Chapter 2
Numerical Integrators

At its most basic level, molecular dynamics is about mapping out complicated
point sets using trajectories of a system of ordinary differential equations (or, in
Chaps. 6-8, a stochastic-differential equation system). The sets are typically defined
as the collection of probable states for a certain system. In the case of Hamiltonian
dynamics, they are directly associated to a region of the energy landscape. The
trajectories are the means by which we efficiently explore the energy surface. In
this chapter we address the design of numerical methods to calculate trajectories.

When we use the equations of motion for an atomic system and compute a
trajectory, we are producing what we hope to be a representative path of the
system. For the moment, we discount any external interactions (such as due to
heating at a boundary or other driving forces), so we can think of the system as a
closed, Hamiltonian dynamics model. This introduces the microscopic perspective
which concerns the detailed description of the instantaneous atomic positions
and velocities as time is varied. These microscopic paths are the cornerstone of
statistical mechanical theory, which is the tool that we will eventually develop for
understanding molecular systems at a more abstract level, thus it is essential in
developing a computational methodology that we have an understanding of how
to generate trajectories reliably and efficiently.

The challenge before us is to compute solutions of

g=M"'p, p=F(g)=-VU(),
or, more compactly, with z representing the collection of all positions and momenta,

z2=fk@). [fk) =JVH, 2.1

where J = |: 01 (I):|, and H = p"M~'p/2 + U(q) is the Hamiltonian.
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In order to correctly model the different possible states of the system, it will be
necessary to cover a large part of the accessible phase space, so either trajectories
must be very long or we must use many initial conditions. There are many ways
to solve initial value problems such as (2.1) combined with an initial condition
z(0) = ¢. The methods introduced here all rely on the idea of a discretization with
a finite stepsize h, and an iterative procedure that computes, starting from zp = ¢,
a sequence 21,22, - - ., where g, & z(nh). The simplest scheme is certainly Euler’s
method which advances the solution from timestep to timestep by the formula'

Zntl =Zn + hf(zn)

The method is based on the observation that z(r+h) & z(f) +hz(¢), i.e. the beginning
of a Taylor series expansion in powers of A, and the further observation that the
solution satisfies the differential equation, hence z(f) may be replaced by f(z(¢)).

In order to be able to easily compare the properties of different methods in a
unified way, we focus in this chapter primarily on a particular class of schemes,
generalized one-step methods. Suppose that the system under study has a well
defined flow map .%, defined on the phase space (which is assumed to exclude any
singular points of the potential energy function). The solution of the initial value
problem, z = f(z), z(0) = &, may be written z(#, {) (with z(0,$) = &), and the
flow-map .%, satisfies .%,(§) = z(t,&). A one-step method, starting from a given
point, approximates a point on the solution trajectory at a given time A units later.
Such a method defines a map ¢, of the phase space as illustrated in Fig. 2.1.

We assume here a basic understanding of ordinary differential equations; some
good references for review of this topic are [16, 51, 177, 362]. For basic concepts in
the numerical analysis of ordinary differential equations the definitive reference is
[167].

Fig. 2.1 A step with the flow z2=%(¢)
map approximation %, is e '
illustrated in comparison to
the corresponding step along P z( h)Q:ﬁh( ¢)
the solution curve defined by )
the flow map .%, C
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!'Subscripts were used previously to indicate the components of vectors and here they are used
to indicate the indexing of timesteps. Although in theory this could lead to some confusion, it
normally does not in practice, since we index components in descriptions of details of models
and we discuss timesteps in context of defining numerical methods for general classes of systems.
Moreover, we use boldface for vectors, so a subscript on a boldface vector indicates a timestep
index. When we wish to refer to both the timestep and the component index, we may write z,,; to
denote the ith component at timestep n.
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Let us emphasize that the issues arising in the design and analysis of numerical
methods for molecular dynamics are slightly different than those confronted in other
application areas. For one thing the systems involved are highly structured having
conservation properties such as first integrals and Hamiltonian structure. We address
the issues related to the inherent structure of the molecular N-body problem in both
this and the next chapter; wherein we shall learn that symplectic discretizations are
typically the most appropriate methods.

Another special aspect of the molecular system is that normally it is sensible to
use a fixed stepsize, that is each timestep corresponds to a fixed interval of real time.
This is in contrast to other applications where it is found to be important to vary
the step during simulation. The reason that a uniform stepsize is used is because,
in a simulation of many particles, the complexity of the system ensures that if a
strong local force is encountered in some corner of the system, a force of similar
magnitude will be found somewhere else at the next instant. Even if, occasionally,
an instantaneous event is observed that could be controlled by reducing the stepsize,
the necessary adaptive machinery can impair the geometric properties and reduce
the efficiency of the numerical procedure.” There is no trivial way of selecting the
stepsize a priori. In typical practice, one performs several trial runs, examining the
fluctuations in energy or other easily computable quantities and makes the choice
of stepsize in order to keep these within a tolerable range. The molecular dynamics
timesteps are typically quite small, measured in femtoseconds, in order to capture
the rapid fluctuations of the atoms (in Chap. 4, we discuss ways of increasing the
timestep).

2.1 Error Growth in Numerical Integration of Differential
Equations

In this section we discuss the issues of convergence and accuracy in numerical
integration methods for solving ordinary differential equations.

Let us begin by considering Euler’s method in a bit more detail to understand its
convergence order. The convergence of a numerical method refers to the ability
of the method to provide an arbitrary level of accuracy by using small enough
timesteps. The order of accuracy is the exponent in the power law by which the
error in the method is related to the stepsize. For example, when we say that a
method is third order accurate, we mean that the global error (on a fixed finite time
interval) can be bounded by Ki*, where A is a sufficiently small timestep and K is
a number which depends on the length of the time interval and the features of the
problem, but which is independent of 4.

The flow map approximation in the case of Euler’s method is

2 A variable stepsize is only used where one expects extreme changes in particle velocities over the
course of a simulation (see e.g. [75, 390] for examples arising in radiation damage cascades).
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Gn(z) =z + hf (2),
and we have
Znt1 = G(z), n=0,1,2,... (2.2)

with zop = §. The points {z,,} are intended to be approximations to the values of the
solution. The obvious question is this: how good an approximation is z,, of z(nh)?

Let the approximate solution vectors at successive timesteps be zo,z1,...,2y
where vh = t. We assume that 7, the length of the time interval, is fixed, and v is an
integer parameter representing the total number of timesteps. In order to improve the
quality of the approximation, the parameter v may be increased, as the stepsize is
proportionately decreased. The error at step n is defined by e, = ||z, —z(f,) ||, where
t, = nh; it clearly depends on A. With these definitions one can prove the following
result, which is typical of the sorts of results that are available for numerical methods
for initial value problems:

Theorem 2.1 Let D be a bounded, open region in R™ such that f : D — R" is
continuously differentiable. Let  be an interior point of D and suppose the initial
value problem (2.1) has a unique solution that remains in D for t € [0, t]. Then
there exists a constant C(t) > 0 such that for sufficiently large v € N the numerical
solution z,, remains in D forn = 0,1,...,v, where hv = 1, and, moreover, the
maximum global error in Euler’s method satisfies

e:= max e, < C(t)h.
0<n<v

In short, the error in the approximation obtained on [0, 7] is reduced in direct
proportion to the number of steps taken to cover this interval. Another way to say
this is that e o h, or, using the order notation, e = O(h). Because the global error is
of order h", where r = 1, we say that Euler’s method is a first order method, or that
it converges with order r = 1.

2.1.1 Example: The Trimer

Let us test Euler’s method on the trimer model (formulated as a system in R*).
Fixing initial values (go = (0.5, 1.0); po = (0.1,0.1)) we solve the trimer on [0, 4]
using the Euler method first with 40 time-steps of length 0.1, next using 80 time-
steps of length 0.05 and then with 160 steps of size 0.025, etc. Each calculation
results in a different “discrete trajectory.” The solutions are graphed in the xy
projection in the left panel of Fig.2.2 with line segments connecting the points;
these piecewise linear paths take on the appearance of smooth curves as the stepsize
is reduced.
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Fig. 2.2 Euler’s method applied to the trimer. Left, the solution trajectories for different step-sizes;
right: the maximum global errors in position projections of solutions computed using four different
time-steps appear to show an asymptotic linear relationship to step-size, when plotted in log-log
scale

A natural question is how can one measure the error in the discrete approxima-
tions, since for the trimer, no exact analytical solution is available? Although it is not
possible to compute this error exactly, if it is assumed that the process is convergent
(as certainly appears to be the case from our experiment) we may use the accurate
solution computed with very small steps as a reference and compute the differences
between iterates along the trajectories and corresponding points on the reference
trajectory. The maximum of the differences between positions of corresponding
points is then used as a measure of the global error in the solution for a given step-
size h. For the reference solution in the case of the trimer, we have used a simulation
with a superior numerical method (the Verlet method) and very small steps of size
1077 This is the “exact” solution that has been plotted in the left panel of Fig.2.2.
In the right hand panel of Fig. 2.2, the global error e(%) is calculated in this way and
plotted against the stepsize, using a logarithmic scale. Studying this figure, we see
that in log-log scale, the observed relationship between e and # is linear, with slope
1 (for A sufficiently small):

Ine~Inh + «,
where « is a constant. Hence, by exponentiating both sides we obtain
e ~ Ch,
where C = €%, confirming the first order relationship between the global error and
the step-size.
In the simulations of the example above, it is apparent that the errors are

larger at the end of the interval than at earlier times. We know that molecular
dynamics trajectories need to be very long compared to the time-step used in
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Fig. 2.3 These graphs show the way in which the error grows in relation to time in simulations of
the trimer using Euler’s method. Left: the growth of the logarithm of the trajectory error; right: the
energy error growth as a function of time

order for them to be useful, so how the error grows in long simulations is quite
important. Convergence theorems for numerical methods like that mentioned above
are normally formulated for computations on a finite interval, and often do not tell
us much about how the error depends on time (i.e. on the length of the interval, 7).

