.7 Prove the product rules of differentiation for the covariant derivative (2.101)–
(2.103).

2.8 Verify relation (2.129) applying (2.112), (2.125) and using the results of Exercise
1.23.

2.9 Write out the balance equations (2.116) in spherical coordinates (2.179).

http://dx.doi.org/10.1007/978-3-319-16342-0_1
http://dx.doi.org/10.1007/978-3-319-16342-0_1
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2.10 Evaluate tangent vectors, metric coefficients, the dual basis and Christoffel
symbols for cylindrical surface coordinates defined by

r (r, s, z) = r cos
s

r
e1 + r sin

s

r
e2 + ze3. (2.180)

2.11 Write out the balance equations (2.116) in cylindrical surface coordinates
(2.180).

2.12 Prove identities (2.133)–(2.143).

2.13 Write out the gradient, divergence and curl of a vector field t (r) in cylindrical
and spherical coordinates (2.17) and (2.179), respectively.

2.14 Consider a vector field in E
3 given by t (r) = e3 × r . Make a sketch of t (r)

and calculate curlt and divt .

2.15 Prove that the Laplacian of a vector-valued function t (r) can be given by
�t = t,i|i . Specify this identity for Cartesian coordinates.

2.16 Write out the Laplacian �Φ of a scalar field Φ (r) in cylindrical and spherical
coordinates (2.17) and (2.179), respectively.

2.17 Write out the Laplacian of a vector field t (r) in component form in an arbitrary
curvilinear coordinate system. Specify the result for spherical coordinates (2.179).



http://www.springer.com/978-3-319-16341-3
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