Chapter 2
A Scalable Fluctuating Distance Field:
An Application to Tumor Shape Analysis

R. Alp Guler, Andac Hamamci, and Gozde Unal

Abstract Tumor growth involves highly complicated processes and complex
dynamics, which typically lead to deviation of tumor shape from a compact
structure. In order to quantify the tumor shape variations in a follow-up scenario,
a shape registration based on a scalable fluctuating shape field is described. In
the earlier work of fluctuating distance fields (Tari and Genctav, ] Math Imaging
Vis 1-18, 2013; Tari, Fluctuating distance fields, parts, three-partite skeletons. In:
Innovations for shape analysis. Springer, Berlin/New York, pp 439-466, 2013),
the shape field consists of positive and negative values whose zero crossing
separates the central and the peripheral volumes of a silhouette. We add a non-
linear constraint upon the original fluctuating field idea in order to introduce
a “fluctuation scale”, which indicates an assumption about peripherality. This
provides the induction of an hierarchy hypothesis onto the field. When fixed, the
field becomes robust for scale changes for analysis of correspondence. We utilize the
scalable fluctuating field first in segmentation of the protruded regions in a tumor,
which are significant for the radiotherapy planning and assessment procedures.
Furthermore, the unique information encoded in the shape field is utilized as
an underlying shape representation for follow-up registration applications. The
representation performance of the scalable field for a fixed ‘fluctuation scale’ is
demonstrated in comparison to the conventional distance transform approach for
the registration problem.

2.1 Introduction

Tumor growth modeling is extensively studied using theoretical and experimental
approaches by a variety of disciplines. While majority of the current studies are
focused on modeling microscopic phenomena, mathematical models that operate
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at a macroscopic level are increasingly investigated through the analysis of clinical
medical images [23]. Inhomogeneous and anisotropic tumor growth mechanisms
lead to deviations of the tumor’s shape characteristics from a compact structure and
include protrusions. It is clear that extracting and quantifying the spatial information
that irregular tumor shape parts carry would be a helpful macroscopic research tool
for a better understanding of the dynamics of tumor growth.

As for clinical usage, the quantification and segmentation of the protruded and
peripheral tumor regions could play an important role in radiosurgical applications.
The goal of radiosurgery is to deliver a necrotic dose of radiation to the tumor
while minimizing the amount of radiation to healthy brain tissues, especially to
dose-sensitive tissues [39]. Series of beam configurations are determined as an
optimization problem for treatment planning process such that beams will intersect
to form a high dose at the tumor ROI. The rapid decrease at the edges of the
radiation beam, which corresponds to the between 80 and 20 % isodose lines, is
called the penumbra region and is generally located on the peripheral regions of the
tumor [22]. A model that allows the distinguished analysis of the peripheral regions
and segmentation of these parts that receive less radiation dose would not only be
useful for isodose planning, but also for evaluating the success of the operation on
protrusions and peripheral regions that are in close relation to critical anatomical
structures. We propose an interactive method to distinguish protruded-peripheral
parts using solely distance relations.

Segmentation or partitioning of shapes as boundary meshes is a problem of
great interest for geometric modeling and computer graphics fields. The parti-
tioning of the object represented by the mesh into meaningful parts, referred to
as part-type segmentation by Shamir[33], is highly motivated by the study of
human cognition [4, 18]. For an in-detail analysis of existing mesh segmentation
methods we refer to [10, 33], along with recent successful approaches [16, 21]
and a comparison of part-type segmentation techniques can be found in [1].
Distance functions described on the shape surfaces are commonly utilized for
shape decomposition. There is a variety of surface metrics, e.g. geodesic [14],
isophotic [24, 31], diffusion [11-13], volumetric part aware [25]. Though successful
with a mesh representation, adaptation of these decomposition methods that use
distance metrics to a volumetric representation would not be plausible. Additionally,
partitioning the protrusions of tumors would require the abstraction of peripheral
regions beforehand, else the association of partitioned boundary segments to the
tumor volume would not be possible.

