
On Meta-heuristics in Optimization
and Data Analysis. Application
to Geosciences

Henri Luchian, Mihaela Elena Breaban and Andrei Bautu

Abstract This chapter presents popular meta-heuristics inspired from nature
focusing on evolutionary computation (EC). The first section, as an elevator pitch,
briefly walks through problem solving, touching upon notions such as optimization
problems, meta-heuristics, constraint handling, hybridization, and the No Free
Lunch Theorem for optimization, and also giving very short introductions into
several most popular meta-heuristics. The next two sections are dedicated to evo-
lutionary algorithms and swarm intelligence (SI), two of the main areas of EC.
Three particular optimization methods illustrating these two areas are presented in
more detail: genetic algorithms (GAs), differential evolution (DE), and particle
swarm optimization (PSO). For a better understanding of these algorithms, refer-
ences to R packages implementing the algorithms and code samples to solve
numerical and combinatorial problems are given. The fourth section is dedicated to
the use of EC techniques in data analysis. Optimization of the hyper-parameters of
conventional machine learning techniques is illustrated by a case study. The last
section reviews applications of meta-heuristics in geosciences.

Keywords Meta-heuristics � Numerical and combinatorial optimization � Genetic
algorithms � Differential evolution � Particle swarm optimization � Hyper-param-
eters optimization � Problems in geosciences

H. Luchian � M.E. Breaban (&)
Faculty of Computer Science, Alexandru Ioan Cuza University of Iasi, Iasi, Romania
e-mail: pmihaela@infoiasi.ro

A. Bautu
Faculty of Navigation and Naval Management, Romanian Naval Academy,
Constanta, Romania

© Springer International Publishing Switzerland 2015
C. Cranganu et al. (eds.), Artificial Intelligent Approaches in Petroleum Geosciences,
DOI 10.1007/978-3-319-16531-8_2

53

1 A Painless Introduction

A particular characteristic of problem solving becomes evident if computers are
used for searching solutions to problems. Namely, when asked to solve a given
problem, one is simultaneously, if implicitly, asked to solve the meta-problem of
finding the best method to solve the problem. Best may refer to saving resources
most often, time in the process of finding a solution; it may also point to the
required accuracy/precision of the solution or to the set of instances of the problem
which must be solved, or to a threshold for positive/negative errors, etc. In many
cases, simply finding a method which can successfully look for a solution to the
given problem is not sufficient; the method should comply with requirements such
as those enumerated above, and moreover, it should do this in the best possible
way. Therefore, irrespective of what best means, in order to deal with the com-
panion meta-problem, one needs to be acquainted with a comprehensive set of
methods for solving problems: the larger the set of methods one chooses from, the
better the proposed method should be.

This may be the reason why, along with the ever increasing use of computers for
solving problems, a wealth of new approaches to problem solving has been
proposed.

1.1 Briefly, on Problems and Methods to Solve Them

How many problem-solving methods does one need to master? Indeed, many
new methods for solving problems were invented (some may say discovered) lately.
As opposed to exact deterministic algorithms, many of these new methods are weak
methods; a weak method is not rigidly related to one specific problem, but rather it
can be applied for solving various problems. At times, one or another such prob-
lem-solving technique appears to be most fashionable. To an outsider, genetic
algorithms (GAs), artificial neural networks, particle swarm optimization, and
support vector machines to name just a few seemed to successively take by storm
the proscenium over the last decades. Is each new method better than the previous
ones and, consequently, is the choice of the method to solve ones specific problem a
matter of keeping pace with fashion? Is there one particular method that solves best,
among all existing methods and all problems? A positive answer to either question
would mean that we actually have a free lunch when trying to solve a given
problem: we could spare the time needed to identify the best method for finding
solutions to the problem. However, a theorem proven in 1995 by Wolpert and
McReady (1997), called the No Free Lunch Theorem for optimization, shows that
the answer to both questions above is negative. Informally (and leaving aside
details and nuances of the theorem), the NFLTO states that, averaging overall
problems, all solving methods have the same performance, no matter what indicator
of performance is used. Obviously, the common average is obtained from various

54 H. Luchian et al.

sets of values of the performance indicators for each method and various levels of
each method’s performance when applied to each specific problem. This means that
in general, two different methods perform at their respective best on different
problems, and consequently, each of them has a poorer performance on remaining
problems. It follows that there is no problem-solving method which is the “best”
method to solve all problems (indeed, if a method M would have equally good
performances on all problems, then this would be Ms average performance; then,
any method with scattered values of the performance indicator would outperform M
on some problems). Therefore, for each problem-solving method, there is a subset
of all problems for which it is the best solving method in some cases, and the subset
may consist of only one problem or even zero problems. Conversely, given a
problem to be solved, one has to find a particular method that works best for that
problem which proves that the meta-problem mentioned above is non-trivial.
Actually, it may be a very difficult problem; similar to the way some problem-
solving methods are widely used even if they are not guaranteed to provide the
exact solution, an approximate but acceptably good solution to the meta-problem
may be useful.

Optimization problems There is an informal conjecture stating that anything we
are doing, we optimize something; or, as Clerc put it in (2006), iterative optimi-
zation is as old as life itself. While each of these two statements may be the subject
of subtle philosophical debates, it is true that many problems can be stated as
optimization problems. Finding the average of n real numbers is an optimization
problem (find the number a which minimizes the sum of its distances absolute
values of the differences to each of the given numbers); the same goes for decision-
making problems, for machine learning ones, and many others.

An optimization problem asks to find—if it exists—an extreme value (either
minimum or maximum) of a given function. Finding the required solution is, in
fact, a search process performed in the space of all candidate solutions; this is why
the terms optimization method and search method are sometimes loosely used as
synonyms, although the term optimization refers to the values of the function, while
search (through the set of candidate solutions) usually points to values of the
variables of the respective function. Several simple taxonomies of optimization
problems are useful when studying meta-heuristics: optimization of functions of
continuous variable/discrete variable; optimization with/without constraints; opti-
mization with a fixed/moving optimum; single objective/multiple objective opti-
mization. Here are some examples:

• constraint optimization raises the critical problem of handling constraints;
• continuous/discrete variables point to specific meta-heuristics that originally

specialize in one the two types of optimization (e.g., GAs for discrete variables;
differential evolution (DE) for continuous variables);

• self-adapting meta-heuristics are recommended for solving problems with a
moving optimum;

On Meta-heuristics in Optimization and Data Analysis. Application to Geosciences 55

• particular variants of existing meta-heuristics have been defined for multi-
objective optimization (e.g., in DE).

Meta-heuristics, described below, are seen as optimization methods (i.e.,
methods for solving optimization problems). While meta-heuristics can also be used
for solving, for example, complex-system-design problems or machine learning
problems, such problems can also be stated as optimization problems.

Meta-heuristics Any problem-solving method belongs to one of three categories:
exact deterministic methods, approximate deterministic methods, and non-deter-
ministic methods. This chapter is concerned with the second and third categories,
which flourished over the last few decades.

A heuristic is a problem-solving method which is able to find approximate
solutions to the given problem either in a (significantly) shorter time than an exact
algorithm or simply when no exact algorithm can find a solution. Approximate
solutions may be acceptable in various situations; Simon (1969) argues that humans
tend to satisfice (use an acceptable approximate solution obtained reasonably
quickly) when it comes to complex situations/domains.

Meta-heuristic is a relatively recent term, introduced by Glover in 1986. Various
definitions and taxonomies of meta-heuristics were subsequently proposed; the
works mentioned below discuss these in detail. It is generally accepted that meta-
heuristics are problem-independent high-level strategies which guide the process of
finding (approximate) solutions to given problems. However, problem-independent
methods (also called weak methods) may well be fine-tuned by incorporating in the
search procedure some problem-specific knowledge; an early paper on this is
(Grefenstette 1987).

Among several existing taxonomies of meta-heuristics, the most interesting one
for our discussion is the classification concerned with the number of current
solutions. A trajectory or single-point meta-heuristic works with only one current
solution; the current solution is iteratively subject to conditional change. Local
search meta-heuristics, such as Tabu Search, Iterated Local Search, and Variable
Neighborhood Search (Blum and Roli 2003), fall into this category. A population-
based meta-heuristic iteratively change a set of candidate solutions collectively
called population; genetic algorithm (GA) or particle swarm Optimization, among
others, belong in this category.

This section briefly discusses two trajectory-based methods: iterated hill
climbing and simulated annealing.

Hill climbing Hill climbing is a weak optimization heuristic: In order to be applied
for solving a given problem, the only properties that are required are that the
function to be optimized takes on values which can always be compared against
each other (a totally ordered set of values such as the real numbers or the natural
numbers) and that it allows for a step-by-step improvement of candidate solutions
(i.e., the problem is not akin to finding the needle in the haystack). Hill climbing
does not use any other properties of the function to be optimized and does not

56 H. Luchian et al.

organize the search for the optimum following a tree structure—or any other
structure. Therefore, it requires little computer memory. Hill climbing starts with an
initial candidate solution and iteratively aims at improving the current candidate
solution by replacing it with any (or the best) neighbor solution which is better than
the current one; when there are no more possible improvements, the search stops.
The neighborhood can be considered either in the set over which the function is
defined (a neighbor can be obtained through a slight modification of a number
which is a component of the candidate solution) or in the set of computer repre-
sentations of candidate solutions (a neighbor there is reached by flipping one bit).

While the procedure sketched above is very effective for any mono-modal
function (informally, a function whose graph has only one hilltop), it may get stuck
in local optima if the function is multi-modal. In the latter case, the graph of the
function will also have a second-highest hill, a third highest one, etc.; one run of the
hill-climbing procedure having the initial solution at the shoulder of the second-
highest hill will find the second-highest hilltop (a local optimum), but then, it will
get stuck there, since no improvement is possible anymore in the neighborhood.
This is why for multi-modal functions iterated hill climbing is used instead of one-
iteration hill climbing: The method is applied several times in a row, with different
initial candidate solutions, thus increasing the chance that one run of the method
will start at the foot of the hill which contains the global optimum.

Simulated Annealing The problem described above—optimization methods
getting stuck in local optima—was actually impairing potential advances in opti-
mization methods. A breakthrough has been the Metropolis algorithm (Metropolis
et al. 1953). The new idea was to occasionally allow for candidate solutions which
are worse than the current one to replace the current solution. This is compatible
with the hill-climbing metaphor: Indeed, when one wanders through a hilly land-
scape aiming at reaching the top of the highest hill, he/she may have to occasionally
climb down a hill in order to reach a higher one.

