Preface

Integration, handling data of immense size and uncertainty, and dealing with risk
management are among crucial issues in petroleum geosciences. The problems one
has to solve in this domain are becoming too complex to rely on a single discipline
for effective solutions, and the costs associated with poor predictions (e.g., dry
holes) increase. Therefore, there is a need to establish new approaches aimed at
proper integration of disciplines (such as petroleum engineering, geology, geo-
physics, and geochemistry), data fusion, risk reduction, and uncertainty
management.

This book presents several artificial intelligent approaches' for tackling and
solving challenging practical problems from the petroleum geosciences and
petroleum industry. Written by experienced academics, this book offers state-of-
the-art working examples and provides the reader with exposure to the latest
developments in the field of artificial intelligent methods applied to oil and gas
research, exploration, and production. It also analyzes the strengths and weaknesses
of each method presented using benchmarking, while also emphasizing essential
parameters such as robustness, accuracy, speed of convergence, computer time,
overlearning, or the role of normalization.

The reader of this book will benefit from exposure to the latest developments in
the field of modern heuristics applied to oil and gas research, exploration, and
production. These approaches can be used for uncertainty analysis, risk assessment,
data fusion and mining, data analysis and interpretation, and knowledge discovery,
from diverse data such as 3-D seismic, geological data, well logging, and pro-
duction data. Thus, the book is intended for petroleum scientists, data miners, data
scientists and professionals, and postgraduate students involved in the petroleum
industry.

Petroleum Geosciences are—like many other fields—a paradigmatic realm of
difficult optimization and decision-making real-world problems. As the number,

! Artificial Intelligence methods, some of which are grouped together in various ways, under
names such as Computational Intelligence, Soft Computing, Meta-heuristics, or Modern heuristics.
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difficulty, and scale of such specific problems increase steadily, the need for
diverse, adjustable problem-solving tools can hardly be satisfied by the necessarily
limited number of approaches typically included in a curriculum/syllabus from
academic fields other than Computer Science (such as Petroleum Geology).
Therefore, the first three chapters of this volume aim at providing working infor-
mation about modern problem-solving tools, in particular in machine learning and
in data mining, and also at inciting the reader to look further into this thriving topic.

Traditionally, solving a given problem in mathematics and in sciences at large
implies the construction of an abstract model, the process of proving theoretical
results valid in that model, and eventually, based on those theoretical results, the
design of a method for solving the problem. This problem-solving paradigm has
been and will continue to be immensely successful. Nevertheless, an abstract model
is an approximation of the real-world problem; there have been failures triggered by
a tiny mismatch between the original problem and the proposed model for it.
Furthermore, a problem-solving method developed in this manner is likely to be
useful only for the problem at hand. While, ultimately, any problem-solving
technique may be—in various degrees—subject to these two observations, some
relatively new approaches illustrate alternative lines of attack; it is the editors’ hope
that the first three chapters of the book illustrate this idea in a way that will prove to
be useful to the readers.

In the first chapter, Simovici presents some of the main paradigms of intelligent
data analysis provided by machine learning and data mining. After discussing
several types of learning (supervised, unsupervised, semi-supervised, active, and
reinforcement learning), he examines several classes of learning algorithms (naive
Bayes classifiers, decision trees, support vector machines, and neural networks) and
the modalities to evaluate their performance. Examples of specific applications of
algorithms are given using System R.

The second and third chapters, by Luchian, Breaban, and Bautu, are dedicated to
meta-heuristics. After a rather simple introduction to the topic, the second chapter
presents, based on working examples, evolutionary computing in general and, in
particular, genetic algorithms and differential evolution; particle swarm optimiza-
tion is also extensively discussed. Topics of particular importance, such as multi-
modal and multi-objective problems, hybridization, and also applications in
petroleum geosciences are discussed based on concrete examples. The third chapter
gives a compact presentation of genetic programming, gene expression program-
ming, and also discusses an R package for genetic programming and applications of
GP for solving specific problems from the oil and gas industry.