A sound approach for regional shape partitioning is utilizing the medial axis of
symmetry, i.e. skeleton representation [6]. Partitioning shapes by associating regions
with medial locus branches is very common and also successfully utilized in medical
imaging [20, 30, 34, 35]. However, skeletal representations commonly suffer from
certain instabilities. One of the instabilities is due to boundary perturbations, which
are commonly addressed using smoothing or branch pruning approaches, which
involve discarding branches that contribute little to the reconstruction of the shape
[3, 7, 32]. For partitioning, choice of branches to prune would affect the resulting
decomposition drastically considering the highly compact shapes of tumors, which
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also tend to inherit symmetries. Another kind of instability occurs in the regions near
the junctions, which is mainly referred to as the ligature problem [2, 5]. A variety of
methods have been proposed to cope with the ligature problem, including detecting
transitional areas [28], a Bayesian formulation for estimating likely branches that
would produce the shape [15] or disconnected skeleton approaches [9, 26, 38].
Additional to these inconsistencies, the association of branches with protrusions
is not straightforward and even under slight deformation the abstraction of the
centrality of the shape is not possible for fold-symmetry cases, which are highly
possible for tumor shapes. Tari’s model of Three-Partite-Skeleton, which arises from
fluctuating distance fields [36] adresses this problem, which is highly motivating for
the purpose of protrusion segmentation.

The fluctuating distance field [36, 37] contains both positive and negative values,
and its zero crossing separates central and peripheral volumes. The maximum value
of the field can be considered as a rough approximation of the center point for the
shape in question, for instance the tumor, whereas the local minima correspond to
rough approximations of center points for the protruded parts on the shape. The
level curves encode the spatial relationships so explicitly that the separate protruded
parts can be segmented even using a watershed segmentation without any additional
processing. The extracted central region is compact and the peripheral region is
always partitioned, unless it is a perfect annulus. In this model, no control exists
over the ratio of region cardinality of positive field values to that of the negative
field values. However, such a property can be an advantage in forming a shape field
that respects a certain scale of central to peripheral regions of the shape. Particularly
for shapes of tumorous structures, where boundaries between peripherality versus
centrality is rather vague, variation of such a scale will introduce a flexibility in
following shape analysis stages.

In this paper, we describe a scalable fluctuating distance field as a tumor
description model. This model allows the user to interactively adjust the ratio
of positive and negative domain sizes. The corresponding parameter can be set
according to nature of the application. Thanks to this addition, a hierarchy of parts is
not to be abstracted from the field as in [37]. Instead, fields that represent different
hierarchical assumptions are formed, with the trade-off of losing linearity of the
formulation. Details about the formulation and implementation of the shape field
will be described in Sect. 2.2, where the fluctuation scale space that arises with the
new parameter is introduced and exemplified on 2D shapes and 3D tumor volumes.

The constructed shape fields will be used for an alignment of baseline and follow-
up tumor structures. In this registration problem, the distance transform is often
used as a shape representation that describes the spatial relationships within the
moving and fixed shapes [29]. The adjustment of the location of the zero-level
set of the new distance field impairs the effect of scale changes to the resulting
field for a fixed fluctuation scale, making the field a robust underlying shape
representation for registration purposes. The registration process is described in
Sect. 2.3 and experiments using both synthetic data and patient data are evaluated
in Sect. 2.3.1, where the scalable fluctuating distance representation is compared to
the conventional distance transform representation.
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2.2 Scalable Fluctuating Distance Field

The concept of fluctuating distance fields, introduced by Tari [37], involves the
exploitation of local and global spatial interactions to achieve a field that consists
of both negative and positive values. The zero-level set partitions the shape
domain into 2% and £2~, which corresponds to the central region, a coarse and
compact shape, and the peripheral region, which includes all the protrusions of
the tumor, respectively. The ridge points on the surface yields the Three-Partite
skeletons indicated. Our main motivation in using the fluctuating distance field is the
information inherently coded in the resulting level curves at the peripheral regions,
which will allow the explicit treatment to peripheral regions for further analysis. In
this section we will describe our modification of this method, which will provide the
required flexibility and interactivity for our purpose. We will follow by introducing
the arising scale-space and illustrating segmented protruded parts using different
fluctuation scales for 2D shapes and 3D tumor volumes.