To examine the issue of error growth we perform a simulation using a particular
timestep (h = 0.001) on the time interval [0, 10] and compare against the reference
solution on this interval. The logarithm of the error at each time-step, e,, is then
computed and the result plotted against n. We repeated this for 20 separate initial
conditions having the same initial energy. In the left panel of Fig.2.3, the error
graphs are shown, for each of these numerical trajectories, demonstrating that the
error in each case grows very rapidly in the early going. Eventually the error growth
tapers off, but only when the error is around the same size as the diameter of the
system, thus there is little meaningful information remaining regarding a particular
trajectory after  ~ 5. The right panel shows the errors in energies seen in the same
set of simulations, showing that the energy errors initially grow only linearly while
the global error is rising exponentially.

To summarize, in this example, with the time interval fixed, the error in Euler’s
method increases in proportion to the stepsize. On the other hand, the global error
grows with the length of the time interval, and at a rapid rate, until it is clear that
the numerical trajectory is entirely unrelated to the exact trajectory. Moreover, we
observe that the energy errors grow much more slowly than the trajectory errors.

2.1.2 Higher Order Methods

One approach to higher accuracy is to decrease the step-size while continuing to use
Euler’s method. Since we know that the error on a given fixed interval is proportional
to h, using a smaller stepsize should decrease the error in proportion, albeit at the
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cost of requiring more timesteps to cover the given time interval. A more efficient
means to get better accuracy is to use a higher order method. Higher order methods
are ones that satisfy a global error estimate (for finite time intervals) of the form

e~ C(t)h',
where r > 1.

Example 2.1 The Taylor series expansion of the solution may be written (¢ + ) =
2(t) + hz(t) + (h*/2)i(t) + . ... Whereas a first order truncation of this series leads
to Euler’s method, retaining terms through second order leads to

2
Zntl =Zn + th + ?va

which is referred to as the 2nd order Taylor series method. In this formula

Zn = f(z,), and the second derivative is obtained by differentiating the differential

equation itself:

50 = $20) = LFE0) =F @)D =1 €I E0).

so one may write the 2nd order Taylor series method as

h2
bt =2n + W @) + f "@n)f 2n)-

This method generates the flow map approximation

2
G =2+ W@ + T Q).

Note that by the notation f’(z) where z € R” and f : R — R™, is meant the m x m
Jacobian matrix whose ij-component is (f'(z)); = 9f;/dz;. An alternative notation

for f’ is of / 0z.

Methods like the Taylor series method offer the prospect of better accuracy in the
local approximation, and smaller global error in a given simulation, but they do not
necessarily resolve the more important issue relevant for very long time integrations
(which we will need in molecular dynamics): the unlimited growth of perturbations
from the energy surface. In molecular dynamics, we have already seen that the Euler
method has growing energy error which suggests that it will be a poor scheme where
the goal is to approximate the behavior of a constant energy trajectory. This same
qualitative behavior is seen in other numerical methods, such as the Taylor series
method. However, there are alternatives that give both higher order of accuracy and,
typically, improved energy accuracy. We discuss one of the most popular schemes
of this type in the next section.
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2.2 The Verlet Method

The Verlet method (also known as leapfrog or Stormer-Verlet) is a second order
method that is popular for molecular simulation. It is specialized to problems that
can be expressed in the form § = v, M = F(q), with even dimensional phase space
R which includes constant energy molecular dynamics. Some generalizations
exist for other classes of Hamiltonian systems.

The Verlet method is a numerical method that respects certain conservation
principles associated to the continuous time ordinary differential equations, i.e.
it is a geometric integrator. Maintaining these conservation properties is essential
in molecular simulation as they play a key role in maintaining the physical
environment. As a prelude to a more general discussion of this topic, we demonstrate
here that it is possible to derive the Verlet method from the variational principle.
This is not the case for every convergent numerical method. The Verlet method is
thus a special type of numerical method that provides a discrete model for classical
mechanics.

2.2.1 Hamilton’s Principle and Equations of Motion

Hamilton’s principle of least action provides a mechanism for deriving equations of
motion from a Lagrangian. Recall from Chap. 1 that the Lagrangian for the N-body
system is defined by

T
M
Lig.v) &2 20

- U(q),

where M is the mass matrix and the potential energy function U is, for simplicity,
taken to be smooth (C?). We consider the collection of all twice continuously
differentiable curves in the configuration space which start from a certain point
0 and end at another given point Q'. We may think of any such curve as being
represented by a parameterization ¢(¢), ¢ € [o, 8] with ¢(¢) = Q and ¢(8) = @/,
where the components of g(¢) are C* functions. Denote by G = G(Q,0Q’, «, B)
the class of smooth parameterized curves such that g(«¢) = Q, ¢(8) = @'. Then the
classical action (or, simply, action) of the Lagrangian L is defined for any I € G by

B
/uwmwm

o

def

AL(l™) =

The variational calculus approach to classical mechanics is based on minimizing the
action A;, over the class G of parameterized curves. This is normally referred to as
the “principle of least action”. It is difficult to provide a physical motivation for this
concept, but it is normally taken as a foundation stone for classical mechanics.
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Given I" in G with parameterization ¢(¢), t € [, 8], we consider the curve I"®
with parameterization ¢° defined by

() =q@) +en(), tela,pl (2.3)

where 1 (¢) satisfies n(«) = 5(8) = 0. Thus p is a C* parameterized curve linking
0 to 0. In defining variations in this way, we are using, implicitly, the fact that we
can add together functions in C*° and multiply them by scalars (e.g. €) and remain
in C*°. We also make use of the intuitive concept that (2.3) defines ¢° in such a way
that it is “close” to ¢ when ¢ is small. This can be made precise by a little more
elaboration, but we forego this here. Effectively, we are using our understanding of
C® as a normed function space to restrict attention to variations of the base curve
I' in a particular “direction.”
Using a Taylor series expansion of the Lagrangian,® we have

B
AL(I*) = AL(T) = / [L(q(?) + en(1).q(1) + en(1) — L(g(1).4(1)] dr.

B
d a
= [ |+ (Geao.aomo + 5 aw.q0io) + o | a.
q q

Hamilton’s principle states that the natural motion of the system described by the
Lagrangian L is a stationary point of the classical action which implies that the O(¢)
term above should vanish for any smooth variation 5(¢) with n(«) = 5(8) = 0, i.e.,

3In the multidimensional setting, Taylor’s theorem states that given a C**! function f : R” — R
and a point gy, we have

f@) —f(z0) = V(o) - @ —2z0) + Pz —z20.2—20) + 1V (2 —20.2 — 20,2 — 20)
+ .. P —z02—20,....2—20) + Oz — 20 lI*T)

where Vf = 0f/dz is the gradient, i.e. a vector with m components, f@ is the m x m Hessian
matrix of f (the matrix whose ij component is 8%f/dz;dz;), and f @(u,v),u, v € R", represents the
quadratic form u#”f®v. In a similar way we interpret /&) as a tensor which we can think of as a
m X m X m triply-indexed array, the ijk element being 9°f/9z;0z;0z; and

m m m

FO v, w) =3 N0 /020502 uvw.

i=1 j=1k=1
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B
ad 0
1= [ |G taw.a0mo) + 3 ao.a@i0 |ar=o
q q

o

We use integration by parts to remove the differentiation of », thus (in light of the
boundary conditions on 7(7)),

B
a a
1= [ | Getaw.a0) - 3 5 @o.a0) | noa = o

o

Since the variation » is meant to be arbitrary, it requires

d oL .o 0L :
aa_‘_I(qy(t),q(t)) = a_q("(t)’q(t))’

which is precisely the Lagrangian formulation of the equations of motion.