Ashena and Thonhauser discuss the Artificial Neural Networks (ANNs), which
has the potential to increase the ability of problem solving in geosciences and in the
petroleum industry, particularly in case of limited availability or lack of input data.
ANN applications have become widespread because they proved to be able to
produce reasonable outputs for inputs they have not learned how to deal with. The
following subjects are presented: artificial neural networks basics (neurons, acti-
vation function, ANN structure), feed-forward ANN, back-propagation and learn-
ing, perceptrons and back-propagation, multilayer ANNs and back-propagation
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algorithm, data processing by ANN (training, overfitting, testing, validation), ANN,
and statistical parameters. An applied example of ANN, followed by applications of
ANN in geosciences and petroleum industry complete the chapter.

Al-Anazi and Gates present the use of support vector regression to accurately
estimate two important geomechanical rock properties, Poisson’s ratio and Young’s
modulus. Accurate prediction of rock elastic properties is essential for wellbore
stability analysis, hydraulic fracturing design, sand production prediction and
management, and other geomechanical applications. The two most common
required material properties are Poisson’s ratio and Young’s modulus. These elastic
properties are often reliably determined from laboratory tests by using cores
extracted from wells under simulated reservoir conditions. Unfortunately, most
wells have limited core data. On the other hand, wells typically have log data. By
using suitable regression models, the log data can be used to extend knowledge of
core-based elastic properties to the entire field. Artificial neural networks (ANN)
have proven to be successful in many reservoir characterization problems. Although
nonlinear problems can be well resolved by ANN-based models, extensive
numerical experiments (training) must be done to optimize the network structure. In
addition, generated regression models from ANNs may not perfectly generalize to
unseen input data. Recently, support vector machines (SVMs) have proven suc-
cessful in several real-world applications for its potential to generalize and converge
to a global optimal solution. SVM models are based on the structural risk mini-
mization principle that minimizes the generalization error by striking a balance
between empirical training errors and learning machine capacity. This has proven
superior in several applications to the empirical risk minimization principle adopted
by ANNS that aims to reduce the training error only. Here, support vector regression
(SVR) to predict Poisson’s ratio and Young’s modulus is described. The method
uses a fuzzy-based ranking algorithm to select the most significant input variables
and filter out dependency. The learning and predictive capabilities of the SVR
method is compared to that of a back-propagation neural network (BPNN). The
results demonstrate that SVR has similar or superior learning and prediction
capabilities to that of the BPNN. Parameter sensitivity analysis was performed to
investigate the effect of the SVM regularization parameter, the regression tube
radius, and the type of kernel function used. The result shows that the capability
of the SVM approximation depends strongly on these parameters.

The next three chapters introduce the active learning method (ALM) and present
various applications of it in petroleum geosciences.

First, Cranganu, and Bahrpeyma use ALM to predict a missing log (DT or sonic
log) when only two other logs (GR and REID) are present. In their approach,
applying ALM involves three steps: (1) supervised training of the model, using
available GR, REID, and DT logs; (2) confirmation and validation of the model by
blind-testing the results in a well containing both the predictors (GR, REID) and the
target (DT) values; and (3) applying the predicted model to wells containing the
predictor data and obtaining the synthetic (simulated) DT values. Their results
indicate that the performance of the algorithm is satisfactory, while the performance
time is significantly low. The quality of the simulation procedure was assessed by
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three parameters, namely mean square error (MSE), mean relative error (MRE), and
Pearson product momentum correlation coefficient (R). The authors employed both
the measured and simulated sonic log DT to predict the presence and estimate the
depth intervals where overpressured fluid zone may develop in the Anadarko Basin,
Oklahoma. Based on interpretation of the sonic log trends, they inferred that
overpressure regions are developing between ~ 1,250 and 2,500 m depth and the
overpressured intervals have thicknesses varying between ~700 and 1,000 m.
These results match very well previous published results reported in the Anadarko
Basin, using the same wells, but different artificial intelligent approaches.

Second, Bahrpeyma et al. employed ALM to estimate another missing log in
hydrocarbon reservoirs, namely the density log. The regression and normalized
mean squared error (MSE) for estimating density log using ALM were equal to 0.9
and 0.042, respectively. The results, including errors and regression coefficients,
proved that ALM was successful in processing the density estimation. In their
chapter, the authors illustrated ALM by an example of a petroleum field in the NW
Persian Gulf.