The fluctuating distance field, w: £2 — R is a real valued function on a discrete
lattice, 2 C Z x Z x 7, with a neighborhood system, N. w is generated by the
minimization of linear combinations of regional and boundary energies, which are
described over the shape domain £2, as a function of w.

2.2.1 Energy Terms

The regional energy consists of local and global terms that function as spatial
regularizers. Tari [37] proposed a global regional energy, which is the squared
average over the domain, connecting all the nodes using a global mean constraint:

1
EGlobal(wi.j.k)Zﬁ Z O (2.1)
(I,m,n)eR

Differentiating Egjopa(w;i ;i) over §2 leads to the following expression:

0E Giopar (i j k) 2
- e = w
D) 12| 2 oum

2.2)
(I.m.n)eR

which would be minimized if @ is composed of all zeros or is a fluctuating function,
where positive and negative values cancel each other.

The local regional energy functions as a smoothness term. We use the sum
of squared differences between neighboring pixels in a six neighborhood system,
N(i, j, k) to obtain the required spatial smoothness for the w field:
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E&zcal(wi,jk) = Z (wl,m,n - Cl)[,j,k)2 (2.3)
(I,m,n)eEN(,j.k)

Differentiating this energy w.r.t w; ;« results in the following expression, where L.
corresponds to the seven-point discretization of the Laplacian operator:

0E Local(wi j k)
— P = —2(wj41,jk FWio1jk + Wi jr1k F O -1k
a(wi,j.k)

+ Wi j i1+ i -1 — 60 j k)

= —2b(wi jx) (2.4)

The boundary energy is defined for formulating the interactions along the level
surfaces. The preservation of interactions between the nodes is imposed on the
field using the usual distance transform as a bridge [37]. Thanks to this constraint,
central regions of the shape, where the distance transform has larger values have
much higher tendency to get positive @ values. The similarity to the distance
transform function is formulated as follows:

Egary(wi jx) = (@1 jk — Di jx)? (2.5)

where D denotes the distance transform of the shape. The derivative of Egg-, W.r.t
w;, j is then given as follows:

OEBary(wi j k)

=2(w; ix —Di; 2.6
1) (wi,jk k) (2.6)

Minimization of the combination of these energies results in a w field that has
low expected value, thus fluctuating (2.2), locally smooth (2.4) and resembling the
distance transform of the shape (2.6).

2.2.2 A Sign Constraint to Control Fluctuation Scale

The natural location of the zero-level curve under the given constraints often
becomes too close to the tumor boundaries, turning out to be a disadvantage
while estimating a deformation between two w fields. In addition, the ability to
control the location of the zero crossing turns the w field to a robust feature for an
interactive tool for segmenting the protrusions on the tumor. Therefore we describe
an additional global constraint to adjust the position of the zero crossing. The term
is constructed as a quadratic expression forcing the sum of the signs of all nodes to
be close to a predetermined ratio of the domain size, |§2]:
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2
Esign(@iji) = <( > sign(wz,m,n))—mm) 2.7)

(i,j k)ES (I,m,n)eR

where 1 € [—1, 1] corresponds to the ratio of the intended sum of the signs of all @
points to the number of points in the shape domain |£2|. While minimizing (2.7), n
is chosen as the desired ratio of:

Z Sign(wl,m,n)
_ (I,m.n)eR _ |~Q+| - |‘Q_|

= (2.8)
|$2] |27 + |27

Differentiating this energy w.r.t. w; jx would give:
OE i (Cl) k .
Sgn L. ) =4 E E SZgn(wl,m,n) - r’|‘Q| ° 8(a)i.j,k) (29)
a(wl Js k) )k
Jjk)ESR (I,m,n)eR

For the approximation of the signum function in a differentiable manner, we used
a regularized Heaviside function, then the impulse function §(z) was approximated
as the derivative of H(z):

sign(z) = 2H(z) — 1 ~ %arctan(g), 8(2) ~ —( )(1) (2.10)

1-1-()2

where € determines the steepness of the smoothed step and the impulse functions.

2.2.2.1 Formulation
The computation of w is achieved by calculating the steady state solution to the

linear combinations of the energy derivatives, which are described above. The
combination of the energies is presented in a continuous formulation as follows:

// (@x,y: — Dx,y,z)2+(|g| /// w(a, B.0)? dad,Bd@) + (Vo(x,y.2))*+.
2
. ((/}2// sign(wa_ﬁ_g)dozdﬂdQ) — r]|.§2|) dxdydz (2.11)
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The solution is obtained by applying the method of gradient descent in the
following expression:

i (1) 3Bi1Eroca(@ijk) + B2Eciobal(@i.j) + VEsign(@ijx) + B3 Epary (@i jk))

a(7) 0w; j i

where § and y values are Lagrange multipliers for the given energies. As natural
choices, f1, B2, B3 parameters can be interpreted as 1 [37]. y is the only Lagrange
multiplier that calibrates the relationship between the values of Eggyy(w; jx) and
Egign(wi jx). v only affects convergence speed when it is within appropriate limits,
that is not larger than the maximum value of the D. We choose it as a normalization
to the Ejg;g, of the w field with the desired size of |27 using roughly a spherical
zero-level set assumption. The iterative scheme on w is revealed after an artificial
time discretization in t:

n+1 n
O ik T Pijk 1 n L,
By v E(wijx) — ]l Z Wik~ ﬁwi,j_k —Dijk

(i.j.k)ER
- 2 < > Sign(w?,j,k)—nIQI)S(w;’,Lk) (2.12)
(i.j.k)e2 \(i.jkeR

For the third term above, as w is calculated up to a scale, a weight of 1/|£2] is used
as a weighting between the D and the w field.

2.2.3 A Space of Fluctuation Scales

The effect of the parameter 1 of the Eg;,, term is not only to change the location
of the zero-level set. Its combination with the zero-mean constraint changes the
encoding characteristics of the whole domain. For instance, positive 1 values force
the negativity of the nodes that belong to 2~ much more compared to n = 0
to satisfy the zero mean constraint. The reason is that there are less number of
nodes that are negative, so those have to be more negative to satisfy the zero mean
condition. The opposite goes for the negative 1 values. This causes a diversity in the
characteristics of the fields as n changes. A separate normalization can be applied
to the positive and negative parts of the fields, which diminishes this effect if not
desired.

We depict the resulting fluctuation scale-space for a hand shape in Fig.2.1a,
where w(X, ) is presented for X on a vertical line on the hand shape domain and
the surface plot for the zero-crossing contour as a function of 7 is presented in (b).
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Fig. 2.1 (a) The normalized field w(x = X, n), where X is shown by horizontal (fop) and vertical
(bottom) red lines. Image obtained by sweeping 7 from 1 to —1. (b) Surface plot for w(x, y,n) = 0

& - M R
e FEN

Fig. 2.2 From left to right: Input shape, w for n > 0, w for n = 0, w forn < 0

n>0

il e 18
I

Fig. 2.3 27 domain and watershed segmentation results for: left n > 0, right: n = 0

Notice that the zero-level set sweeps the whole domain smoothly from boundary to
central regions, as the information regarding §2 is encoded for different scales of
peripherality.