The method of derivation described here may be formulated in direct analogy to
the traditional method of minimizing a function of several variables based on finding
critical points. Define the variational derivative of a functional F, § F /8q so that

S F
F(g+en) = 6%" + 0(&?),

for all suitable (say, C*°) functions #. Viewing the action Az (I") as the functional
F, the stationarity condition (the Euler-Lagrange equations) may be written

8F

~Z =0

Sq
Thus the calculus of variations becomes a generalization of the traditional method
of minimizing smooth functions by finding critical points.*

“This discussion is a great simplification. Any curve which satisfies this equation will represent
a “stationary point” (actually, “stationary curve” would be more accurate) of the classical action.
Such curves could include smooth local action minimizers, local action maximizers, or “saddle
points” of the actional functional in a generalized sense. Deciding whether a given stationary curve
is an actual minimizer of the action would require analysis of the second variation (the coefficient
of &2 in the expansion above), which introduces additional complexity. For a more comprehensive
treatment, see e.g. [210].
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2.2.2 Derivation of the Verlet Method

Now let us consider the discrete version of “minimizing the action”. We work on
the time interval [0, t]. Consider the v + 1 points gy to ¢, in configuration space

I'=(qo.qi.....q,).

We must first define the action for such a discrete path. One perspective is that we
first formulate a discrete version of the Lagrangian in terms of only the point set
q0.41, - - -y, but this somehow requires that we define velocities. Noting that

q(1) ~ WL}W

we are led to consider the approximation at time level n

def dn+1 — qn
! h

and thus, by Riemann summation

At first glance, it looks like this is a crude approximation, since we have employed a
one-sided difference, however, let us proceed anyway to see the implications of this
choice. In the case of a mechanical system with Lagrangian L(g, v) = v"Mv/2 +
U(q), we then have

A=

- U(qn)} !

1
- qn+l qn) M(qn+l qn)
242
0

n=

We should think of A as a function of all the positions qo, 41, . . ., q, defining the
discrete path. Critical points of this function satisfy

VA=0,

where the gradient must be taken with respect to all configurational points on the
path (and all coordinates). This condition leads to the equations

dA
aq,

=0, n=1,...,v,
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since we think of the starting point gy as fixed. To calculate the derivative of A with
respectto q,, n = 1,2,...,v — 1, note that only a few terms of the discrete action
involve this configurational point, thus

A 9
g, Oqn
X M(qn+1 - qn)) - U(qn)h]

1
[E ((qn - qn—l)TM(qn —qn—1) + (n+1 — qn)T

1
= Z [M(qn - qn—l) - M(qn+l - qn)] - VU(‘In)h,
which yields the equations
M(gni1 —2q, + qn1) = —h*VU(g,), n=12,...,v—1. (2.4)

We can think of

1

ﬁ(qn+l —2g, + qn—1)
as a centered finite difference approximation of the acceleration (the second
derivative of position), thus the Eq.(2.4) is a direct discretization of Newton’s
equations.

Somewhat surprisingly, the one-sided approximation of velocities in the discrete
Lagrangian has led to a symmetric discretization of the equations of motion. There is
a slight issue of what to do at the endpoints. In the variational formulation we think
of the endpoints of the curve as fixed points which means that we are effectively
solving a boundary value problem and Eq.(2.4) tells us how to compute all the
interior points along the path. In the case of an initial value problem (the usual issue
in molecular dynamics) we do not know in advance the right endpoint value, but
we assume that we can, in some way, calculate q; (by a starting procedure) and so
Eq.(2.4) defines ¢, 43, ..., q,.

The method (2.4) is commonly referred to as Stormer’s rule. It was used by the
mathematician Stormer for calculations in the first decade of the 1900s. In molecular
dynamics this method is referred to as the Verlet method since it was used by Verlet
in his important 1967 paper [387].

The scheme is usually given in an alternative “velocity Verlet” form that takes a
step from a given vector ¢,, v, to ¢,+1, V,+1 by the sequence of operations

Vpt1/2 = Uy + (l’l/Z)M_an, 2.5
Gnt1 = qn + hv,pq), (2.6)
Vat1 = Vpp1j2 + (B/2)M ' Fpp, 2.7)
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where F,, = F(q,) = —VU(q,). The force computed at the end of a given step may
be reused at the start of the following step, thus effectively a single force evaluation
is needed at each timestep (the method has a similar “cost” to the Euler method, if
we measure cost in terms of force evaluations). The derivation of the Stormer form
from the velocity Verlet form is straightforward: write down two consecutive steps
of (2.5)—(2.7) then eliminate velocities.

The method is widely used but is often stated in other forms, so let us consider
these here.

The most straightforward rewriting of the Verlet method is to put the equations
and the discretization in Hamiltonian form, i.e. introducing momenta p = Mv, and
thus p, = Mwv,,, which results in the flow map approximation (taking us from any
point in phase space (g, p) to a new point (Q, P):

2 h
Q=q+hM 'p+ EM“F(q), P=p+[F@+FQ) (2.8)

Alternatively,

Put1/2 =P+ (W/DFpn, Gt = qn+ "M 'poutijo. Put1 =Put1/2 + (W/2)F iy

Returning to (2.5)—(2.7), write out the formulas for two successive steps
((gn=1, Vu—1) > (qn, vy) and (gn, V) = (gn+1, Vu+1)) and note that, from

vy = V12 + (B/2)M'F,,
one has
Vnt1/2 = Vpeij2 + hM'F,,
Qut1 = gn + hv,q1)2.

How do we use this if, as is typical, initial conditions of the form q(0) = qo,v(0) =
vy are specified? It is necessary to define an initialization procedure for v_j,:

v-1/2 = vo — (h/2)M ' F(qo).
And it is also necessary to use, at any subsequent step,
Uy = VUp—1,2 + (h/z)M_ans

if g,, v, are both needed, e.g. for the evaluation of the energy or other velocity-
dependent observable.

The difference between formulations is typically subtle, and largely influence
the details of computer software design. For many applications the difference can
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be safely ignored, but it can have implications when used as part of a more complex
algorithm (see [29] and the discussion therein). The use of different formulations
can result in differences in the accumulation of rounding error [167].5

2.2.3 Convergence and the Order of Accuracy

A typical integrator computes successive steps from the formulas

Zn+1 = gh(zn)s 20 = ;

Assume that ¥, is a smooth map for all 2 > 0. The exact solution satisfies

2(twy1) = Fu(z(ty)).

To each h > 0 we may associate a finite set of phase space points 2o, 21,22, - - . ,Zv}
these represent the numerical solution attp = 0,4y = h,t, = 2h,...,t, = vh =T.
Taking the difference of the numerical and exact solutions, we have

Znt1 — tat1) = G (20) — Fu(z(tn)). (2.9

The first assumption is that &, is an O(h”*!) approximation of .%, in the sense
that there is a constant K > 0 and a constant A > 0 such that, for ¢ € [0, 7], we have

1 Zh@(®) = G@O)| < KW', h<A. (2.10)

This assumption is usually verified by expanding the numerical and exact solutions
in powers of &, using Taylor series expansions.

To tackle the question of the growth of local error, we still must make an
important assumption on ¥, namely that it satisfies a Lipschitz condition of the form

190 @) — W)l < (1 + hL)|lu—w|. u.weDh=<A. (2.11)

The set D should be a domain containing the exact solution for [0, 7], and it is
assumed that, for all # < A the numerical solution is also contained in D for n =

SRounding error is the error introduced when numbers are forced into the finite word length
representation in a typical digital computer. Adding together two “computer numbers,” then round-
ing, results in another computer number. Rounding errors may accumulate in long computations,
but in molecular dynamics they are normally dominated by the much larger “truncation errors”
introduced in the process of discretization, that is, due to replacing the differential equation by a
difference equation such as the Euler or Verlet method. For an example of the role of rounding
error in the context of constrained molecular dynamics, see [237].
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0,1,...,v. (This is a simplifying assumption the removal of which would require
somewhat more intricate assumptions regarding the differential equations.)
With these assumptions in hand, begin from (2.9) and write

Znt1 —2(tat1) = D(2n) — Gu(2(tn)) + Gu(z(tn)) — Fn(z(tn)),

then take norms and use the triangle inequality and (2.10), (2.11) to get the following
recurrent inequality for the error &, = ||z, — z(t,) ||

ent1 < (1 + Lh)e, + KhPT!.
From this, the bound

En < %L"hhp, n=0,1,...v, (2.12)

follows by a straightforward calculation, for # < A.

The assumption (2.10) that the local error is of order p 4+ 1, p > 0, is termed the
consistency of the numerical method. We say the method is consistent of order p.

The assumption (2.11) that the method does not increase the separation between
two nearby trajectories by more than a factor of the form 1 + AL in each step is
referred to as the stability of the method.

This result shows that a method which is consistent of order p and stable is
convergent of order p.