The idea of expanding the exploration capabilities of the optimization method at
the expense of the quality of the current solution proved to be very productive.
Nevertheless, a better idea is to also keep under some kind of control the ratio
between the number of steps when the current solution is actually improved and the
number of steps when the current solution is worsened. This is where simulated
annealing comes into scene. Beings of nature have not been the only inspiration for
problem-solving researchers; non-living-world processes are also a rich source for
metaphors and simulations in problem solving. One celebrating example is
annealing: Cooled gradually, a metal can gain most desirable physical properties
(e.g., ductility and flexibility), while sudden cooling of a metal hardens it.

Kirckpatrick et al. (1983) proposed a simulation of annealing which uses a
parameter (the temperature) for controlling the improvement/worsening ratio men-
tioned above: The lower the temperature, the fewer steps which worsen the current
solution are allowed. Analogously to what happens in the physical–chemical process

On Meta-heuristics in Optimization and Data Analysis. Application to Geosciences 57

of annealing, the temperature starts at a (relatively) high value and decreases at each
iteration of the current-solution-changing process. Simulated annealing has been
successfully applied to solve many discrete and continuous optimization problems,
including optimal design.

The rest of this chapter and Chapter “Genetic Programming Techniques with
Applications in the Oil and Gas Industry” present several population-based meta-
heuristics: GAs and genetic programing, DE, and particle swarm optimization. We
briefly introduce each of them in the following paragraphs. Four particular topics of
interest, in particular for the meta-heuristics under discussion, are then briefly
touched upon.

Many more meta-heuristics have been proposed and new ones continue to
appear. Monographs and surveys on meta-heuristics such as Glover (1986); Talbi
(2009); Voß (2001) give comprehensive insights into the topic. The International
Journal of Meta-heuristics publishes both theoretical and application papers on
methods including: neighborhood search algorithms, evolutionary algorithms, ant
systems, particle swarms, variable neighborhood search, artificial neural networks,
and artificial immune systems. Those interested in approaches to solving the meta-
problem above may wish to read about hyper-heuristics—a term coined by Burke; a
survey is provided in Burke et al. (2013).

1.2 What Will the Rest of This Chapter and the Next
One Elaborate On?

We introduce briefly the main topics of the two chapters.

Genetic Algorithms Ingo Rechenberg, a professor with the Technical University
of Berlin and a parent of evolution strategies, made a statement which supports the
use of evolutionary techniques for problem solving: “Natural evolution is, or
comprises, a very efficient optimization process, which, by simulation, can conduct
to solving difficult optimization processes” Rechenberg (1973). The statement is
empirically supported by many successful applications of evolutionary techniques
for solving various optimization problems. The field of evolutionary computing
now includes various techniques; the pioneering ones have been the GAs (Holland
1975), the evolution programs Fogel et al. (1966), and the evolution strategies
Rechenberg (1973; Schwefel 1993). Excellent textbooks on GAs are widely used:
Michalewicz (1992; Mitchell 1996), or a more general one, on evolutionary com-
puting (Jong 2006).

As the title of the groundbreaking book by Holland suggests, adaptation has
been the core idea that led to GAs; self-adapting techniques became ever since
more and more popular. Trying to reach the optimum starting from initial guesses as
candidate solutions, such techniques self-adapt their search using properties of the
search space of (the instance of) the problem.

58 H. Luchian et al.

http://dx.doi.org/10.1007/978-3-319-16531-8_3
http://dx.doi.org/10.1007/978-3-319-16531-8_3

GAs simulate a few basic factors of natural evolution: mutation, crossover, and
selection. The implementation of each of these simulated factors involves gener-
ating random numbers: like all evolutionary methods, GAs are non-deterministic.
Adaptation, which is instrumental in natural evolution, is simulated by calculating
values of a function (the environment) and, on this basis, making candidate solu-
tions compete for survival for the next generation. The evolution of the population
of solutions can be seen as a learning process where candidate solutions learn
collectively.

More sophisticated variants of GAs simulate further factors of natural evolution,
such as the integrated evolution of two species [coevolution (Hillis 1990) the host–
parasite model].

One particular feature of GAs is that the whole computation process takes place
in two dual spaces: the space of candidate solutions to the given problem (where the
evaluation and the subsequent selection for survival take place the phenotype) and
the space of the representations of such solutions (where genetic operators such as
mutation and crossover are applied the genotype). This characteristic is also bor-
rowed from natural evolution, where the genetic code and the actual being evolved
from that code are instantiations of the two-space paradigm: In natural evolution,
the genetic code is altered through mutations and through crossover between par-
ents; subsequently, the being evolved from the genetic code is evaluated with
respect to its adaptation to the environment.

The genetic code in GAs is actually the way candidate solutions are represented
in the computer. The standard GAs (Michalewicz 1992) works with chromosomes
(representations of candidate solutions) which are strings of bits. When applied to
solve real-world problems, GAs evolved toward sophisticated representations of
candidate solutions, including varying-length chromosomes and multi-dimensional
chromosomes. One particular representation of candidate solutions has been
groundbreaking: trees from graph theory.

Genetic Programing emerged as a distinct area of GA. In his seminal book (Koza
1992), Koza uses a particular definition for the solution to a problem: A solution is a
computer program which solves the problem. Adding to this the idea that such
computer programs can be developed automatically, in particular through genetic
programing, a flourishing field of research and applications emerged. As Poli et. al.
put it, genetic programing automatically solves problems without requiring the user
to know or specify the form or structure of the solution in advance (Poli et al. 2008).

A tree can be seen as representing a calculation, in particular, a computer pro-
gram. In genetic programing, computer programs evolve in an automated manner
through self-adaptation of a population of trees each tree representing a candidate
program. Evaluation of candidate solutions is carried out using a set of instances of
the problem to be solved for which the actual solutions are known beforehand.
Specific operators have been introduced to cope with peculiarities of the evolution
of trees as abstract representations.

On Meta-heuristics in Optimization and Data Analysis. Application to Geosciences 59

Spectacular results have been obtained using genetic programing, including
patentable inventions.

Differential Evolution Since 1996, when it was publicly proposed by Price and
Storn (1997), DE became a popular optimization technique. It is a population-based
method designed for minimizing multi-dimensional real-valued functions through
vector processing; the function needs not be continuous (let alone differentiable)
and, even if it is differentiable, no information on the gradient is used.

DE follows the general steps of an evolutionary scheme: initialisation, applying
specific operators (see the one described below), evaluation, and selection; this
sequence being iterated from the second step until a halting condition is met. The
basic operation in DE is to add the weighted difference of two vectors in the
population to a third one. Thus, the candidate solutions learn from each other; the
computation is a self-adapting process.

From its early days, DE proved to be a powerful optimization technique: It won
the general-purpose algorithms competition in the First International Contest on
Evolutionary Optimization, 1996 (at the IEEE International Conference on Evo-
lutionary Computation). As was the case with other evolutionary techniques, DE
evolved to incorporate new elements such as elitism or coevolution. Pareto-based
approaches have been proposed for tackling multiple objective optimization
problems using DE (Madavan 2002).

Particle Swarm Optimization Collective intelligence (Nguyen and Kowalczyk
2012) is a rich source of inspiration for designing meta-heuristics through simu-
lation. Particularly, successful among such meta-heuristics are Ant Colony Opti-
mization (Dorigo and Stützle 2004) and Particle Swarm Optimization.

The seminal paper for the latter meta-heuristic is (Kennedy and Eberhart 1995);
a textbook dedicated to PSO is (Clerc 2006). Bird flocking or fish schooling can be
considered as being the inspiring metaphors from nature. The core idea is that at
each iteration, each particle (candidate solution) moves through the search space
according to a (linear) combination of the particles current move, of the best per-
sonal previous position, and of the best previous position of the neighbors (what
neighbors means, is a parameter of the procedure). This powerful combination of
the backtracking flavor (keeping track somehow of the previous personal best) and
collective learning (partly aiming at the regional/global previous best) makes PSO
well suited for optimization problems with a moving optimum.

1.3 Short Comments on Four Transversal Issues

Parameter Control A key element for the successful design of any meta-heuristic
is a proper adjustment of its parameters. Suffices it to think of the number of
candidate GAs one has to select from when designing a GA for a given problem:

60 H. Luchian et al.

Mutation rates and crossover rates can, at least theoretically, take on any value
between 0 and 1; there are tens of choices for the population size; the selection
procedure can be any of at least ten popular ones (new ones can be invented), etc.
This makes a search space for properly designing a GAs for a given problem in the
range of at least hundreds of thousands candidate GAs; of these, only a few will
probably have a good performance and finding these among all possible GAs for
that problem is a non-trivial task.

In the design phase of a meta-heuristic, parameters can be set by hand or auto-
matically. For example, for GAs, a supervisor GAs have been proposed (Gre-
fenstette 1986) which can be used for off-line improvement of the parameters of a
given GAs such as the population size, the mutation, and crossover rates.

If one chooses to have dynamic parameter values during the run of the algo-
rithm, this can be done automatically, for example, upon automatedly checking
whether or not any change of the best-so-far solution happened during a given
number of iterations.

Constraint Handling When the problem to be solved belongs to the constraint
optimization class, a major concern along the iterative solution-improving process
is that of preserving the feasability of candidate solutions, i.e., keeping only
solutions which satisfy all the constraints. The way a feasible solution is obtained in
the first place is beyond the scope of this paragraph—this may happen, for example,
by applying a heuristic which ends up with a feasible but, very likely, non-optimal
solution. Subsequently, the iterative solution-improvement process successively
changes the current solution; every such change may turn a current solution which
is feasible into one which is not. When unfeasible solutions (candidate solutions
which do not satisfy the problem constraints) are obtained, the optimization method
should address this.

There are three main ways of tackling unfeasible solutions. A first approach is to
penalize unfeasible solutions and otherwise let them continue to be part of the
search process. In this way, an unfeasible solution becomes even less competitive
than it actually is with respect to the search-for-the-optimum process (see fitness
function in the GAs section of this chapter). A second approach is to repair the new
solution in case it is unfeasible (repairing means changing the solution in such a
way that it becomes feasible); the fact that repairing may have the same complexity
as the original given problem makes this approach least recommendable. The best
approach seems to be that of including the constraints (or at least some of them) into
the representation of solutions. This idea is convincingly illustrated for numerical
problems in Michalewicz (1992) where bit string representations are used: Any bit
string is decoded into a feasible solution. This approach has the decisive advantage
that there is no need to check whether or not candidate solutions obtained from
existing ones are feasible. When including the problem constraints into the codi-
fication of candidate solutions, one actually uses hybridisation with the problem,
which is mentioned in the next paragraph.