The computed field is shown for three different n values (> 0, = 0, < 0) for the
symmetric shape silhouette in Fig.2.2. Note that there are two levels of hierarchy
in the peripheral regions of the shape, which can be seen as five different parts at a
coarser level, later which are further differentiated into two separate parts. Varying
the fluctuation scale parameter, one can capture those two levels of scale (coarser
and finer) as can be observed in the resulting field with positive and negative 1
values, respectively.

A similar effect is achieved for the leaf silhouette in Fig.2.3. Using a simple
watershed segmentation [27], the resulting partitions reveal the three main leaves
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Fig. 2.4 The original w field (left) [37], where the Lagrange multiplier y is chosen as zero in
Eq.2.12 and five w fields (right) calculated using increasing values for n, where n; < 17, <n3 =0
and ns > n4 > n3 = 0. Upper row for both shapes is a contour plot of normalized w and bottom
rows depict w for solely 2~

with n = 0, whereas the partitioning with the n > 0 field reveals the smaller
protrusions on those three leaves. Here, the encoding of coarse to fine shape details
nicely demonstrates the hierarchical aspect introduced into the fluctuating distance
field.

We show the original w field and the scalable w field for various 1 values
in Fig.2.4 for an elephant and a cat silhouette. The first columns next to the
silhouettes show the original field followed by the fields with increasing values
of the fluctuation scale. The top picture is the whole w field, whereas the lower
depicts only its £2~ partition. Looking at the details at the legs of the fields more
closely, for instance, the elephant’s both front legs are merged in the original w
field, as well as for the scalable field for smaller 1 values. When 7 is increased (e.g.
see the rightmost field), the legs are separated, as can be observed in the £2~-part
of the field. This is because where the two legs are joined, there is a single local
maximum with the original and low scale parameter fields, whereas there are two
separate local maxima for each leg with the high-scale-parameter field. The same
observation holds for the various shape fields over the cat. Note the rear-most leg
of the cat and its tail which share a joint single maximum, whereas that extremum
separates into two separate maxima for the tail and the rear leg towards the higher
n-scale. Another point to remark over these experiments is the interesting feature
of the low-n-fields when compared to the original w-field. Note the cat’s front legs,
and elephant’s rear legs, which seem to have a separate maximum for each leg in the
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original shape field. However, the low 71 shape fields facilitate to peek at those same
features first jointly then separately as the fluctuation scale varies from low to high.
As these experiments demonstrate, the hierarchy over the shape is not built from the
w-field as in [36], however, we modify the field itself to create the hierarchy that is
sought for.

2.2.4 Interactive Tumor Protrusion Segmentation

The segmentation of the protruded tumor regions is achieved using the information
in the negatively-valued regions of the w field, which encapsulates local minima that
depicts separate protrusions. The tumor should be segmented prior to the calculation
of w, for this purpose we use the Tumor-Cut method [17]. A contrast enhanced T1
MRI axial slice is depicted in Fig.2.5, along with the w field calculated on the
tumor shape domain. Partitioning of the negatively-valued domain into protruded
parts can be performed using the watershed transform [27] on the 2~ field. The
parts segmented from the resulting w field can be observed Fig. 2.6 for a sample 3D
tumor volume.

With the flexibility that Eg;,, provides, the size of the positive compact part
227 can be adjusted with user interference by medical experts or can be calculated

Fig. 2.5 Left: An axial slice of contrast enhanced T1 MRI of a patient with a tumor. Middle:

field isocontours for the corresponding tumor slice. Right: w field visualized

20D

Fig. 2.6 From left to right: Tumor volume. Positive and negative parts of the proposed field.
Positive part of the field. Negative part of the field. Segmented protrusions of the tumor enveloped
in the negative part of the field. Segmented protrusions visualized with the positive part of the field




2 A Scalable Fluctuating Distance Field 19

I IIP DY

n=0.3 n=—-0.3 n=-0.7

Fig. 2.7 Visualizations of positive(opaque) and negative(transparent) parts of the tumor field
paired with corresponding segmentation results. The fluctuating distance field for each pair were
generated using the corresponding 7 value

automatically by relaxing the n parameter until a predetermined hypothesis regard-
ing the separated volumes are satisfied. The effect of n parameter on the resulting
protruded parts is presented in Fig. 2.7.