Example 2.2 (The Verlet Method is 2nd Order) In this example, assume a single
degree of freedom system, i.e. ¢, p € R, and take M = 1. The Verlet method can be
written in the form of a map, as in (2.8), or, in slightly more detail, as

h2
O=q+hp+ ?F(q), (2.13)

h h?
P=p+§|:F(q)+F(q+hp+7F(q)):|. (2.14)

The first equation is already a polynomial, i.e. it is in the form of a series
expansion in powers of & where the coefficients are functions of the starting point
(¢, p). The second equation may be written as a series expansion in powers of &
as well:

h h h
P =+ 5F@+ 5 | F@) +IF @0+ 5F@)

W2 h
+EF”(q)(p + EF(q))2 + .. } .

Note that the neglected terms will involve 4th (and higher) powers of A.
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Combining terms of like powers of /, we have
h? n
P=p+hF+ EpF’ +7 [F'F+p’F'] + O(h*).

We carry these terms to compare against the expansion of the exact solution.
Since § = p, we have § = p = F(q), and the third derivative is ¢ = F'(g)p. On
the other hand p = F(q) implies that p = F'(¢)¢g = pF’, and thus

p(3) :sz// + F/F.

The Taylor expansion of the solution is (taking ¢(r) = ¢, p(t) = p):

h? n
gt +h)=q+hp+ EF + ZF/p + O(h"),

n? n
p(t+h) =p+hF + EpF’ +< [P’F" + F'F] + O(h*).

We now examine the series expansions for the exact and Verlet solutions and find
that these differ in the third (and higher) order terms.

h3
Q—qt+h) = ZF’p + O(hY),

and
3

h
P—p(t+h) = o [P’F" + F'F] + O(h*).

These relations can be summarized as telling us that
1%(2) — Zi@)|| = k@)K + O,

where k(z) = k(g, p) is a function of the position and momentum.
We may then define

K = max «(z())
t€l0,7]

bounding the local error by (with neglect of the fourth order terms) K. Thus the
Verlet method is consistent of order two.

To complete the convergence proof for Verlet’s method, we would still need to
verify the second assumption. This requires the assumption that the force field F
satisfy a Lipschitz condition:

|F@) — Fw)|| < L|ju—w]| (2.15)
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x107®

log,, error
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Fig. 2.4 The performance of the Verlet method is demonstrated by repeating the tests of error
growth discussed for Euler’s method (compare Fig.2.3). Left panel: In the case of the Verlet
method, the error is much smaller in an absolute sense than that for the Euler method with the
same step-size, but the growth still appears to be exponential. Right: the energy error growth as a
function of time, very remarkably, compared to the equivalent figure for Euler’s method the energy
error appears not to grow at all beyond some reasonably small limiting value, suggesting that the
Verlet numerical approximation will remain near the desired energy surface

for all u, w. Generally speaking this could be taken to hold in a neighborhood of the
solution where all approximate solutions for 4 < h are assumed to lie. With a bit
of effort, it is then possible to demonstrate the stability condition for the numerical
method (see Exercise 4).

In the left-hand panel of Fig. 2.4 we report the Verlet error growth as a function
of time for the Lennard-Jones trimer. Verlet is substantially more accurate in this
simulation, although the error still appears to grow exponentially.

Due to the chaotic nature of molecular dynamics, which implies a sensitivity to
perturbations of the initial condition or the differential equations themselves, it is
to be expected that the global error due to using a numerical method will always
grow rapidly (exponentially) in time. As we shall see in later chapters, this does
not necessarily mean that a long trajectory is entirely without value. In molecular
dynamics it turns out that the real importance of the trajectory is that it provides a
mechanism for calculating averages that maintain physical parameters. The simplest
example of such a parameter is the energy.

What is more relevant for using Verlet to simulate molecular dynamics is the
remarkable stability of energy shown in the right-hand panel of Fig. 2.4. Notice that
the energy error does not appear to exhibit a steady accumulation in time (unlike
for Euler’s method, where it exhibited a linear-in-time growth). The explanation for
this unexpected behavior lies in the structural properties of the method, a topic we
explore in this and the next chapter.

As another illustration of the performance of the Verlet method, we mention
that the dynamical trajectories given in the previous chapter (in particular those
given Examples 1.8 and 1.9) were computed using this method (with stepsize
h = 0.00001). In the case of the calculation of the exponential separation of
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Fig. 2.5 The error in energy in a numerically computed trajectory (Verlet method) with stepsize
h = 0.00001, for the anisotropic oscillator, showing that it remains bounded by 1.5 X 10~ in
very long runs

trajectories for the anisotropic oscillator shown in Fig. 1.25, the energy errors (see
Fig.2.5) remain bounded and small, suggesting that we may have some confidence
in the numerical results presented. This example also provides additional evidence
for the lack of “secular growth”® of the energy error in Verlet simulations even in a
relatively large number (10%) of timesteps.

2.2.4 First Integrals and Their Preservation
Under Discretization

Recall that the condition for a given function / : R™ — R to be a first integral is that
=\ 01
VI@) @) = ) 5@ =0.
j=1 "4

It is important in this definition that this is an equivalence that holds everywhere (or
at least in some open set in R™), so the statement is not just that I(z(r)) = 1(z(0))
for some particular trajectory, but, moreover, / is conserved for all nearby initial
conditions. The flow map preserves the first integral, thus I(.%#;(z)) = I(z). For
example, in a Hamiltonian system, the flow map conserves the energy:

Hoeg}:H‘

5The term “secular growth” in this context is a reference to the long-term growth of perturbations
in celestial mechanics. For example, the precession of the Earth’s polar axis occurs on a long period
relative to its orbital motion and much longer period than its rotation, and so may be classed as
a secular motion. In the context of molecular simulations, we use this to refer to accumulation of
drift that takes the system steadily away from the energy surface.
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There may, in specific instances, be additional first integrals present. For exam-
ple, in a planar 2-body system in central forces, the angular momentum xp, —yp, = [
is a conserved quantity, thus [ o %, = [.

Now if /I : R™ — R has continuous partial derivatives, we may conclude
directly that

I(a) = I(b) + VI(z«) - (a — b),
where z, is a point on the line in R” connecting a to b. Hence
(@) —1(b)| < VI lla —b].

This means if we know that ||VI(z)|| remains bounded, say less than B, in an
open domain containing the solution, we could conclude that the error in /-values
computed along a numerical trajectory is of order 7,

KB
1(z(t2)) — I(za)| < ze””’hp, h<h, (2.16)

with the same assumptions as are needed to characterize the convergence of the
method. This also means that we can see a ready means of improving the error in
a first integral: simply reduce the timestep. If we have identified a time interval of
interest, [0, 7], then we will automatically have nh < t and we need only to choose
a stepsize & which brings the error within a target tolerance.

In many cases we will be satisfied with this level of control of the error in the
first integrals, but there are a number of limitations of this approach. First, we may
find that the constants involved, K and, more often, L, are simply so large that it is
impossible to conclude anything useful from the bound given above. The stepsize
would need to be so preposterously small to make the bound of practical interest
that it is better to ignore the bound entirely.

Another limitation may arise when the time interval (the maximum of t = vh)
is very long, as when we use trajectories to sample an energy landscape (the most
common use of molecular dynamics). As this enters in the exponent in (2.16) it
means that errors may continue to accumulate as we collect more samples and we
would eventually leave the acceptable level of deviation in the first integral.

2.3 Geometric Integrators for Hamiltonian Systems

The discussion of the previous section suggests the need for methods with reliable
conservation properties. We shall develop methods which, although their errors
grow exponentially in time, nonetheless provide excellent energy conservation
for very long times. These methods obtain their energy preservation properties
indirectly: we design the methods to exactly conserve a certain geometric property
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(symplecticness) of the phase flow. We will later show (in Chap. 3) that such sym-
plectic methods preserve a perturbed energy-like invariant (to very high accuracy);
the preservation of this modified energy then ensures that the original energy is
nearly conserved.

The methods considered in this chapter are for the most part very simple in terms
of their composition and are based on principles of classical mechanics. The reader
may be aware of methods for using variable stepsize, extrapolation, etc. For reasons
discussed in the next chapter, these methods and the concerns that motivated their
development, which are undoubtedly essential in many applications of ordinary
differential equations, are less relevant in the setting of molecular dynamics. The
basic issue is that the dynamics of a Hamiltonian system are highly restricted by
conservation laws or volume preservation; violation of these principles by naive
schemes (which normally do not take advantage of underlying structure) leads to a
gradual corruption of the solution. In particular, the errors may accumulate in such
a way that the error in energy is severe. It should be stressed that these issues of
instability due to violation of structural features of Hamiltonian systems are not
always important in small models or for short time computations (where we can just
use very small timesteps); historically, they only became apparent as larger, longer
simulations began to be performed, as the appetite for numerical data grew.