Third, Bahrpeyma et al. tackled the common issue when reservoir engineers
should analyze the reservoirs with small sets of measurements (this problem is
known as the small sample size problem). Because of small sample size problem,
modeling techniques commonly fail to accurately extract the true relationships
between the inputs and the outputs used for reservoir properties prediction or
modeling. In this chapter, small sample size problem is addressed for modeling
carbonate reservoirs by using the active learning method (ALM). Noise injection
technique, which is a popular solution to small sample size problem, is employed to
recover the impact of separating the validation and test sets from the entire sample
set in the process of ALM. The proposed method is used to model hydraulic flow
units (HFUs). HFUs are defined as correlatable and mappable zones within a res-
ervoir controlling the fluid flow. This research presents quantitative formulation
between flow units and well log data in one of the heterogeneous carbonate res-
ervoirs in Persian Gulf. The results for R and nMSE are 85 % and 0.0042,
respectively, which reflect the ability of the proposed method to improve gener-
alization ability of the ALM when facing with sample size problem.

Dobroka and Szabé carried out a well log analysis by global optimization-based
interval inversion method. Global optimization procedures, such as genetic algo-
rithms and simulated annealing methods, offer robust and highly accurate solution
to several problems in petroleum geosciences. The authors argue that these methods
can be used effectively in the solution of well-logging inverse problems. Traditional
inversion methods are used to process the borehole geophysical data collected at a
given depth point. As having barely more types of probes than unknowns in a given
depth, a set of marginally overdetermined inverse problems has to be solved along a
borehole. This single inversion scheme represents a relatively noise-sensitive
interpretation procedure. To reduce the noise, the degree of overdetermination
of the inverse problem must be increased. This condition can be achieved by using
a so-called interval inversion method, which inverts all data from a greater depth
interval jointly to estimate petrophysical parameters of hydrocarbon reservoirs to
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the same interval. The chapter gives a detailed description of the interval inversion
problem, which is then solved by a series expansion-based discretization technique.
The high degree of overdetermination significantly increases the accuracy of
parameter estimation. The quality improvement in the accuracy of estimated model
parameters often leads to a more reliable calculation of hydrocarbon reserves. The
knowledge of formation boundaries is also required for reserve calculation. Well
logs contain information about layer thicknesses, which cannot be extracted by the
traditional local inversion approach. The interval inversion method is applicable to
derive the layer boundary coordinates and certain zone parameters involved in the
interpretation problem automatically. In this chapter, the authors analyzed how to
apply a fully automated procedure for the determination of rock interfaces and
petrophysical parameters of hydrocarbon formations. Cluster analysis of well-
logging data is performed as a preliminary data-processing step before inversion.
The analysis of cluster number log allows the separation of formations and gives an
initial estimate for layer thicknesses. In the global inversion phase, the model
including petrophysical parameters and layer boundary coordinates is progressively
refined to achieve an optimal solution. The very fast simulated reannealing method
ensures the best fit between the measured data and theoretical data calculated on the
model. The inversion methodology is demonstrated by a hydrocarbon field exam-
ple, with an application for shaly sand reservoirs.

Finally, Mohebbi and Kaydani undertake a detailed review of meta-heuristics
dealing with permeability estimation in petroleum reservoirs. They argue that
proper permeability distribution in reservoir models is very important for the
determination of oil and gas reservoir quality. In fact, it is not possible to have
accurate solutions in many petroleum engineering problems without having accu-
rate values for this key parameter of hydrocarbon reservoir. Permeability estimation
by individual techniques within the various porous media can vary with the state of
in situ environment, fluid distribution, and the scale of the medium under investi-
gation. Recently, attempts have been made to utilize meta-heuristics for the iden-
tification of the relationship that may exist between the well log data and core
permeability. This chapter overviews the different meta-heuristics in permeability
prediction, indicating the advantages of each method. In the end, some suggestions
and comments about how to choose the best method are presented.
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