On Meta-heuristics in Optimization and Data Analysis. Application to Geosciences 61

Hybridisation According to one of the definitions in Blum and Roli (2003), a basic
idea of meta-heuristics in general is to combine two or more heuristics in one
problem-tailored procedure and use it as a specific meta-heuristic. Hybridisation has
even more subtle aspects. Hybridisation happens when inserting an element from one
meta-heuristic into another meta-heuristic (e.g., using crossover, a defining operator
for GA, in an evolution strategy which, in its standard form, uses only mutations).
Another form of hybridisation could be called hybridisation with the problem:
Problem-specific properties can be used for defining particular operators in a meta-
heuristic. An example can be found in Michalewicz (1992): For the transportation
problem, a feasible solution remains feasible after applying on it a certain transfor-
mation; this transformation is then used to define the mutation operator. An example
of hybridisation is illustrated in this book, in the chapter on genetic programing.

Hybridisation is recommended, in general, for improving the problem-solving
method. This could be called intended hybridisation, and it has proven its beneficial
effects in countless successful applications.

There also exists an unintended hybridisation which one should be aware of. For
example, when trying to optimize a Royal Road function (Mitchell et al. 1992), the
search in a large plateau (while a substring of 8 bits does not yet contain only 1s) is
akin to a blind search, even though we run a GA for solving the problem. Indeed,
the probability field constructed for the selection has, for the whole plateau, equal
probabilities, and consequently, the selection is not biased toward solutions closer
to the optimum—it is rather a random selection. This way, the GA designed to
solve the Royal Road problem is (unwillingly) hybridised with random search
which takes over temporarily while walking the plateau.

Experiments Non-deterministic methods are used in a way which differs from that
of deterministic ones. The latter will always provide the same output for a given
input, while the former may give different results when run repeatedly with the same
input. This behavior leads to the need of assessing the quality of a non-deterministic
algorithm by repeatedly running it with the same input. Various statistics can be used
—usually, the average of the respective best solutions and their standard deviation,
over a number of runs. Therefore, the proper use of non-deterministic methods
requires at least basic knowledge of probabilities and statistics, in particular Exper-
iment design. Testing statistical hypothesis gives substance to the study of the per-
formance of (non-deterministic) meta-heuristics.

1.4 Going into Practice: Two Running Examples

In order to illustrate the optimization process conducted within the methods
described in this chapter, two optimization problems are formulated here. Sample
code in R (including the output) invoking the algorithms under consideration is
listed in the next sections in an attempt to familiarize the reader with some avail-
able, easy-to-use software.

62 H. Luchian et al.

The first optimization problem, known as Six Hump Camel Back, is commonly
used as a benchmark function to assess the performance of optimization algorithms
to which its multi-modal complex landscape imposes serious difficulties. It is for-
mulated as a minimization problem over two continuous variables. The problem is
defined as follows:

Minimize f ðx1; x2Þ ¼ ð4� 2:1x21 þ x41=3Þx21 þ x1x2 þ ð�4þ 4x22Þx22
where �3� x1 � 3;

�2� x2 � 2:
ð1Þ

The landscape of the function is illustrated in Fig. 1 with the aid of perspective
and contour plots in R.

Visible on the plots above, the function has six local minima and two global
minima. The two global minima lie at locations ðx1; x2Þ ¼ ð�0:0898; 0:7126Þ and
ðx1; x2Þ ¼ ð0:0898;�0:7126Þ; the value returned at these locations corresponds to
f ðx1; x2Þ ¼ �1:0316.

The R code defining the Six Hump Camel Back function is shown below.

> SixHump <- function (x1, x2)
{

(4-2.1*x1^2+x1^4/3)*x1^2+x1*x2+(-4+4*x2^2)*x2^2
}

An equivalent function can be implemented in R using as argument a vector.
This formulation is more appropriate for our goals because, this general form which
does not impose restrictions on the size of the input, can be further called by other R
routines implementing the meta-heuristics presented in this chapter.

> SixHumpV <- function (x)
{

(4-2.1*x[1]^2+x[1]^4/3)*x[1]^2+x[1]*x[2]+(-4+4*x[2]^2)*x[2]^2
}

We also illustrate the use of meta-heuristics on a constrained optimization
problem with discrete variables, frequently arising in the oil and gas industry:
portfolio selection. While this problem may be found under various formulations,
we tackle here the variant presented in Shakhsi-Niaei et al. (2013). Given a firm
with a budget b, n projects, with the net value of the ith project denoted by fi and the
cost of the ith project denoted by ci, one must find the combination of projects that
maximizes the total utility for the firm, as computed in Eq. 2:

Maximize z ¼
Xn
i¼1

fixi; ð2Þ

On Meta-heuristics in Optimization and Data Analysis. Application to Geosciences 63

Subject to:
Xn
i¼1

cixi � b; ð3Þ

xi 2 0; 1; i ¼ 1; n: ð4Þ

x1 þ x2 � 1; ð5Þ

x5 þ x3 � 1: ð6Þ

x5 þ x3 þ x4 � 2: ð7Þ

The variables xi represent the decision to select project i (xi ¼ 0 means the project
is not selected, whereas xi ¼ 1 means the project gets selected for implementation)—

x1 x2

z

 0.07403146

 1.174207
 2.274382

 2
.2

74
38

2

 3.374558

 4.474733

 5.574909

 6.675084
 7.77526

 8.875435

 9.975611

 11.07579
 12.17596

 13.27614 14.37631

 15.47649 16.57666

 17.67684 18.77701

 19.87719
 20.97737

 22.07754

 23.17772 24.27789 25.37807

 26.47824

 27.57842
 28.67859

 29.77877 30.87894

 3
1.

97
91

2

 33.0793

 34.17947
 35.27965

 36.37982

 37.48 38.58017 39.68035

 4
0.

78
05

2

 41.8807
 42.98087

 44.08105

 45.18123

 46.2814
 47.38158

85183.74

57
18

4.
84

57
18

4.
84

 5
0.

68
21

12
86

.0
5

 51.78228

 5
5.

08
28

 58.38333

 7
1.

58
54

4 72.68561

 82.58719

 85.88772
95

88
3.

19

95883.19

77
88

4.
29

59
88

5.
39

21
98

6.
49

 9
5.

78
93

 100.19

−3 −2 −1 0 1 2 3
−

2
−

1
0

1
2

x1 x2

z

 −0.7026658

 −0.7026658

 −0.6564432

 −0.6102205

 −0.4253299

 −0.3791073

 −0.3791073

 −0.3328846

 −
0.

28
66

62

 −
0.

28
66

62

 −
0.

24
04

39
3

 −0.1942167

 −0.147994

 −
0.

00
93

26
09

 0.03689656

 0.08311921

 0
.1

29
34

19

 0.1755645

 0
.2

21
78

72

 0.2217872

 0
.2

21
78

72

 0
.2

68
00

98

 0.2680098

 0
.2

68
00

98

 0
.3

14
23

25

 0.3604551

 0
.4

06
67

78

 0
.4

52
90

04

 0
.4

52
90

04

 0
.4

99
12

3

 0.499123

 0
.5

45
34

57

 0.5915683

 0.5915683

 0.637791

 0.637791

 0.6840136

 0.6840136

 0.7302363

 0.8226816

 0.8226816

 0.8689042

 0.9151269

 0.9151269

 0.9613495
 1

.0
07

57
2

 1.007572
 1

.0
53

79
5

 1.14624

 1.14624

 1.192463

 1.284908

 1.284908

 1.331131

 1.331131

 1.377353

 1.377353

 1.423576

 1.469799

 1
.5

16
02

1

 1
.5

62
24

4

 1.700912 1.747135

 1.747135

 1
.8

39
58

 1.83958
 1.885803 1.932025

 1.978248

 1
.9

78
24

8

 2.02447

 2.116916 2.163138

 2
.2

09
36

1

 2.209361

 2.209361

 2.255584

 2.255584

 2.255584

 2.301806

 2.301806

 2.301806

 2
.3

01
80

6

 2.348029

 2
.3

48
02

9

 2.394252

 2.486697

29
23

5.
2

 2.53292

 2.625365

 2.810255

 2.995146

 3.318705

 3.734708

 3.827154

−2 −1 0 1 2

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

(a)

(b)

Fig. 1 Perspective and contour plots for Six Hump Camel Back: a for the entire domain of
definition: x1 2 ½�3; 3�, x2 2 ½�2; 2�, b restricted to x1 2 ½�1:9; 1:9�, x2 2 ½�1:1; 1:1�. The two
global optima are illustrated as blue triangles at locations ðx1; x2Þ ¼ ð�0:0898; 0:7126Þ and
ðx1; x2Þ ¼ ð0:0898; �0:7126Þ

64 H. Luchian et al.

constraint expressed by Eq. 4. The total budget of the firm must not be exceeded by
the total costs of the projects selected (Eq. 3). Other constraints may be imposed on
the problem (especially in a real-world context), such as Eq. 5 expresses the condition
that either project 1 or project 2 gets implemented; Eq. 6 expresses the condition that
either project 3 or project 5 gets implemented; Eq. 7 expresses the condition that at
most 2 out of the 3 projects (3, 4, and 5) may get implemented.

2 Evolutionary Algorithms

Evolutionary algorithms (EAs) are simplified computational models of the evolu-
tionary processes that occur in nature. They are search methods implementing
principles of natural selection and genetics. Parts of this section follow closely the
text in (Breaban 2011).

2.1 Terminology

Evolutionary algorithms use a vocabulary borrowed from genetics. They simulate the
evolution across a sequence of generations (iterations within an iterative process) of a
population (set) of candidate solutions. A candidate solution is internally represented
as a string of genes and is called chromosome or individual. The position of a gene in a
chromosome is called locus, and all the possible values for the gene form the set of
alleles of the respective gene. The internal representation (encoding) of a candidate
solution in an evolutionary algorithm form the genotype; this information is pro-
cessed by the evolutionary algorithm. Each chromosome corresponds to a candidate
solution in the search space of the problem which represents its phenotype. A
decoding function is necessary to translate the genotype into phenotype. If the search
space is finite, it is desirable that this function should satisfy the bijection property in
order to avoid redundancy in chromosomes encoding (which would slow down the
convergence) and to ensure the coverage of the entire search space.

The population maintained by an evolutionary algorithm evolves with the aid of
genetic operators that simulate the fundamental elements in genetics: Mutation
consists in a random perturbation of a gene, while crossover aims at exchanging
genetic information among several chromosomes. The chromosome subjected to a
genetic operator is called parent and the resulted chromosome is called offspring.

A process called selection involving some degree of randomness selects the
individuals to breed and create offsprings, mainly based on individual merit. The
individual merit is measured using a fitness function which quantifies how fitted the
candidate solution encoded by the chromosome is for the problem being solved. The
fitness function is formulated based on the mathematical function to be optimized.

The solution returned by an evolutionary algorithm is usually the most fitted
chromosome in the last generation.

On Meta-heuristics in Optimization and Data Analysis. Application to Geosciences 65

2.2 Directions in Evolutionary Algorithms

First efforts to develop computational models of evolutionary systems date back to
1950s (Bremermann 1958; Fraser 1957). Several distinct interpretations, which are
widely used nowadays, were independently developed later. The main differences
between these classes of evolutionary algorithms consist in solution encoding,
operators implementation, and selection schemes.