The framework of geometric integration builds on an understanding of the
properties of Hamiltonian mechanics which are well explained in the book of Arnold
[15] or in the monograph of Landau and Lifshitz [212].

2.3.1 Volume Preserving Flows: Liouville’s Theorem

Consider a set of points 8(7) in phase space with evolution associated to a differential
equation z = f(z) described by the flow map .%,(8(0)) = 8(r). Liouville’s theorem
[16] states that the volume of such a set is invariant with respect to ¢ if the divergence
of f vanishes, i.e.

Ve f Zaz:

i=1

Itis a simple exercise to show that for a Hamiltonian system the divergence vanishes,
since

N Ne

0’H 0’H
VS = ;Bqlapl P 3L3q, 0.

by equality of mixed partials. Thus Hamiltonian systems always have volume
preserving flows.
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If we view the map .%; as a change of variables, we have

Vol(8(¢)) = [ |D|dw,
/

where D = det (aa_{:,)
To understand where Liouville’s theorem comes from, recall that the variational

equations of the last chapter are a system of ordinary differential equations for
W() = 7/ @(@):

W _ reapw.

dr
Thus
WW' = f'(z(1)).

Now let D = det(W). One can show (see Exercise 5) that
b e
=t (Ww).
D
This implies that
D = div(f(z(1))D,
and thus
D([) — D(O)@fé div(f(z(s)))ds‘
In particular, if divf = 0, we see that D = D(0) = 1 and it follows that the volume
is constant.
Liouville’s theorem may be summarized compactly as:
V-f=0= det# = 1.

Example 2.3 A 1-d oscillator with Lennard-Jones potential is described by the
equations

q=nr,
p= _‘PLJ(Q)-
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Fig. 2.6 Filamentation of an
evolving disk under the flow 0.6 /\
map of the Lennard-Jones

oscillator. Lighter regions 045 | \

represent later images.
Despite the i i 0.2
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As a consequence of energy conservation, any bounded individual trajectory of this
system will be a periodic orbit. Consider the propagation of a small disk of initial
conditions,

R = {(q0. po)lll(g0. po) — (1.5, -0.2)|| = 0.5;.

In Fig. 2.6, we have plotted the sets .%;(R), for t = 0,1,2,...,10, using lighter
tones to represent later snapshots. The sets become extremely elongated along the
orbital direction.

At all times the energies stay bounded within the interval

—0.0960 < H(gq,p) < —0.06609,
which is defined by the range of energies in the initial conditions.

Even as the sets become more and more elongated, they always maintain the
same total area. This is the direct consequence of Liouville’s theorem.

2.3.2 Volume Preserving Numerical Methods

The next question is what happens to the volume of a set of points in phase space,
which would be conserved by the dynamical system, when we use a numerical
method to approximate its evolution.

Consider a linear differential equation system in R™,

=28z,

for some matrix § € R™. The condition for the flow of this system to conserve
volume is just that the trace of § (which is the divergence of the vector field
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f(z) = Sz) be zero. Applying Euler’s method to the same system results in

and the condition for Euler’s method to conserve volume is that det(I 4+ hAS) = 1.
The conditions for volume preservation by the flow map and its Euler approximation
are essentially unrelated. Thus Euler’s method does not in general conserve phase
space volume (it conserves volume only in very special cases—see Exercise 6).
Yet it turns out that there are some numerical methods that always conserve the
volume when this is conserved by the flow of the differential equations, or for some
particular classes of differential equations. For example, consider the planar system

= f(u,v),
v = g(u,v),

satisfying the condition % + g—f = 0, and the asymmetrical variant of Euler’s method
defined by

U1 = Up + Bf (Upt1, V),

Upt1 = Uy + hg(tyt1, Vn).

The components of the Jacobian matrix can be obtained using implicit differentia-
tion, they are:

Oty 11 Oy ot — V41 4 V41
= , ay = , ap = .
v, ouy, avy,

So
ain =1+ hf,an, ain = hfyan + hfy, axn = hg,an, an =1+ hg,an + hg,.

Solving for the various entries we have

o — [ 1/(1 —nf,) hfy/ (1 = hf) }
" Lhe/(U=hf) Nt hgy+ Hgf /(L= hf) |
and calculating the determinant of the Jacobian results in
1+h
det¥, = + 18y
1 — hf,

In the event that the vector field is divergence free, we have f, + g, = 0 which
implies that the numerator and denominator are identical, and it follows that
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det¥] = 1. Thus the asymmetric variant of the Euler method is area preserving,
even though the standard Euler method is not.

It would be valuable to have a general method for deriving volume conserving
methods. It turns out that volume conservation is, itself, most readily obtained as a
consequence of a more fundamental property of Hamiltonian flows, the conservation
of the symplectic form.

2.3.3 The Symplectic Property

Let m = 2N,. A symplectic map @ : R™ — R™ is one that preserves the symplectic
differential 2-form. The simplest way to write this is as the following algebraic
condition on the Jacobian matrix of @:

¢/TJ¢/ — J

Recall that the Jacobian matrix is the m x m matrix of partial derivatives of the

components of @, (P');; = 9% \while

= 5
01
J‘[—IO]

So the equation @7 J&’ = J represents a large number (4N,?) of equations.

To explain the origin of this formula, we need a brief diversion into the world of
differential forms. This language will also be useful in Chap. 4, where we consider
constrained systems.

A I-form o defined on R™ is a family of linear mappings from R™ to R, defined
for each point of R”. Leta : R" — R"™, then we may define a one-form associated
to this vector by a(x)(§) = a(x)T&.

The differential of a function g : R" — R, denoted dg, is a family of linear
mappings (one for each point in phase space) from vectors & € R” into the reals
defined by

dg(q.p)(§) = Vg(g.p)"&.

So, denoting the ith position coordinate by ¢;, we have dg;(§) = &;; the differential
is thus an example of a 1-form.

On the other hand the so called wedge product of 1-forms «, B, is an example
of a 2-form, at any point in phase space it can be viewed as a quadratic form, i.e. a
scalar valued function of two vectors which is linear in each argument. It is written
a A B and is defined, for vectors &,y € R™ by

anp@E.n)=al@)pm) —amp).
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The wedge product of the coordinate differentials dg;, dp; may be written

dg; A dpi(§, 1) = Eimitn. — Sienti = eTyOy,

where J@ is the matrix which has zeros everywhere except for (J@),;1n, = 1,
(J9)i4n.; = —1. Summing these terms results in the symplectic 2-form, denoted
Vs:

N N
Vs = ZinAdpi(gsﬂ) =& (ZJ(i)) n=§&"Jn.

i=1 i=1

Thus the matrix

7= [5]

defines a representation for the 2-form . It is easy to verify that

Ws = Zdzi VAN J,:,'de.

i<j
In general, a differential 2-form  is represented in coordinates by

v, = Za,j(z)dzi A dzj,

iy

with matrix of coefficients A(z) = (a;i(z)).

The pull-back of a differential 1-form v under a phase space mapping @ is
defined as the action of Y after transformation by the Jacobian matrix of the
mapping. It is written @ *, so

(2" Y2)(§) = Vo) (P'@)E).
The pull-back of a differential 2-form v A Y, is consequently defined as
(Y1 AY2) = (P7Y1) A (PTY2).

Given a differential 2-form 1/, represented by the matrix A(z) = (a;(z)), the
pull-back of y; under @ is defined by

Y = ) by(2)dz A dg,

)
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where the matrix B(z) = (b;(z)) is related to A(z) by
B(z) = 2" (2)A(P(z))P(2).
We say that a 2-form v is conserved under mapping @ if
S Y =y

In coordinates, the conservation of the 2-form represented by matrix A under a
mapping @ means that

d'TAP = A.

In the particular case of the symplectic 2-form s, we have A = J, and the following
condition for conservation under the mapping @

TjP =], (2.17)
A map that conserves the symplectic 2-form, or, in coordinates, satisfies (2.17), is
termed a symplectic map.

Taking the determinant of both sides of (2.17), we have

det(@'TJ®') = det(J) = det(®'T)det(J)det(®) = det(J),

hence

det(®')? =1,
so |det(®’)| = 1. This raises a curious issue since we could conceivably have
det(®’) = —1.

In the case of a flow map @ = .%,, we know that for t — 0, the map reduces to
the identity map (the same has to happen for a consistent numerical method). This
means that we would have to have

lim det(F)) = 1.
t—
If the system is Hamiltonian, the map is symplectic for all 7, and the determinant

will be a continuous function of ¢, so the cases of interest have det(.#/) = +1. The
flow map of a Hamiltonian system is volume preserving.
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2.3.4 Hamiltonian Flow Maps are Symplectic

As we saw at the end of the last chapter, the variational equations describe the
change in an infinitesimal perturbation of a solution of a dynamical system. For
the Hamiltonian system z = JVH(z), these take the form:
W =JS(HW,

where S(f) = H;(z(t, §)) is a symmetric matrix. Computing

WIW = WIJ2SW = —W'SW,
whereas

W W = WSTIT W = WTSw,

hence

d L
SWIIW = WIIW + wigw =o.