2.3 Tumor Follow-Up Registration Using » Fields

In order to obtain a valid and unbiased comparison between the performances of @
field and the conventional distance transform D as underlying shape representations,
we chose attributes that are essential in many of the registration algorithms that were
proposed to calculate such deformations and combine them to end up with a basic
yet powerful registration routine.

As linear data terms are not capable of performing well in case of large
displacements, we used non-linear data terms and a coarse to fine warping approach
which is a well studied combination in the area of optical flow estimation [8].
We follow the traditional model, formulated by means of an energy optimization
problem, where deformation is calculated as a mapping between domains of shape
fields w; and w,. The displacement field u € R> = (uy,u,u3) describes the
deformation between the tumor and the follow-up shape domains: u : £2; € R> —
2, € R3. In the following: x € R? = (x1, X2, x3). The assumption of constancy of
the underlying shape representation is formulated as:

wi(x) —wx(x +u) =0
In addition to this data term, a regularization term based on the gradient of the
deformation field is utilized. Following the original Horn and Schunck optical flow

model [19], the combined functional F, where « is a parameter that controls the
smoothness term:

F(u) = / (01(x) = 0o (x + u)* + (Vs |* + |V |* + |Vus[P)dx  (2.13)
21

is minimized to yield the Euler-Lagrange equations, which are non-linear due to
the w,(x + u) terms they contain. The first order Taylor expansions are used for
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those terms to obtain the linear system of three equations. First one of those three
equations (for each coordinate) is written as:

(01(x) —wa(x + u) — Vo (x + u) du) wy,, + o*div(Vu) =0 (2.14)

where s, is the spatial derivative of w, w.r.t x; and du € R? describes an unknown
update to the known variable u. In its solution, we adopted the warping scheme,
introduced in [8], where the deformation field u is set to zero at the coarsest level
and updated by " ! = " 4 du, as soon as du is computed at each finer scale using
an inner loop of SOR iterations. w, (x +u) is computed at the beginning of each outer
iteration by applying a warping process to w, (x) using the deformation field, u”. The
number of outer iterations depends on the downsampling factor. In order to achieve
the full potential of the model, instead of the conventional 0.5 downsampling factor,
we used a fixed value of 0.95 and a large number of outer iterations.

2.3.1 Registration Results and Discussion

Using both 2D synthetic shapes and real patient 3D tumor volumes, the performance
of the w field as an underlying shape representation for tumor follow-up registration
is demonstrated against the distance transform, which is the conventional method to
impose spatial shape relationships to the registration procedure.

Synthetic data results for pre-smoothed distance transform, pre-smoothed nor-
malized distance trasform and fluctuating distance fields are respectively demon-
strated in Fig.2.8. On the top row for each of the experiments, the white and gray
shapes denote the fixed and moving objects respectively, where the displacement
vector field is demonstrated using arrows. Local volume change for each of
the corresponding displacement field is generated using the determinant of the
deformation gradient (det(I + V,u)) and presented below. The values of the
determinant that are greater than 1 indicate a local expansion, whereas values less
than 1 indicate a local contraction.