Evolutionary programing crystallized in 1963 in the USA at San Diego Uni-
versity, when Fogel (1966) generated simple programs as simple finite-state
machines; this technique was developed further by his son David Fogel. A random
mutation operator was applied on state transition diagrams, and the best chromo-
some was selected for survival.

Evolutionary strategies (ES) were introduced in 1960s when Hans-Paul
Schwefel and Ingo Rechenberg, working on a problem from mechanics involving
shape optimization, designed a new optimization technique because existing
mathematical methods were unable to provide a solution. The first ES algorithm
was initially proposed by Schwefel in 1965 and developed further by Rechenberg
(1973). Their method was designed to solve optimization problems with continuous
variables; it used one candidate solution and applied random mutations followed by
the selection of the fittest. ES were later strongly promoted by Back (1996) who
incorporated the idea of population of solutions.

GAs were developed by John Henry Holland in 1973 after years of study of the
idea of simulating the natural evolution. These algorithms model the genetic
inheritance and the Darwinian competition for survival. GAs are described in more
detail in Sect. 2.3.

Genetic programing is a specialized form of a GA. The specialization consists in
manipulating a very specific type of encoding and, consequently, in using modified
versions of the genetic operators. GP was introduced by Koza in 1992 in an attempt
to perform automatic programing. GP manipulates directly phenotypes, which are
computer programs (hierarchical structures) expressed as trees. It is currently
intensively used to solve symbolic regression problems. Genetic programing and
one important variation—gene expression programing—are described in Chapter
“Genetic Programming Techniques with Applications in the Oil and Gas Industry”
of this book.

DE (Storn and Price 1997) is a more recent class of evolutionary algorithms
whose operators are specifically designed for numerical optimization. DE is
described in detail in Sect. 2.4.

An in-depth analysis under a unified view of these distinct directions in evo-
lutionary algorithms is presented in De Jong (2006).

66 H. Luchian et al.

http://dx.doi.org/10.1007/978-3-319-16531-8_3

2.3 Genetic Algorithms

GAs (Holland 1998) are the most well known and the most intensively used class of
evolutionary algorithms.

A GA performs a multi-dimensional search by means of a population of can-
didate solutions which exchange information and evolve during an iterative process.
The process is illustrated by the pseudo-code in Fig. 2.

In order to solve a problem with a GA, one must define the following elements:

• an encoding for candidate solutions (the genotype);
• an initialization procedure to generate the initial population of candidate

solutions;
• a fitness function which defines the environment and measures the quality of the

candidate solutions;
• a selection scheme;
• genetic operators (mutation and crossover);
• numerical parameters.

The encoding is considered to be the main factor determining the success or
failure of a GA.

The standard encoding in GAs consists in binary strings of fixed length. The
main advantage of this encoding is offered by the existence of a theoretical model
(the Schema theorem) explaining the search process until convergence. Another
advantage shown by Holland is the high implicit parallelism in the GA. A widely
used extension to the binary encoding is gray coding.

Unfortunately, for many problems, this encoding is not a natural one and it is
difficult to be adapted. However, GAs themselves evolved and the encoding
extended to strings of integer and real numbers, permutations, trees, and multi-
dimensional structures. Decoding the chromosome onto a candidate solution to the
problem sometimes necessitates problem-specific heuristics.

Important factors that need to be analyzed with regard to the encoding are the
size of the search space induced by a representation and the coverage of the phe-
notype space: Whether the phenotype space is entirely covered and/or reachable,
whether the mapping from genotype to phenotype is injective, or “degenerate,” and

t := 0
Initialize P0
Evaluate P0
while halting condition not met do

t := t+ 1
select Pt from Pt−1
apply crossover and mutation in Pt

evaluate Pt

end while

Fig. 2 A generic genetic
algorithm

On Meta-heuristics in Optimization and Data Analysis. Application to Geosciences 67

whether particular (groups of) phenotypes are over-represented (Radcliffe et al.
1995). Also, the “heritability” and “locality” of the representation under crossover
and mutation need to be studied (Raidl and Gottlieb 2005).

The initialization of the population is usually performed randomly. There exist
approaches which make use of greedy strategies to construct some initial good
solutions or other specific methods depending on the problem.

The fitness function is constructed based on the mathematical function to be
optimized. For more complex problems, the fitness function may involve very
complex computations and increase the intrinsic polynomial complexity of the GA.

Several probabilistic procedures based on the fitness distribution in population
can be used to select the individuals to survive in the next generations and produce
offsprings; this phase of the algorithm is known as selection for variation. All
these procedures encourage to some degree the survival of the fittest individuals,
allowing at the same time that the worst adapted individual survive and contribute
with local information (short-length substrings) to the structure of the optimal
solution. The most essential feature which differentiates them is the selection
pressure: the degree to which the better individuals are favored; the higher the
selection pressure, the more the better individuals are favored. The selection
pressure has a great impact on the diversity in population and consequently on the
convergence of GAs. If the selection pressure is too high, the algorithm will suffer
from insufficient exploration of the search space and premature convergence occurs,
resulting in sub-optimal solutions. On the contrary, if the selection pressure is too
low, the algorithm will unnecessarily take longer time to reach the optimal solution.
Various selection schemes were proposed and studied from this perspective. They
can be grouped into two classes: proportionate-based selection and ordinal-based
selection. Proportionate-based selection takes into account the absolute values of
the fitness. The most known procedures in this class are as follows: roulette wheel
(Holland 1975) and stochastic universal sampling (Baker 1987).

Because of its wide use and popularity among all GAs flavors, we describe, in
the following, roulette wheel selection. For this procedure, each individual is
assigned a probability of being selected proportional with its fitness value. The sum
of these probability values over the set of all the individuals in a generation is 1. Let
fi be the fitness of the ith individual of the current population, then pi is the
probability of the individual for being selected:

pi ¼ fiPN
j¼1

fj

;

where N is the number of individuals in the population (see, for a simple example,
Fig. 3 which assumes a population of 5 individuals). On each application of the
selection scheme, a random number is generated r 2 ½0; 1Þ and the individual i with
the highest cumulative frequency smaller than this random r is selected to survive to
the next generation:

68 H. Luchian et al.

i ¼ k ¼ 1. . .n
min

fkj
Xk
j¼1

� rg:

Ordinal-based selection takes into account only the relative order of individuals
according to their fitness values. The most used procedures of this kind are the
linear ranking selection (Baker 1985) and the tournament selection (Goldberg
1989).

New individuals are created in population with the aid of two genetic operators:
crossover and mutation. The classical crossover operator aims at exchanging
genetic material between two chromosomes in two steps: A locus is chosen ran-
domly to play the role of a cut point and splits each of the two chromosomes in two
segments; then, two new chromosomes are generated by merging the first segment
from the first chromosome with the second segment from the second chromosome
and vice versa. This operator is called in literature one-point crossover and is
illustrated in Fig. 4. Generalizations exist to three or more cut points. Uniform
crossover builds sequentially the offspring by copying at each locus the allele
randomly chosen from one of the two parents.

Various constraints imposed by real-world problems led to various encodings for
candidate solutions; these problem-specific encodings subsequently necessitate the
redefinition of crossover. Thus, algebraic operators are implied for the case of
numerical optimization with real encoding; an impressive number of papers focused
on permutation-based encodings proposing various operators and performing
comparative studies. It is now a common procedure to wrap a problem-specific
heuristic within the crossover operator in Ionita et al. (2006), the authors propose
new operators for constraint satisfaction; (Luchian et al. 1994) presents new
operators in the context of clustering]. Crossover in GAs stands at the moment for
any procedure which combines the information encoded within two or several
chromosomes to create new and hopefully better individuals.

Fig. 3 Fitness values in a population of 5 individuals. The bottom row contains the fitness values
of the individuals. Their associated probabilities are the labels of the circular sectors

On Meta-heuristics in Optimization and Data Analysis. Application to Geosciences 69

Mutation is a unary operator designed to introduce variability in population. In
the case of binary GAs, the mutation operator modifies each gene (from 0 to 1 or
from 1 to 0) with a given probability. As in the case of crossover, mutation takes
various forms depending on the problem and the encoding used (see Fig. 5 for
examples of how mutation works for different chromosome representations).

When designing a GA, decisions have to be made with regard to several
parameters: population size, crossover and mutation rate, and a halting criterion.
Except some general considerations (i.e., high mutation rate in first iterations,
decreasing during the run, combined with a complementary evolution for cross-
over), finding the optimum parameter values comes more to empiricism than to
abstract studies.

In the following, we illustrate the search process conducted by a GA using the
package called “GA” (Scrucca 2013) in R to minimize the Six Hump Camel Back
function, previously defined in Sect. 1.4.

Fig. 4 Crossover operators in bit string GA

Fig. 5 The behavior of the mutation operator for different encodings

70 H. Luchian et al.

Because this is a problem with a continuous bi-dimensional search space, a real
encoding and arithmetical operators are a natural choice. Moreover, empirical
studies have reported that these settings obtain better performance compared to
natural encoding and standard operators in the case of numerical optimization
problems. The initialization scheme consists in randomly generating points (can-
didate solutions, chromosomes) in the bi-dimensional search space defined by the
problem. We have to define further the fitness function that should be used to
measure the quality of the chromosomes. Naturally, this is based on the objective
function of our problem, but requires some minimal modifications: the GAs
necessitate that the fitness function is designed for maximization: The higher the
fitness value is, the better the candidate solution for our problem is. Because the
problem we tackle is defined for minimization, low values of our objective function
(previously defined in R as SixHumpV) correspond to better solutions, while high
values to worse ones. Therefore, we need to build a new function playing as fitness
in the GA, simply by multiplying our objective function with (−1):

SixHumpMax <- function(x)
+ {
+ -SixHumpV(x)
+ }

The lines of code below call the ga function to execute a GA which maximizes
our newly defined function with a population of 20 chromosomes using real
encoding and arithmetic operators for 50 iterations:

> library("GA")
> GA.sols <- ga(type = "real-valued", fitness = SixHumpMax,
+ min = c(-3, -2), max = c(3, 2), maxiter=50, popSize=20)
Iter = 1 | Mean = -20.10513 | Best = 0.3900806
Iter = 2 | Mean = -8.679598 | Best = 0.3900806
Iter = 3 | Mean = -1.909435 | Best = 0.3900806
Iter = 4 | Mean = -0.7739577 | Best = 0.521566
Iter = 5 | Mean = -0.4207289 | Best = 0.521566
...
Iter = 50 | Mean = 0.9275536 | Best = 1.020383

During its execution, the ga function prints at each iteration the mean of the
fitness in population and the best fitness value. To show the final results, we call the
summary function:

On Meta-heuristics in Optimization and Data Analysis. Application to Geosciences 71

Iterations = 50
Fitness function value = 1.020383
Solution =

x1 x2
[1,] -0.1262185 0.6870156

> summary(GA.sols)
+-----------------------------------+
| Genetic Algorithm |
+-----------------------------------+

GA settings:
Type = real-valued
Population size = 20
Number of generations = 50
Elitism = 1
Crossover probability = 0.8
Mutation probability = 0.1
Search domain

x1 x2
Min -3 -2
Max 3 2

GA results:

The best solution obtained over 50 iterations corresponds to Six Hump
(−0.1262185, 0.6870156) = −1.020383. The evolution of the best value of the
objective function in population during the run is illustrated in Fig. 6.