This means that W/ JW is a constant matrix. Observe that W(f) = .%/(z(¢,¢)) and
that W(0) = .Z/(z(1, C))‘r=o = I, hence

wWIigw = w©0)TJw(0) = J.

This proves that the flow map of a Hamiltonian system is a symplectic map.

2.3.5 The Symplectic Maps Form a Group

Let @, and @, be any pair of symplectic maps. Then
(P10®,) =P\P),
by the chain rule, hence
[(@10@)]"J(®)0®,) =[®0)]"J&\ &, =] D J& &), =] Jb,=].
Thus the composition of any pair of symplectic maps is a symplectic map. The
determinant of a symplectic map is £1, hence these maps are always invertible,

and the inverse of a symplectic map is symplectic since @7 J@®' = J implies J =
@'~ TJ®'~!. Thus the symplectic maps form a group under composition.
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2.3.6 Symplectic Integrators

A symplectic integrator is an approximation of the flow map that conserves the
symplectic 2-form. Some first steps in the theory of symplectic integration, i.e.
numerical methods explicitly designed to mimic the symplectic property of the
flow map, were made by Vogalaere [98] (in 1956!) but this work went unnoticed.
The first practical methods conserving the symplectic property were suggested
by Ruth in 1983 [320] and followed by a number of works on a similar theme
[71, 72, 129-131, 267, 353]. Later works, e.g. [132, 139, 214, 325, 398] were
aimed at developing methods with higher order of accuracy or better understanding
of the meaning of the symplectic property (we will discuss this aspect in the
next chapter). Some symplectic integrators are found within existing families (like
Runge-Kutta methods), but the most useful are typically obtained using a splitting
and composition framework that allows us to build families of such methods.

In the sequel we will write Z = ¥,(z) to specify the starting point z and ending
point Z of a step.

Alternatively, if we wish to emphasize the decomposition into positions and

momenta, we write
0 _ q
HEH)E

Recall that, in terms of ¢ and p, the differential equations take the form
q=V,H, p=—V,H.
In molecular dynamics, the Hamiltonian is usually of the form
H=p'M 'p/2+U(g).

with M a diagonal mass matrix, and we will concentrate on this case for the moment.
In this case,

g=M"'p, p=-V,U@g)=F(.
The following scheme is a slight modification of the Euler method.

Q=gq+hM'P, (2.18)
P =p+hF(q). (2.19)

The method is explicit: to advance the timestep, we use the second equation to
compute P and then insert this in the first to get q. Let the vectors g, p, Q, P have ith
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components q;, p;, Q;, P;, respectively; we may think of Q; and P; as functions of ¢
and p, then

dQ; = dg; + hm; 'dP;, (2.20)
Ne 2
02U
dP; =dpi—hy ——dg;. 2.21
p ; v qj (2.21)

Computing the 2-form,
dQ; A dP; = dg; A dP; + hm'dP; A dP;,
but du A du = O for any u, hence
dQ; AdP; = dg; A dP;,
and (2.21) implies

2

U
dqj.

N
in/\dPiqui/\dpi—h dqi/\—
; 9g;0q;

It is then a simple exercise to show that

U
qu, A\ —dq] = 0,
e dq;0q;

N

l

using the skew-symmetry of the wedge product and the fact that the Hessian matrix
is symmetric. This implies that

N N
ZinAdPi = ZinAdPi,

i=1 i=1

which means that the method is symplectic.

2.3.7 The Adjoint Method

Given any numerical integrator ¢, consider the map

gl =9}
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This is popularly referred to as the adjoint of 4, although it seems something of an
abuse of mathematical language to refer to it in this way. For the flow map .%,, we
know that the inverse map is precisely .%_;, so f,j = %, i.e. the flow map is in
the normal sense “self-adjoint,” i.e. symmetric. However, such a property does not
hold in the general case. In particular, consider Euler’s method

Z=z+hf(z).
The adjoint method is defined by
Z=z+hf(Z),

and where the first was explicit, the second is implicit (it is the so-called backward
Euler method).

The method (2.18)—(2.19) is called the Symplectic Euler method. Its adjoint
method has a similar structure:

Q=q+hM'p, (2.22)
P =p+ hF(Q). (2.23)

Comparing with (2.18)—(2.19), we see that (2.22)—(2.23) is also explicit.

Given a method ¥, with adjoint method ¥, T itis possible to obtain the adjoint
of the adjoint method ¥ ﬁ, but, as we might expect, the adjoint of the adjoint is the
original method:

gt =g =97 =%,

2.4 Building Symplectic Integrators

Symplectic integrators may be constructed in several ways. First, we may look
within standard classes of methods such as the family of Runge-Kutta schemes
to see if there are choices of coefficients which make the methods automatically
conserve the symplectic 2-form. A second, more direct approach is based on
splitting. The idea of splitting methods, often referred to in the literature as Lie-
Trotter methods, is that we divide the Hamiltonian into parts, and determine the
flow maps (or, in some cases, approximate flow maps) for the parts, then compose
the maps to define numerical methods for the whole system.
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2.4.1 Splitting Methods

Let H(q,p) = Hi(q,p) + H»(q,p) have flow map .%,, and indicate by .Z,, 77 the
flow maps for the systems with Hamiltonians H;, H,, respectively. The proposal is
that the map

is an approximation of .%,. For this to be a first order method, we need at least
1%, () — Zu()|| < C)h®.

Expand .%;,(u) in a Taylor series:

Fnu) =u+ hJVH + O(h*) = u + h(JVH, + JVH,) + O(h?). (2.24)
On the other hand,

Flw) = u+ hIVH (u) + O(h*), F2W) = u + hJVHy(u) + O(h?).
Composing the maps we have

F) o Fru) = u+ hIVHy(u) + hJVH(u + hJVH () + O(h?).
Assuming H; is C?, we have
F) o FEu) = u+ h(JVH2(u) + JVH, (w)) + O(h?),

which agrees with the expansion (2.24) of the flow map through the terms of

first order. Thus the splitting method does indeed provide a second order local
approximation of the flow map.

Example 2.4 Let

Hi(q.p) =p"™M'p/2,  Hx(q.p) = U(g),

then a splitting method for H = H, + H, may be obtained by determining the flow
maps for each of the two parts. For H; we have the differential equations

g=M"'p, p=0.

The second equation tells us that p is constant, so it is fixed at its initial value,
whereas the first equation says that g evolves on a linear path, hence its flow map is

Q=q+hM'p,
P =p.
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Similarly, the flow map of the system with Hamiltonian H, = U is
Q=g
P=p—-hVU(q).

The composition of these maps simplifies to
Q=q+hmM'P,
P=p—-hVU(g).

which is precisely the Symplectic Euler method. Similarly, composing the same two
maps in the opposite order gives the adjoint Symplectic Euler method.

Example 2.5 (Verlet is Symplectic) For the Symplectic Euler method ¥, and its
adjoint method %J , consider the composition

ICh = g,j/z o gh/z.

Let
12}
p p
ie.,
qg=q+ (h/2M 'p, p=p—(h/2)VU(g).
and set
0 q
HEEAH!
i.e.,

Q=q+0/2M 'p,  P=p—(h/2)VU(Q).

The composition simplifies to

h
p- EVU(q),

q+hM~'p,

P
0
_h
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This is just the leapfrog/Verlet method in its Hamiltonian form. Since we have
obtained the method as the composition of two symplectic maps, and the symplectic
maps form a group, we know that this method will also be symplectic.

When we construct a composition of a method with its adjoint method, we see
readily that it is symmetric, i.e. self-adjoint, since

Kl =19}, 0 %] =9, 0% = Ki.

Self-adjoint, or symmetric schemes have unique features; in particular they have
even order [164, 227].

As we shall see in the next chapter, it is possible to construct methods of arbitrary
order by employing more sophisticated multi-stage compositions of mappings.

2.4.2 General Composition Methods

When using splittings, it is not necessary to solve each Hamiltonian of a splitting
using the exact flow. Instead, we may replace the flow maps of any part by an
approximation. More generally, if we have any two symplectic numerical methods,
say ¢, and 47, then the composition

. 1 2
gh = gh/z o gh/z

is another symplectic numerical method. The order of this method is typically the
minimum of the orders of the two methods involved, but it can be higher, as the
example of the Verlet method (constructed by composing symplectic Euler and its
adjoint) shows.

2.4.3 Harmonic + Anharmonic Splitting

Some systems can be decomposed into a harmonic (quadratic) part Ho(q,p) =
p"M~'p/2 + q"Aq/2 and an anharmonic part H,(q,p) = U (g). Then a splitting
method can be formulated based on exact solution of the linear system together with
“kicks” representing impulses defined by the anharmonic part. For a simple system
consisting of a harmonic oscillator Hy(g, p) = p?/2 + £224*/2, such a method can

be written
(0] cosh§2 é sinh$2 || g
—£2sinh§2 cosh$2 rl’
P

=p—hU'(Q).