The distance transform, D 1is invariant to rotation and translation, but it is
quite sensitive to scale changes[29]. Without a normalization, D representation
can perform well for deformations without scale changes only, which certainly
is not the case for tumor followup analysis. On the other hand, normalization
causes an ambiguity in the information preserved in D, leading to an estimation of
the deformation field that does not fully describe the change between the shapes.
However the w field adopts less ambiguity, since the information is partitioned
to separate parts, which leads to a robust estimation of the deformation. Eg;g,
constraint contributes highly to this robustness to scale change, for the ratio n will be
the same in §2; and £2,. Our experiments are highly coherent with this description.
In Fig.2.8, it is clear that D without a normalization fails to produce a smooth
vector field. In addition while the local volume change in the deformation fields
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Fig. 2.8 (a—c): Visualizations of deformation field vectors and volume change pairs for reg-
istration of each synthetic shape couples, generated using Left: Distance transforms. Middle:
Normalized High accuracy optical flow estimation based on a theory for warping.distance
transforms. Right: Scalable fluctuating distance fields

estimated using w is in accordance with the change in the shapes, the normalized
D representation approaches fail to generate intuitive results. The expansions and
contractions at the peripheral regions in Fig. 2.8 reveal the counter-intuitive nature
of the displacement vectors generated using normalized D.

Our experiments with patient data are demonstrated in Fig.2.9, where the
estimated 3D vector fields are visualized (on the left) for two pairs of tumor volumes
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Fig. 2.9 For both parts of the figure: Left: Displacement field vectors from gray initial tumor to
blue followup tumor. Middle: The displacement vectors to a specific segmented protrusion. Right:
Local volume change maps in initial tumor domain for selected axial slices of the tumor shapes,
the black contours denote the followup tumor. The maps on the left and right are generated from
the deformation fields calculated using normalized D and w fields respectively

on each row. Those pairs of tumor volumes are obtained after a segmentation on
a pre-therapy and follow-up MRI scan and undergo a large change in terms of
global scale. In addition, we present the displacement fields to a specific protrusion
(Fig. 2.9 in the middle), which was segmented as described in Sect.2.2.4. Various
2D cross sections are also depicted on the right along with the local volume change
maps using deformation gradient determinants as explained above. Considering
the large motion, necessity of regularization is quite larger in 3D tumor volumes
compared to the phantom data in Fig.2.8. For that reason the differences in the
volume change maps are not as distinctive for the 3D volumes. But when these
subtle changes are analyzed, they reveal the strength of the w field in contrast to
D. The volume change maps of the second tumor shape in Fig. 2.9 is a convincing
example: When the upper slice is analyzed it is clear that the deformation calculated
using w field (on the right) describes the compression smoother, yet on the bottom
slice (right), it successfully represents the expansion while the distance transform
approach is too smooth to describe an expansion. A similar robust behavior can be
observed on the given local volume changes of the first tumor pair in Fig. 2.9.
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2.4 Conclusion

Motivated from physical significance and clinical relevance in follow-up problems,
we proposed a method to analyze the protruded and peripheral regions of tumor
shapes. In order to introduce a parameter to control the fluctuation scales, we
modified the fluctuating distance field [37] with an additional constraint on the ratio
of sizes of the positive and negative domains which indicate central and peripheral
shape regions respectively. This modification led to an interactive framework for
segmenting the protrusions and partitioning tumorous structures, albeit the loss of
the linearity of the original shape field model. The introduced nonlinear term due
to its variable scale parameter, i.e. the “fluctuation scale”, facilitates a hierarchical
encoding of parts of the shape silhouette. By varying the fluctuation scale from low
to high values, it is possible to observe the coarse to fine levels of hierarchy both in
the field and its segmentations even by utilizing a very simple segmentation method.
The scalable shape field becomes a potentially powerful underlying shape
representation for shape registration procedures, due to an increased robustness to
scale changes without losing the information it inherits particularly in terms of the
parts of a shape. For the registration application, the representation performance of
the field was demonstrated in comparison to the conventional distance transform by
observation of local volume changes in a tumor follow-up problem. Some counter-
intuitive local changes were obtained by the latter, while the expected expansion
and compression properties between pre-therapy and follow-up tumor volumes were
provided by the deformation field estimated between the part-based shape fields.
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