0 10 20 30 40 50

−
1.

0
−

0.
9

−
0.

8
−

0.
7

−
0.

6
−

0.
5

−
0.

4

x

S
ix

H
um

p

Fig. 6 The evolution of the
best objective value in one
run of the GA

72 H. Luchian et al.

Figure 7 illustrates the distribution of the individuals in population during one
run of the GA, at iterations 1, 2, 5, 10, and 50. The GA shows a very quick
convergence toward the regions containing the global minima. The evolution of the
fitness for the run illustrated here shows that the GA is able to locate in only a few
number of iterations the promising area in the search space due to its good
exploration abilities. However, by comparing the final solution to the minimum of
the objective function (−1.020383 vs. −1.0316), we may conclude that in this run,
the GA is deficient at exploitation: Even if very close to the global optima, starting
at iteration number 17, the algorithm stopped improving the best solution achieved
so far.

By illustrating only one run of the GA, a general conclusion on its convergence
cannot be drawn on this basis due to the stochastic nature of the algorithm. To study
its performance, 30 runs are performed with the same settings and for each run, the
objective value corresponding to the solution returned is collected. In this manner,
we obtain a sample of 30 values with mean −1.030361—which is closer to the
optimum than the particular run reported previously, and standard deviation 0.0037
—which indicates that the algorithm is stable, returning each time solutions very
close to the optimum. The confidence interval for the mean supports these con-
clusions: The mean of the objective values returned by the GA is less than
−1.028960 (we are interested in the minimum) with probability 0.95. In the code
below, “fitness” is a vector with 30 values corresponding to the objective values
returned in 30 runs:

 0.07403146

 1.174207 2.274382

 2
.2

74
38

2

 3.374558

 4.474733

 5.574909

 6.675084
 7.77526

 8.875435

 9.975611

 11.07579
 12.17596

 13.27614 14.37631

 15.47649 16.57666

 17.67684 18.77701

 19.87719
 20.97737

 22.07754

 23.17772 24.27789 25.37807

 26.47824

 27.57842

 28.67859

 29.77877 30.87894

 3
1.

97
91

2

 33.0793

 34.17947
 35.27965

 36.37982

 37.48 38.58017 39.68035

 4
0.

78
05

2

 41.8807
 42.98087

 44.08105

 45.18123

 46.2814
 47.38158

85183.74

57
18

4.
84

57
18

4.
84

 5
0.

68
21

12
86

.0
5

 51.78228

 5
5.

08
28

 58.38333

 7
1.

58
54

4 72.68561

 82.58719

 85.88772
95

88
3.

19

95883.19

77
88

4.
29

59
88

5.
39

21
98

6.
49

 9
5.

78
93

 100.19

 0.07403146

 1.174207 2.274382

 2
.2

74
38

2

 3.374558

 4.474733

 5.574909

 6.675084
 7.77526

 8.875435

 9.975611

 11.07579
 12.17596

 13.27614 14.37631

 15.47649 16.57666

 17.67684 18.77701

 19.87719
 20.97737

 22.07754

 23.17772 24.27789 25.37807

 26.47824

 27.57842

 28.67859

 29.77877 30.87894

 3
1.

97
91

2

 33.0793

 34.17947
 35.27965

 36.37982

 37.48 38.58017 39.68035

 4
0.

78
05

2

 41.8807
 42.98087

 44.08105

 45.18123

 46.2814
 47.38158

85183.74

57
18

4.
84

57
18

4.
84

 5
0.

68
21

12
86

.0
5

 51.78228

 5
5.

08
28

 58.38333

 7
1.

58
54

4 72.68561

 82.58719

 85.88772
95

88
3.

19

95883.19

77
88

4.
29

59
88

5.
39

21
98

6.
49

 9
5.

78
93

 100.19

 0.07403146

 1.174207 2.274382

 2
.2

74
38

2

 3.374558

 4.474733

 5.574909

 6.675084
 7.77526

 8.875435

 9.975611

 11.07579
 12.17596

 13.27614 14.37631

 15.47649 16.57666

 17.67684 18.77701

 19.87719
 20.97737

 22.07754

 23.17772 24.27789 25.37807

 26.47824

 27.57842
 28.67859

 29.77877 30.87894

 3
1.

97
91

2

 33.0793

 34.17947
 35.27965

 36.37982

 37.48 38.58017 39.68035

 4
0.

78
05

2

 41.8807
 42.98087

 44.08105

 45.18123

 46.2814
 47.38158

85183.74

57
18

4.
84

57
18

4.
84

 5
0.

68
21

12
86

.0
5

 51.78228

 5
5.

08
28

 58.38333

 7
1.

58
54

4 72.68561

 82.58719

 85.88772
95

88
3.

19

95883.19

77
88

4.
29

59
88

5.
39

21
98

6.
49

 9
5.

78
93

 100.19

 0.07403146

 1.174207 2.274382

 2
.2

74
38

2

 3.374558

 4.474733

 5.574909

 6.675084
 7.77526

 8.875435

 9.975611

 11.07579
 12.17596

 13.27614 14.37631

 15.47649 16.57666

 17.67684 18.77701

 19.87719
 20.97737

 22.07754

 23.17772 24.27789 25.37807

 26.47824

 27.57842

 28.67859

 29.77877 30.87894

 3
1.

97
91

2

 33.0793

 34.17947
 35.27965

 36.37982

 37.48 38.58017 39.68035

 4
0.

78
05

2

 41.8807
 42.98087

 44.08105

 45.18123

 46.2814
 47.38158

85183.74

57
18

4.
84

57
18

4.
84

 5
0.

68
21

12
86

.0
5

 51.78228

 5
5.

08
28

 58.38333

 7
1.

58
54

4 72.68561

 82.58719

 85.88772
95

88
3.

19

95883.19

77
88

4.
29

59
88

5.
39

21
98

6.
49

 9
5.

78
93

 100.19

 0.07403146

 1.174207 2.274382

 2
.2

74
38

2

 3.374558

 4.474733

 5.574909

 6.675084
 7.77526

 8.875435

 9.975611

 11.07579
 12.17596

 13.27614 14.37631

 15.47649 16.57666

 17.67684 18.77701

 19.87719
 20.97737

 22.07754

 23.17772 24.27789 25.37807

 26.47824

 27.57842

 28.67859

 29.77877 30.87894

 3
1.

97
91

2

 33.0793

 34.17947
 35.27965

 36.37982

 37.48 38.58017 39.68035

 4
0.

78
05

2

 41.8807
 42.98087

 44.08105

 45.18123

 46.2814
 47.38158

85183.74

57
18

4.
84

57
18

4.
84

 5
0.

68
21

12
86

.0
5

 51.78228

 5
5.

08
28

 58.38333

 7
1.

58
54

4 72.68561

 82.58719

 85.88772
95

88
3.

19

95883.19

77
88

4.
29

59
88

5.
39

21
98

6.
49

 9
5.

78
93

 100.19

−3 −2 −1 3

−
2

−
1

2

0 1 2

0
1

−3 −2 −1 3

−
2

−
1

2

0 1 2

0
1

−3 −2 −1 3

−
2

−
1

2

0 1 2

0
1

−3 −2 −1 3

−
2

−
1

2

0 1 2

0
1

−3 −2 −1 3

−
2

−
1

2

0 1 2

0
1

Fig. 7 The evolution of the population in GA during one run of the algorithm: the distribution of
the candidate solutions at iterations 1, 2, 5, 10, and 15

On Meta-heuristics in Optimization and Data Analysis. Application to Geosciences 73

> t.test(fitness)

One Sample t-test

data: fitness
t = -1503.688, df = 29, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
-1.031762 -1.028960

sample estimates:
mean of x
-1.030361

Although the reported results are satisfactory, the GAs are usually enhanced in
practice by hybridizing them with local search algorithms.

With a standard binary encoding, GAs are the most appropriate candidates when
attempting to solve the portfolio selection problem by means of meta-heuristics.

In order to illustrate such an approach, we consider the problem defined in
Sect. 1.1 with the following instantiation: the number of projects n ¼ 6, the budget
of the firm b ¼ 1000, and the costs and the utilities of the projects as in Table 1. An
optimal solution to this problem involves the selection of projects 1, 4, 5, and 6; it
has total cost 850 and utility 1700.

One way to deal, within a GA, with the constraints imposed by the problem, is to
encourage the search in the feasible region of the search space by penalizing the
unfeasible candidate solutions. Under this approach, any solution that violates a
constraint gets a lower fitness. Identifying the most appropriate scheme to penalize
solutions is, by itself, an optimization problem. The code below implements one
possible fitness function for our problem:

> portfolio <- function(x){
+ cost <- c(250,350,100,200,300,100)
+ utility <- c(500,400,150,300,600,300)
+ totalUtility <- sum (utility*x)
+ totalCost <- sum (cost*x)
+ penalty <- 0
+ if (totalCost > 1000)
+ penalty <- totalCost #penalty for exceeding the budget
+ p=sum(cost)
+ if (x[1]+x[2] > 1) penalty <- penalty+p #violating constraint 5)
+ if (x[3]+x[5] > 1) penalty <- penalty+p #violating constraint 6)
+ if (x[3]+x[4]+x[5] > 2) penalty <- penalty+p #violating constraint 7)
+ totalUtility - penalty
+ }

74 H. Luchian et al.

A GA with binary encoding is called to solve this problem instance:

> GA <- ga(type = "binary", fitness = portfolio, nBits = 6,
+ maxiter = 50, popSize = 10)
Iter = 1 | Mean = 270 | Best = 1300
Iter = 2 | Mean = 850 | Best = 1400
Iter = 3 | Mean = 1225 | Best = 1700
Iter = 4 | Mean = 1160 | Best = 1700
I...
Iter = 49 | Mean = 832.5 | Best = 1700

> summary(GA)
+-----------------------------------+
| Genetic Algorithm |
+-----------------------------------+

GA settings:
Type = binary
Population size = 20
Number of generations = 50
Elitism = 1
Crossover probability = 0.8
Mutation probability = 0.1

GA results:
Iterations = 50
Fitness function value = 1700
Solution =

x1 x2 x3 x4 x5 x6
[1,] 1 0 0 1 1 1

2.4 Differential Evolution

Adhering by design to the area of evolutionary algorithms, but targeting in par-
ticular the field of numerical optimization, a method called DE was developed by
Ken Price and Rainer Storn during 1994–1996 (Storn and Price 1997). The results

Table 1 Cost and utility of
projects

Project 1 2 3 4 5 6

Cost 250 350 100 200 300 100

Utility 500 400 150 300 600 300

On Meta-heuristics in Optimization and Data Analysis. Application to Geosciences 75

in their seminal paper show that DE outperforms GAs in numerical optimization
and this hypothesis was subsequently confirmed in competitions dedicated to real-
valued function minimization.