>
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2.4.4 Explicit and Implicit Methods

All of the methods mentioned so far are said to be explicit discretizations, since
producing the next approximation point on a trajectory does not require solving
any implicit equations defined in terms of the previous one. The Verlet method is
not implicit even though @ appears on the right in the second equation, since it is
given in an explicit way in terms of ¢ and p. Implicitness adds another layer in both
analysis and numerical implementation, which, however, in certain applications, is
readily justified.

Example 2.6 The Backward Euler method,

Znt1 = Zn + Bf Zpt1),

is an example of an implicit method. The calculation of a timestep involves solving
a system of equations of the form

gw)y=w—z,— hf(w) =0.
The map ¥; is defined implicitly by the equation
91(z) = 2+ hf (%(z)).

An implicit method will typically result in a system of nonlinear equations of
the form

g(zn+1) = Tp, (2.25)

which will need to be solved at each timestep. The right hand side t, is a vector
that depends on the previous time-step z,, perhaps in a complicated way. We may
assume the number of equations represented by (2.25) is equal to the dimension of
the space where z is defined, so we have a square nonlinear system. Typically g will
depend on the stepsize and coefficients of the method and will have the property that
for h sufficiently small, the solution is uniquely defined and is continuously defined
in terms of t,, that is the mapping g has a bounded and smooth inverse.

Solving the system may then proceed, from an initial guess zfloj_l by use of
Newton’s method:

k+1 k 1! k
) = 21— Y] GG — T,

where J® is the Jacobian matrix of the mapping g evaluated at 2, or else an

approximation of this Jacobian (assumed to be nonsingular due to the invertibility
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of the mapping). The iteration may be recast in the form
k+1 k
bi=—@cY)—7,),  JYVAn =b, 20 =2+ Az

The potentially demanding steps here are the calculation of the Jacobian matrix and
the solution of the linear system.

One way to save computational work is to recycle the Jacobian from a previous
timestep. Alternatively, it may be possible to approximate the Jacobian crudely in
such a way that the iteration still converges. For example, if the Jacobian matrix is
large and can be written in the form

J) =D + E(z),

where E is small in norm and D is a constant sparse matrix, then, in many cases,
the Jacobian matrix may be replaced by the constant matrix D and the iteration will
still converge. Newton’s method (without approximation of the Jacobian matrix) has
a remarkable quadratic convergence property, meaning that, when the initial guess
is close the solution, the errors ey, ex+; at the kth and k + 1st iterations satisfy the
relation

er+1 < Kel.

This rapid convergence is typically lost when the Jacobian matrix is approximated
in some way, and one finds instead

er+1 = peg,

where 0 < p < 1, i.e., quadratic convergence is replaced by geometric convergence.

In some cases semi-implicit methods can be developed which may only require
the solution of a low-dimensional nonlinear system at each step. In Chap.4, we
discuss constrained systems for which implicit methods are needed and, in the case
of the SHAKE method, for which the nonlinear system that must be solved at each
step is of dimension equal to the number of constraints imposed. This is an example
of a semi-implicit method.

In other cases, the special structure of the underlying problem may lead to certain
efficiencies in the implementation, as when a sparse matrix is obtained in the linear
equations that must be solved at each timestep.

Other methods may be substituted for Newton’s method for the purpose of
solving the nonlinear equations [292] of an implicit method.
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2.4.5 “Processed” Methods and Conjugacy

One of the intriguing ideas that can be exploited to improve numerical integrators is
that of conjugacy. In general, we say that two maps A and B are conjugate if there
is a homeomorphism’ y such that

A:X_loBox.

That is, we may evaluate one map by first transforming the input, then applying the
other map, then transforming the output by the inverse of the first transformation.
Conjugate maps have the property that their iterates are also conjugate, since

A" = (x""oBoy)"

1

=(x'oBoy)o(x'oBox)---(x'oBoy)

— X_l ° Bn ° X
If A and B are maps of phase space, then the conjugacy implies that they have
equivalent stability properties under iteration, since if B"(z9) — z*, as n — oo, for
all initial points zo, then also A" (z9) — x~'(z*).

A common use made of conjugacy in the setting of numerical integration is to
increase the order of accuracy. Numerical integrators are dependent on the stepsize
h. The idea is to introduce a conjugacy via a map y, which also depends on
the stepsize and by judicious design of the map, to eliminate leading terms in
the expansion of the local error of the method. As an illustration, the Symplectic
Euler method turns out to be conjugate to the Verlet method (see Exercise 12).
One sometimes refers to the “effective order” of a numerical method as the order
attainable via processing, thus the effective order of the Symplectic Euler method
would be two.

Let us suppose that we have such a conjugacy between two numerical methods

4, and {2;,, that is
Gy = Xi'oGn oxn,

defined in such a way that ¢, has order r and ¢, has order s where s < r. Then,
given an initial condition zo, we first modify (“pre-process”) this to Zo = x1(20),

then take multiple steps with the method ¢, and finally transform (“post-process”)
the end result by x;'. The resulting approximation will be of order r even though
all timestepping was performed using a lower order method. The situation is
diagrammed in Fig. 2.7.

7 A homeomorphism is a continuous bijection which has a continuous inverse.
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Fig. 2.7 In a “processed method” the inputs are first transformed before repeated application of a

given method; after post-processing, the output may have higher order of accuracy than would be
obtained using a straightforward application of the scheme

v
[ ]
v

v
@
v

—_—
=
s
N @ —> O

E?h #1 23

The use of conjugacy as a method to develop enhanced numerical methods was
introduced in [397] under the name symplectic correctors.

2.5 Other Classes of Methods

2.5.1 Runge-Kutta Methods

The family of Runge-Kutta methods for solving z = f(z) is defined by

Z=Z+h2s:biFia

i=1

where the vectors F;, i = 1, ..., s, are computed by solving the system

Fi=f(z+hZaUFj), i=1,...,s.
=1

The parameters s, by, by, ..., b, and the s x s matrix of coefficients A = (a;)
describe the method. In some cases the determination of the vectors F; requires the
solution of a nonlinear system, i.e. the method is implicit; in other cases the method
can be explicit. An example of a popular 4th order explicit method is the choice of
matrix A with coefficients a;; = 0 except a1 = 1/2,a3 = 1/2 and as3 = 1, and
by = 1/6,by = 1/3, b3 = 1/3, by = 1/6. This method is not symplectic, and
it is in fact impossible to find symplectic explicit methods within the Runge-Kutta
family.

Let us emphasize that, while a typical RK method is not symplectic, some
implicit Runge-Kutta methods are symplectic. The precise condition that must be
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satisfied [325] is
biaij+bjaji:bibjs i:1,...,S, ]:1,S

The implicitness reduces the usefulness of Runge-Kutta methods for applications
like molecular dynamics, because the complexity and cost of the molecular force
laws usually means that implicit methods are inefficient (this is certainly not prima
facie obvious, but the issue has been examined by several researchers without much
positive result; see, e.g. [308]).

Example 2.7 The Gauss-Legendre family of Runge-Kutta (GLRK) methods cor-
respond to approximating the vector field at the Gauss points, i.e. the zeros of
the orthogonal polynomials that arise in Gaussian quadrature. As these points are
symmetrically distributed the GLRK schemes are symmetric, hence have even order.
The simplest such method is the implicit midpoint rule:

h
Z =z + hFy, F, =f(Z+§F1),

which has order 2. The 4th order method (s = 2) has coefficients

_ 3
6
1 .
4

1

1
blzbzzz, A:(a,;,')=|:l 4

Rl

P

%

2.5.2 Partitioned Runge-Kutta Methods

It can be seen that Runge-Kutta methods treat all components of the differential
equation identically. On the other hand, in molecular dynamics the equations of
motion often have a special structure: for example the differential equation system
is typically linear in p, and, moreover, the equations have a special coupling structure
so that the differential equation for ¢ depends only on p and that for p depends only
on q. So-called partitioned Runge-Kutta methods allow us to exploit this structure.
As an illustration, consider the method:

P=p-— quH(q,i’), (2.26)
h . .

P=P- quH(Q,f’). (2.28)
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When H = p’M~'p/2 + U(q) this is just the leapfrog/Verlet method, but it can
be used also for more general systems. In the more general setting it is implicit
(a nonlinear set of equations must be solved to advance from time level to time
level). To see that it is symplectic, we first note that this is a symmetric composition
of the form

Kn = %J/z 0 G2,
where ¢, is defined by

P=p—-hV,H(q,P), (2.29)
0 =q+ hV,H(q.P), (2.30)

so it is enough to show that this basic method is symplectic. Taking differentials of
(2.30) defining ¢, and then wedge products and summing, we have

> d0iAdPi =) dgi AdPi+h Y Hyydg; AdP;
i i i
+hY > Hy,dP; AdP;.
i

The last term on the right vanishes by equality of mixed partials and the antisym-
metry of the wedge product. On the other hand, using (2.29), we obtain, by similar
means,

> dgindPi= "dgindpi—hY > Hy,dg; AdP;.
i i i
Relabelling the indices in this sum and using our previous work results in
> do; AdPi =) " dg; Adp;,

implying that the method is symplectic.