DE makes use of the same terminology as GAs: A population of candidate
solutions evolves by means of selection, mutation, and crossover. The differences
occur at several levels: the encoding of the candidate solutions, the definition of the
genetic operators, and the selection scheme.

Designed for numerical optimization, the internal encoding of the candidate
solution (the genotype) is identical to the phenotype: A string of real values that
correspond to the decision variables defined by the problem.

The selection for variation is replaced in DE by a simple pass through the entire
population: Each chromosome is participating in the variation phase to create a new
offspring by means of genetic operators. However, DE implements selection at
replacement: The offspring is introduced in the new population only if it is better
than its parent with regard to the fitness function. The pseudo-code of the DE
algorithm is illustrated in Fig. 8.

There are several versions of the mutation operator (line 7 of the algorithm).
However, they all share a mechanism that is a distinctive feature of DE within the
EA framework: The perturbation term is obtained as the difference between some
randomly selected chromosomes. This perturbation mechanism, particular to DE,
suggestively gives the name of this method. The general formula creating one
mutant yi at time t is given below:

yi ¼ kxðt�1Þ
� þ ð1� kÞxðt�1Þ

Ii þ
XL
l¼1

Flðxðt�1Þ
Jil � xðt�1Þ

Kil
Þ ð8Þ

where k is a numerical value in range [0,1] controlling the influence of the best

element in the current population, which is xðt�1Þ
� . xðt�1Þ

Ii is a chromosome from the

1. t := 0
2. Initialize population P0 = {x(0)1 , x

(0)
2 , ..., x

(0)
m } of size m

3. Evaluate P0
4. while halting condition not met do
5. t := t+ 1
6. for i=1 to m do
7. yi = generateMutant(Pt−1)
8. zi = crossover(x(t−1)

i , yi)
9. Evaluate zi

10. if zi is better than x
(t−1)
i then

11. x
(t)
i = zi

12. else
13. x

(t)
i = x

(t−1)
i

14. end if
15. end for
16. end while

Fig. 8 The differential
evolution algorithm

76 H. Luchian et al.

current population, chosen at random (Ii 2 f1; 2; . . .mg). L[¼ 1 is an integer

value specifying the number of pairs of chromosomes of the form ðxðt�1Þ
Jil ; xðt�1Þ

Kil
Þ

randomly chosen from the current population (Jil;Kil 2 f1; 2; . . .mg; Jil 6¼ Kil) and
which are used in the perturbation mechanism. Fl [0; l ¼ 1. . .m are scaling factors
decisive for the influence of each difference.

Different settings of the numerical parameters k and L lead to distinct DE
algorithms. In order to specify, in a concise manner, the DE variant, a simple
notation, was introduced based on three variables: DE/a=L=c where a depends on
the value of k, L is the number of vector differences used, and c is the type of
crossover. The most popular versions of the DE algorithm are DE/best/1=� and
DE/rand/1=�. Both versions correspond to the case when only one difference is
used to compute the mutant. The first case corresponds to k ¼ 1, respectively, to

yi ¼ xðt�1Þ
� þ Fðxðt�1Þ

Ji � xðt�1Þ
Ki

Þ ð9Þ

while the second case corresponds to k ¼ 0, respectively, to

yi ¼ xðt�1Þ
Ii þ Fðxðt�1Þ

Ji � xðt�1Þ
Ki

Þ ð10Þ

It must be noted that the mutation mechanism described above does not alter the
current/selected chromosome xi. It is the role of crossover to build an offspring of
the current chromosome, by combining its genetic material with the one encoded by
the mutant chromosome. From this perspective, DE is not entirely compliant with
the general specifications of the two genetic operators.

Two versions of crossover are proposed in DE. A first one, called binomial
crossover, is similar to the uniform crossover in GAs: It is a binary operator that
mixes the components of the two chromosomes based on a given probability CR:

zi;d ¼ yi;d if rd\CR or d ¼ d0
xi;d otherwise

�
d ¼ 1. . .D ð11Þ

where rd is a random number uniformly distributed in [0,1] and d0 2 ½1;D� is a
random position in the chromosome guaranteeing that the offspring contains at least
one element from the mutant. D denotes the dimensionality of the problem, i.e., the
length of the string representing a chromosome.

The second variant of the crossover operator is called exponential crossover and
can be expressed by the following formulation:

zi;d ¼ yi;d for d 2 H
xi;d otherwise

�
ð12Þ

where H is a series of size at most D of consecutive circular numbers in range 1,2,
… D, starting with a value d0 and continuing with ðd0 þ 1Þ � D, ðd0 þ 2Þ � D; . . .;
ðd0 þ kÞ � D where a� b expresses the modulus operator returning the remainder

On Meta-heuristics in Optimization and Data Analysis. Application to Geosciences 77

of the division of a to b; k is the first trial that satisfies that a random uniformly
generated number in [0,1] is higher than CR, thus following a truncated geometric
distribution. For example, considering d0 ¼ 6 and D ¼ 10, H could be the series 6,
7, 8 or 6, 7, 8, 9, 10, 1, 2, depending on the parameter CR; these two examples
clearly illustrate the similarity of the exponential crossover in DE with the 2-point
crossover in GAs.

In both versions of the crossover operator, CR is a parameter deciding the
influence of the mutant on the structure of the offspring. A theoretical analysis of
the two crossover variants and their influence on the sensitivity of DE to different
values of CR are presented in Zaharie (2007).

An elitist replacement strategy guarantees survival of the fittest chromosome
among the parent and the offspring.

To simulate a run of the DE algorithm on our minimization problem, we use the
R package called DEoptim (Mullen et al. 2011).1 The following code calls the
DEoptim function which executes the DE/rand/1/bin algorithm (the variant
implementing mutation based on a random candidate and one difference, and binary
crossover) to minimize the SixHump function with a population consisting of 20
candidate solutions over 50 iterations; with the trace parameter set on TRUE, the
best candidate solution (its value for the objective function and its components) in
each iteration is shown during the run:

> library("DEoptim")
> DE.sols <- DEoptim(SixHumpV, lower = c(-3, -2), upper = c(3, 2),
+ control = list(strategy = 1, NP=20, itermax=50, storepopfrom = 1,
+ trace = TRUE))
Iteration: 1 bestvalit: -0.343676 bestmemit: 0.424858 -0.515384
Iteration: 2 bestvalit: -0.343676 bestmemit: 0.424858 -0.515384
Iteration: 3 bestvalit: -0.343676 bestmemit: 0.424858 -0.515384
Iteration: 4 bestvalit: -0.722848 bestmemit: -0.090842 0.885970
Iteration: 5 bestvalit: -0.811161 bestmemit: 0.138414 0.742059
...

The performance of DE is highly dependent on the values of the numerical
parameters. The authors of DE recommend setting CR to 0.9 and selecting F from
the interval [0.5, 1.0]. The run illustrated here uses the default values in DEoptim:
CR ¼ 0:9 and F ¼ 0:8.

The following lines of code list the best solution in the last iteration and output
two plots: One representing the evolution of the best value of the objective function
(the minimum) in the population and one representing the distribution of the can-
didate solutions during the run. The resulting plots are illustrated in Fig. 9.

1The package can be freely downloaded from http://cran.r-project.org/web/packages/DEoptim/
index.html.

78 H. Luchian et al.

http://cran.r-project.org/web/packages/DEoptim/index.html
http://cran.r-project.org/web/packages/DEoptim/index.html

> DE.sols$optim
$bestmem

par1 par2
0.08984226 -0.71265649

$bestval
[1] -1.031628
...
> plot(DE.sols, plot.type = "bestvalit", col="red", pch=1)
> plot(DE.sols, plot.type = "storepop")

Figure 9 clearly illustrates the convergence toward the optimal solution in DE. In
our run, the optimum is found after 31 iterations, as indicated by Fig. 9a. The
diversity in population decreases significantly during the run according to Fig. 9b
which presents in two distinct plots the distribution of the values in each iteration
for each parameter of the objective function. This plot indicates an interesting
behavior: convergence toward two distinct regions in the search space.

In order to get more insight into the dynamics of the population within DE,
Fig. 10 illustrates the candidate solutions in the population at distinct moments
during the run distributed over the contour plot illustrating the landscape of the
objective function. The series (a) of plots show the distribution of the candidate
solutions at iterations 1, 5, 10, and 15. The series (b) offers a zoomed-in perspective
of the landscape (restricted to x1 2 ½�1:9; 1:9� and x2 2 ½�1:1; 1:1�) showing the
distribution of the candidate solutions at iterations 15, 20, 30, and 50. In the first
iteration of the algorithm, the population is spread at random in the search space. At
iteration number 10 (Fig. 10a)-3rd plot), groups of individuals were formed around
local and global optima. Toward the end of our run, all the candidate solutions
migrate in the regions corresponding to the two global optima.

0 10 20 30 40 50

−1.0

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

convergence plot

iteration

fu
nc

tio
n

va
lu

e

−3
−2
−1

0
1
2

par1

stored population

va
lu

e

0 10 20 30 40 50

0 10 20 30 40 50
−2.0
−1.5
−1.0
−0.5

0.0
0.5
1.0
1.5

par2

stored population

va
lu

e

(a) (b)

Fig. 9 The evolution of the population in DE during one run of the algorithm: a the evolution of
the best fitness value in population and b the distribution of the candidate solutions (the genotype)

On Meta-heuristics in Optimization and Data Analysis. Application to Geosciences 79

The mean of the objective values after 30 runs is −1.031615, with a standard
deviation of 3.74e−05.

2.5 Extensions of EAs for Multi-modal and Multi-objective
Problems

Variations were brought to the classical EAs not only at the encoding and operators
level. In order to face the challenges imposed by real-world problems, modifica-
tions are also recorded in the general scheme of the algorithms.

EAs are generally preferred to trajectory-based meta-heuristics (i.e., hill climb-
ing, simulated annealing, Tabu Search) in multi-modal environments, mostly due
to their increased exploration capabilities. However, a standard EA still can be
trapped in a local optimum due to premature attraction of the entire population into
its basin of attraction. Therefore, the main concern of EAs for multi-modal opti-
mization is to maintain diversity for a longer time in order to detect multiple (local)
optima. To discover the global optima, the EA must be able to intensify the search
in several promising regions and eventually encourage simultaneous convergence
toward several local optima. This strategy is called niching: The algorithm forces
the population to preserve subpopulations, each subpopulation corresponding to a
niche in the search space, and different niches represent different (local) optimal
regions.

Several strategies exist in the literature to introduce niching capabilities into
evolutionary algorithms. Deb and Goldberg (1989) propose fitness sharing: The

 0.07403146

 1.174207
 2.274382

 2
.2

74
38

2

 3.374558

 4.474733

 5.574909

 6.675084
 7.77526

 8.875435

 9.975611

 11.07579
 12.17596

 13.27614 14.37631

 15.47649 16.57666

 17.67684 18.77701

 19.87719
 20.97737

 22.07754

 23.17772 24.27789 25.37807

 26.47824

 27.57842

 28.67859

 29.77877 30.87894

 3
1.

97
91

2

 33.0793

 34.17947
 35.27965

 36.37982

 37.48 38.58017 39.68035

 4
0.

78
05

2

 41.8807
 42.98087

 44.08105

 45.18123

 46.2814
 47.38158

85183.74

57
18

4.
84

57
18

4.
84

 5
0.

68
21

12
86

.0
5

 51.78228

 5
5.

08
28

 58.38333

 7
1.

58
54

4 72.68561

 82.58719

 85.88772
95

88
3.

19

95883.19

77
88

4.
29

59
88

5.
39

21
98

6.
49

 9
5.

78
93

 100.19

 0.07403146

 1.174207
 2.274382

 2
.2

74
38

2

 3.374558

 4.474733

 5.574909

 6.675084
 7.77526

 8.875435

 9.975611

 11.07579
 12.17596

 13.27614 14.37631

 15.47649 16.57666

 17.67684 18.77701

 19.87719
 20.97737

 22.07754

 23.17772 24.27789 25.37807

 26.47824

 27.57842

 28.67859

 29.77877 30.87894

 3
1.

97
91

2

 33.0793

 34.17947
 35.27965

 36.37982

 37.48 38.58017 39.68035

 4
0.

78
05

2

 41.8807
 42.98087

 44.08105

 45.18123

 46.2814
 47.38158

85183.74

57
18

4.
84

57
18

4.
84

 5
0.

68
21

12
86

.0
5

 51.78228

 5
5.

08
28

 58.38333

 7
1.

58
54

4 72.68561

 82.58719

 85.88772
95

88
3.

19

95883.19

77
88

4.
29

59
88

5.
39

21
98

6.
49

 9
5.

78
93

 100.19

 0.07403146

 1.174207
 2.274382

 2
.2

74
38

2

 3.374558

 4.474733

 5.574909

 6.675084
 7.77526

 8.875435

 9.975611

 11.07579
 12.17596

 13.27614 14.37631

 15.47649 16.57666

 17.67684 18.77701

 19.87719
 20.97737

 22.07754

 23.17772 24.27789 25.37807

 26.47824

 27.57842

 28.67859

 29.77877 30.87894

 3
1.

97
91

2

 33.0793

 34.17947
 35.27965

 36.37982

 37.48 38.58017 39.68035

 4
0.

78
05

2

 41.8807
 42.98087

 44.08105

 45.18123

 46.2814
 47.38158

85183.74

57
18

4.
84

57
18

4.
84

 5
0.

68
21

12
86

.0
5

 51.78228

 5
5.

08
28

 58.38333

 7
1.

58
54

4 72.68561

 82.58719

 85.88772
95

88
3.

19

95883.19

77
88

4.
29

59
88

5.
39

21
98

6.
49

 9
5.

78
93

 100.19

 0.07403146

 1.174207
 2.274382

 2
.2

74
38

2

 3.374558

 4.474733

 5.574909

 6.675084
 7.77526

 8.875435

 9.975611

 11.07579
 12.17596

 13.27614 14.37631

 15.47649 16.57666

 17.67684 18.77701

 19.87719
 20.97737

 22.07754

 23.17772 24.27789 25.37807

 26.47824

 27.57842

 28.67859

 29.77877 30.87894

 3
1.

97
91

2

 33.0793

 34.17947
 35.27965

 36.37982

 37.48 38.58017 39.68035

 4
0.

78
05

2

 41.8807
 42.98087

 44.08105

 45.18123

 46.2814
 47.38158

85183.74

57
18

4.
84

57
18

4.
84

 5
0.

68
21

12
86

.0
5

 51.78228

 5
5.

08
28

 58.38333

 7
1.

58
54

4 72.68561

 82.58719

 85.88772
95

88
3.

19

95883.19

77
88

4.
29

59
88

5.
39

21
98

6.
49

 9
5.

78
93

 100.19

 −0.7026658

 −0.7026658

 −0.6564432

 −0.6102205

 −0.4253299

 −0.3791073

 −0.3791073

 −0.3328846

 −
0.

28
66

62

 −
0.

28
66

62

 −
0.

24
04

39
3

 −0.1942167

 −0.147994

 −
0.

00
93

26
09

 0.03689656

 0.08311921

 0
.1

29
34

19

 0.1755645

 0
.2

21
78

72

 0.2217872

 0
.2

21
78

72

 0
.2

68
00

98

 0.2680098

 0
.2

68
00

98

 0
.3

14
23

25

 0.3604551

 0
.4

06
67

78

 0
.4

52
90

04

 0
.4

52
90

04

 0
.4

99
12

3

 0.499123

 0
.5

45
34

57

 0.5915683

 0.5915683

 0.637791

 0.637791

 0.6840136

 0.6840136

 0.7302363

 0.8226816

 0.8226816

 0.8689042

 0.9151269

 0.9151269

 0.9613495

 1
.0

07
57

2

 1.007572

 1
.0

53
79

5

 1.14624

 1.14624

 1.192463

 1.284908

 1.284908

 1.331131

 1.331131

 1.377353

 1.377353

 1.423576

 1.469799

 1
.5

16
02

1

 1
.5

62
24

4

 1.700912 1.747135

 1.747135

 1
.8

39
58

 1.83958
 1.885803 1.932025

 1.978248

 1
.9

78
24

8

 2.02447

 2.116916 2.163138

 2
.2

09
36

1

 2.209361

 2.209361

 2.255584

 2.255584

 2.255584

 2.301806

 2.301806

 2.301806

 2
.3

01
80

6

 2.348029

 2
.3

48
02

9

 2.394252

 2.486697

29
23

5.
2

 2.53292

 2.625365

 2.810255

 2.995146

 3.318705

 3.734708

 3.827154

 −0.7026658

 −0.7026658

 −0.6564432

 −0.6102205

 −0.4253299

 −0.3791073

 −0.3791073

 −0.3328846

 −
0.

28
66

62

 −
0.

28
66

62

 −
0.

24
04

39
3

 −0.1942167

 −0.147994

 −
0.

00
93

26
09

 0.03689656

 0.08311921

 0
.1

29
34

19

 0.1755645

 0
.2

21
78

72

 0.2217872

 0
.2

21
78

72

 0
.2

68
00

98

 0.2680098

 0
.2

68
00

98

 0
.3

14
23

25

 0.3604551

 0
.4

06
67

78

 0
.4

52
90

04

 0
.4

52
90

04

 0
.4

99
12

3

 0.499123

 0
.5

45
34

57

 0.5915683

 0.5915683

 0.637791

 0.637791

 0.6840136

 0.6840136

 0.7302363

 0.8226816

 0.8226816

 0.8689042

 0.9151269

 0.9151269

 0.9613495

 1
.0

07
57

2

 1.007572

 1
.0

53
79

5

 1.14624

 1.14624

 1.192463

 1.284908

 1.284908

 1.331131

 1.331131

 1.377353

 1.377353

 1.423576

 1.469799

 1
.5

16
02

1

 1
.5

62
24

4

 1.700912 1.747135

 1.747135

 1
.8

39
58

 1.83958
 1.885803 1.932025

 1.978248

 1
.9

78
24

8

 2.02447

 2.116916 2.163138

 2
.2

09
36

1

 2.209361

 2.209361

 2.255584

 2.255584

 2.255584

 2.301806

 2.301806

 2.301806

 2
.3

01
80

6

 2.348029
 2

.3
48

02
9

 2.394252

 2.486697

29
23

5.
2

 2.53292

 2.625365

 2.810255

 2.995146

 3.318705

 3.734708

 3.827154

 −0.7026658

 −0.7026658

 −0.6564432

 −0.6102205

 −0.4253299

 −0.3791073

 −0.3791073

 −0.3328846

 −
0.

28
66

62

 −
0.

28
66

62

 −
0.

24
04

39
3

 −0.1942167

 −0.147994

 −
0.

00
93

26
09

 0.03689656

 0.08311921

 0
.1

29
34

19

 0.1755645

 0
.2

21
78

72

 0.2217872

 0
.2

21
78

72

 0
.2

68
00

98

 0.2680098

 0
.2

68
00

98

 0
.3

14
23

25

 0.3604551

 0
.4

06
67

78

 0
.4

52
90

04

 0
.4

52
90

04

 0
.4

99
12

3

 0.499123

 0
.5

45
34

57

 0.5915683

 0.5915683

 0.637791

 0.637791

 0.6840136

 0.6840136

 0.7302363

 0.8226816

 0.8226816

 0.8689042

 0.9151269

 0.9151269

 0.9613495

 1
.0

07
57

2

 1.007572

 1
.0

53
79

5

 1.14624

 1.14624

 1.192463

 1.284908

 1.284908

 1.331131

 1.331131

 1.377353

 1.377353

 1.423576

 1.469799

 1
.5

16
02

1

 1
.5

62
24

4

 1.700912 1.747135

 1.747135

 1
.8

39
58

 1.83958
 1.885803 1.932025
 1.978248

 1
.9

78
24

8

 2.02447

 2.116916 2.163138

 2
.2

09
36

1

 2.209361

 2.209361

 2.255584

 2.255584

 2.255584

 2.301806

 2.301806

 2.301806

 2
.3

01
80

6

 2.348029

 2
.3

48
02

9

 2.394252

 2.486697

29
23

5.
2

 2.53292

 2.625365

 2.810255

 2.995146

 3.318705

 3.734708

 3.827154

 −0.7026658

 −0.7026658

 −0.6564432

 −0.6102205

 −0.4253299

 −0.3791073

 −0.3791073

 −0.3328846

 −
0.

28
66

62

 −
0.

28
66

62

 −
0.

24
04

39
3

 −0.1942167

 −0.147994

 −
0.