The more general family of Partitioned Runge-Kutta methods is defined by
making use of a partitioning of the system and introducing combinations of a set
of internal stages. This more general family of schemes is discussed in some detail
in [326] (see also discussions of [164, 227]).
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2.5.3 Newmark Methods

As a special case of a partitioned Runge-Kutta method, consider the Newmark
family of methods [280] defined for two parameters o and 1 by the formulas

P=p— (1 ~0)VU(g) ~ hoVU(©)
0=+ mt -1 (5 1) VU@ - 1TV,

This is an exact transcription of the formulas in Newmark’s original paper, only
substituting M~'p for the velocity v wherever it appears. In practice the choice
o = 1/2 is used to avoid spurious damping (it can be demonstrated for a simple
model problem); this certainly would appear to be desirable in the setting of
molecular dynamics. For = 0 we then arrive at the Verlet method. For other
values of 7 the scheme is clearly implicit, which likely is the reason it is rarely
used in molecular simulation, although it is popular in structural mechanics. The
implicit Newmark methods are not symplectic, but a related family of symplectic
methods can be constructed by replacing interpolated forces by forces evaluated at
interpolated positions [395].

2.5.4 Multiderivative Methods

All of the methods discussed above rely on computing values of the vector field (i.e.
momenta and forces) only. However, as we saw earlier in this chapter, in the setting
of a Taylor series method, we may approximate a single step by

h? h* )
Zn+] ZZn+th+?Zn+”‘+ﬁzn 5
where it is possible to make use of higher order derivatives of the solution in
formulating the method. Then using the differential equation, the time derivatives
may be replaced by elementary differentials of the vector field. This same idea can
be used in a more sophisticated way to improve the accuracy of molecular dynamics
methods. Letting H(q,p) = p’M~'p/2 + U(q), the Takahashi-Imada method [355]
(also known as Rowlands’ method [316]) has the same form as the Verlet method

A

P=p—(h/2)VU(g),
Q=q+hmM'P,
P=P—(h/2)VU(Q),

where the corresponding potential energy function is
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- h?
U@ =Ulg — ﬁVU(q)TM‘IVU(q)-

The forces arising from such a modified potential can be worked out:

. - h2
F=-VU=— [1+ EU”M_I} VU,

where U” is the Hessian matrix of the potential. It may in some cases be a daunting
task to compute the Hessian matrix as would be required in the Takahashi-Imada
method, but this is not always the case. Advantage can be made of the fact that for
systems with short-ranged potentials, the Hessian matrix is likely to be very sparse,
in which case this computation can be effected with little additional overhead,
although this will depend on the underlying computer architecture, the size of the
system, etc.

This method can be shown to have effective order four, meaning that there is a
change of variables x; which can be used to transform the Takahashi-Imada method
into one of order four using the processing technique of Sect.2.4.5. The potential
energy modification has been specifically chosen to annihilate terms in the local
error expansion (after coordinate transformation).

A discussion and comparison of several multiderivative methods for molecular
applications may be found in [239].

2.5.5 Other Methods

We have mentioned previously that it is possible to reduce the Verlet method to a
scheme involving positions only:

qn+1 — 2qn + gn—1 = th_lF(qn)-

This is a type of a multistep method. Such methods may be studied using a
generalization of the techniques used to understand one-step methods [167]. There
are a variety of multistep methods which could in principle be used for molecular
dynamics, however, we regard the benefits as unproven; in particular, such methods
neglect the phase space structure such as the symplectic property.

Another scheme which is sometimes used in molecular dynamics is Beeman’s
Algorithm [30, 331].
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Example 2.8 (Beeman’s Algorithm) The method treats the positions and momenta
differently, updating these from the formulas

. o
dn+1 = ¢qn + hqn + €[4qn - qn—l]' (231)
Puri=pnt M (24,41 + 56, — G1]- (2.32)

The shorthand ¢, = M~'p,, 4, = M~'F(q,) has been used.

This method requires that the positions (and forces) be known at two successive
points h apart in time in order to initialize the iteration. These might be generated
by using the Verlet method or some other self-starting scheme. Beeman’s algorithm
is explicit since, given ¢,, g,—1 and p,, one directly obtains g,+; and then, g, ,
and thus p,4;, with only one new force evaluation. Because it is a “partitioned
multistep method,” its analysis is more involved than for the one-step methods, and,
in particular its qualitative features are difficult to relate to those of the flow map.
The order of accuracy of the scheme above can be shown to be three.

Exercises

1. The Morse potential is often encountered in molecular modelling and takes the
form

(pMorse(V) =D (1 — e_“(”—”e))z )

Consider a one-particle oscillator in the Morse potential (Hamiltonian H =
P?/2 4+ @morse(q))- Explain why the trajectory of a particle will be bound for
all time if the initial energy H(qo,po) < D. Implement the 4th order Runge-
Kutta and Verlet methods and explore the problem fora = 1,D = 1,r, = 1.
You should observe that all trajectories of the Runge-Kutta method eventually
diverge. Study the dissociation time (the time until the particle is ejected to
some fixed large distance, say » = 3) as a function of the stepsize and the initial
energy.

. Demonstrate the bound (2.12). [Hint: use ¢ > 1 + hL. ]

3. Let f satisfy the Lipshitz condition |[f(u) — f(v)| < L|u — v|. Let ¥, represent

the flow map approximation associated to Euler’s method. Show that

[}

[h(u) — Gh(v)| = (1 + AL)|f (u) — f(V)].

Next prove (2.10) holds by finding A, K and p. This can be used to prove
Theorem 2.1.
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4. Let ¢4, denote the Verlet approximation of the flow map defined by (2.13)-
(2.14). Using the Lipschitz condition on F (2.15), show that, for & sufficiently
small,

190 () — ()| = (1 + hR)[lu — v]|,

and find R.
5. Let W = .#/ and let D = det(W). We will aim to show that

b .
==t (Ww), (2.33)
D

which is the key step in the proof of Liouville’s theorem. To prove this, recall
that the determinant of a matrix can be defined in terms of a co-factor expansion
(expansion by minors). If A = (a;) is a given m x m matrix, then for any
ie{l,2,...,m} we have

detA = Zaiinj,
Jj=1

where A;j is (—1)*/ times the determinant of the (m— 1) x (m — 1) dimensional
matrix obtained from A by crossing out the ith row and jth column of A. Using
the cofactor expansion we can easily carry out a proof of the desired relation as
follows:

a. Let W = (w;;). Show that

where WU is the ij-co-factor of W.
b. Show that

D=>"%" Wy

i=1 j=1

c. On the other hand, the inverse matrix of W can also be defined in terms of
cofactors (the adjugate). If W' = (1;), then

A

_ W
~ det(W)’

Nij

Demonstrate that this implies (2.33).
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10.

11.

12.

2 Numerical Integrators

Euler’s method is not symplectic for a general Hamiltonian system. Similarly
for a general divergence free vector field, Euler’s method is not volume
preserving. Find conditions on the vector field that imply that Euler’s method
is volume preserving. Are there special Hamiltonian systems for which Euler’s
method is a symplectic method?

Let U be a C? potential energy function in N. variables. Show that

N N 2

0°U
sz%‘/\ Wd%’ =0,

i=1 j=1 JE

using the skew-symmetry of the wedge product and the fact that the Hessian
matrix is symmetric.

Is it true that any symplectic method will have a symplectic adjoint method?
Either give a proof or find a counterexample.

Consider the linear map defined by

&) =Rz R= ["“ “‘2} :
azl ax

Show that, for this to be symplectic, we must have:

2

|:6111(a21 —ap) anan —aj :| =7

2 =J.
ay —axdaiyy dz1ax — axdi;

Show that the implicit midpoint method

Zn+ 2
e ()

2

is symplectic. Hint: letz =
to show that

z”% and use the properties of the wedge product

dz,4+1 A Jdzy = dz, A Jdz,.

Considering a simple model for a bound pair of atoms with positions g; and g,
moving in a position dependent potential field ¢, with Hamiltonian

_ lpal? n P21
2m1 2m2

K
H(g.p) +9(@) +¢(g2) + 5 (la1 — 42l = 1)

where «;, and [, are the bond vibration coefficient and bond length, respectively.
Explain how to treat this problem using a splitting method which involves an
exact solution of the isolated problem in the absence of the potential field ¢.
Show that the Symplectic Euler method is conjugate to the Verlet method.
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