00
93

26
09

 0.03689656

 0.08311921

 0
.1

29
34

19

 0.1755645

 0
.2

21
78

72

 0.2217872

 0
.2

21
78

72

 0
.2

68
00

98

 0.2680098

 0
.2

68
00

98

 0
.3

14
23

25

 0.3604551

 0
.4

06
67

78

 0
.4

52
90

04

 0
.4

52
90

04

 0
.4

99
12

3

 0.499123

 0
.5

45
34

57

 0.5915683

 0.5915683

 0.637791

 0.637791

 0.6840136

 0.6840136

 0.7302363

 0.8226816

 0.8226816

 0.8689042

 0.9151269

 0.9151269

 0.9613495

 1
.0

07
57

2

 1.007572

 1
.0

53
79

5

 1.14624

 1.14624

 1.192463

 1.284908

 1.284908

 1.331131

 1.331131

 1.377353

 1.377353

 1.423576

 1.469799

 1
.5

16
02

1

 1
.5

62
24

4

 1.700912 1.747135

 1.747135

 1
.8

39
58

 1.83958
 1.885803 1.932025

 1.978248

 1
.9

78
24

8

 2.02447

 2.116916 2.163138

 2
.2

09
36

1

 2.209361

 2.209361

 2.255584

 2.255584

 2.255584

 2.301806

 2.301806

 2.301806

 2
.3

01
80

6

 2.348029

 2
.3

48
02

9

 2.394252

 2.486697

29
23

5.
2

 2.53292

 2.625365

 2.810255

 2.995146

 3.318705

 3.734708

 3.827154

−3 −2 −1 0 1 2 3

−2
−1

0
1

2

−3 −2 −1 0 1 2 3 −3 −2 −1 0 1 2 3 −3 −2 −1 0 1 2 3

−2
−1

0
1

2

−2
−1

0
1

2

−2
−1

0
1

2

−2 −1 0 1 2 −2 −1 0 1 2 −2 −1 0 1 2 −2 −1 0 1 2

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

(a)

(b)

Fig. 10 The evolution of the population in DE during one run of the algorithm: a the distribution
of the candidate solutions at iterations 1, 5, 10, and 15 and b a zoomed-in landscape showing the
distribution of the candidate solutions at iterations 15, 20, 30, and 50

80 H. Luchian et al.

fitness of each individual is modified by taking into account the number and fitness
of its closely ranged individuals. This strategy determine the number of individuals
in the attraction basin of an optimum to be dependent on the height of that peak.

Another widely used strategy is to arrange the candidate solutions into groups of
individuals that can only interact between themselves. The island model evolves
independently several populations of candidate solutions; after a number of gen-
erations, individuals in neighboring populations migrates between the islands
(Whitley et al. 1998).

There are techniques, which divide the population, based on the distances
between individuals (the so-called radii-based multi-modal search GAs). Genetic
chromodynamics (Dumitrescu 2000) introduces a set of restrictions with regard to
the way selection is applied or the way recombination takes place. A merging
operator is introduced which merges very similar individuals after perturbation
takes place. In Stoean et al. (2010), best successive local individuals are conserved,
while sub-populations are topological separated.

De Jong introduced a new scheme of inserting the descendants into the popu-
lation, called the crowding method (Kenneth 1975). To preserve diversity, the
offspring replace only similar individuals in the population.

A field of intensive research within the evolutionary computation (EC) com-
munity is multi-objective optimization. Most real-world problems necessitate the
optimization of several, often conflicting objectives. Population-based optimization
methods offer an elegant and very efficient approach to this kind of problems: With
small modifications of the basic algorithmic scheme, they are able to offer an
approximation of the Pareto optimal solution set. While moving from one Pareto
solution to another, there is always a certain amount of sacrifice in one objective(s)
to achieve a certain amount of gain in the other(s). Pareto optimal solution sets are
often preferred to single solutions in practice, because the trade-off between
objectives can be analyzed and optimal decisions can be made on the specific
problem instance.

Zitzler et al. (2000) formulate three goals to be achieved by multi-objective
search algorithms:

• the Pareto solution set should be as close as possible to the true Pareto front,
• the Pareto solution set should be uniformly distributed and diverse over of the

Pareto front in order to provide the decision maker a true picture of trade-offs,
• the set of solutions should capture the whole spectrum of the Pareto front. This

requires investigating solutions at the extreme ends of the objective function
space.

GAs have been the most popular heuristic approach to multi-objective design
and optimization problems mostly because of their ability to simultaneously search
different regions of a solution space and find a diverse set of solutions. The

On Meta-heuristics in Optimization and Data Analysis. Application to Geosciences 81

crossover operator may exploit structures of good solutions with respect to different
objectives to create new non-dominated solutions in unexplored parts of the Pareto
front. In addition, most multi-objective GAs do not require the user to prioritize,
scale, or weigh objectives. There are many variations of multi-objective GAs in the
literature and several comparative studies. As in multi-modal environments, the
main concern in multi-objective GAs optimization is to maintain diversity
throughout the search in order to cover the whole Pareto front. Konak et al. (2006)
provide a survey on the most known multi-objective GAs, describing common
techniques used in multi-objective GA to attain the three above-mentioned goals.

3 Swarm Intelligence

Swarm intelligence (SI) is a computational paradigm inspired from the collective
behavior in auto-organized decentralized systems. It stipulates that problem solving
can emerge at the level of a collection of agents which are not aware of the problem
itself, but collective interactions lead to the solution. SI systems are typically made
up of a population of simple autonomous agents interacting locally with one
another and with their environment. Although there is no centralized control, the
local interactions between agents lead to the emergence of global behavior.
Examples of systems like this can be found in nature, including ant colonies, bird
flocking, animal herding, bacteria molding, and fish schooling.

The most successful SI techniques are ant colony optimization (ACO) and
particle swarm optimization (PSO). In ACO (Dorigo and Stützle 2004), artificial
ants build solutions walking in the graph of the problem and (simulating real ants)
leaving artificial pheromone so that other ants will be able to build better solutions.
ACO was successfully applied to an impressive number of optimization problems.
PSO is an optimization method initially designed for continuous optimization;
however, it was further adapted to solve various combinatorial problems. PSO is
presented in more detail in the next section.

3.1 Particle Swarm Optimization

The PSO model was introduced in 1995 by Kennedy and Eberhart (1995), being
discovered through simulation of a simplified social model such as fish schooling or
bird flocking. It was originally conceived as a method for optimization of contin-
uous nonlinear functions. Latter studies showed that PSO can be successfully
adapted to solve combinatorial problems.

The evolutionary cultural model proposed by (Boyd and Richerson 1985) stands
as the basic principle of PSO. According to this model, individuals of a society have
two learning sources: individual learning and cultural transmission. Individual
learning is efficient only in homogenous environments: The patterns acquired

82 H. Luchian et al.

through local interactions with the environment are generally applicable. For het-
erogenous environments, social learning—the essential feature of cultural trans-
mission—is necessary.

In line with the evolutionary cultural model, the PSO algorithm uses a set of
simple agents which collaborate in order to find solutions of a given optimization
problem.

In the PSO paradigm, the environment corresponds to the search space of the
optimization problem to be solved. A swarm of particles is placed in this envi-
ronment. The location of each particle corresponds therefore to a candidate solution
to the problem. A fitness function is formulated in accordance with the optimization
criterion to measure the quality of each location. The particles move in their
environment collecting information on the quality of the solutions they visit and
share this information to the neighboring particles in the swarm. Each particle is
endowed with memory to store the information gathered by individual interactions
with the environment, simulating thus individual learning. The information
acquired from neighboring particles corresponds to the social learning component.
Eventually, the swarm is likely to move toward “more” optimum locations of the
search space, similar to a flock of birds that collectively forage for food.

Unlike GAs, in PSO, there exist no evolution operators and no competition for
survival; all particles survive and share information for the welfare of the swarm.
The driving force is the emergent SI and attained by the sharing of local information
between particles in order to produce global knowledge. It is important to note that
problem solving is a population-wide phenomenon, because a particle by itself is
probably incapable of solving even simple problems (Poli et al. 2007).

Usually, the swarm is composed of particles that share the same structural and
behavioral features. Each particle is characterized by its current position in the
search space, its velocity, and one or more of its best positions in the past (usually,
only one position). Each particle uses the objective (fitness) function so that it can
find out how good its current status is. The particles use a communication channel
in order to exchange information with (some) of its peers. The topology of the
swarm’s social network is defined by the structure of the communication channel,
where cliques of interconnected particles form neighborhoods.

In the classical PSO algorithm, the position of a particle in the search space is
updated in each iteration depending on the position and velocity of the particle in
the previous iteration. The formulas used to update the particles and the procedures
are inspired from and conceived for continuous spaces. Therefore, each particle is
represented by a vector x of length n indicating the position in the n-dimensional
search space and has a velocity vector v used to update the current position. The
velocity vector is computed following the rules:

• every particle tends to keep its current direction (an inertia term);
• every particle is attracted to the best position p it has achieved so far (imple-

ments the individual learning component);
• every particle is attracted to the best particle g in the neighborhood (implements

the social learning component).

On Meta-heuristics in Optimization and Data Analysis. Application to Geosciences 83

The velocity vector is computed as a weighted sum of the three terms above.
Two random multipliers r1; r2 are used to gain stochastic exploration capability,
while w; c1; c2 are weights usually empirically determined. The formulae used to
update each of the individuals in the population at iteration t + 1 are as follows:

vti ¼ w � vt�1
i þ c1 � r1 � ðpt�1

i � xt�1
i Þ þ c2 � r2 � ðg � it�1 � xt�1

i Þ ð13aÞ

xti ¼ xt�1
i þ vti ð13bÞ

As a side effect of these changes, the velocity of the particle could enter a
divergence process, throwing the particle further, and further away form p. To
prevent this behavior, Kennedy and Eberhart clamped the amplitude of the velocity
to a maximum value, denoted by vmax:

vti ¼ minðvmax;maxð�vmax; v
t
iÞÞ: ð14Þ

Equation 13b generates a new position in the search space (corresponding to a
candidate solution). It can be associated to some extent to the mutation operator in
evolutionary programing. However, in PSO, this mutation is guided by the past
experience of both the particle and other members of the swarm. In other words,
“PSO performs mutation with a conscience” (Jong 2006). Considering the best
visited solutions stored in the personal memory of each individual as additional
members of the population, PSO implements a weak form of selection (Angeline
1998).

The shape of the search space is unknown; hence, there exists no known opti-
mum combination of the two learning sources (i.e., individual learning and cultural
transmission). The classical PSO algorithm compensates this lack of information
with random values for learning factors c1 � r1 and c2 � r2, which change in each
iteration in order to weigh differently the learning sources. The velocity change
produced by each term depends on the distance between the compared positions
(i.e., the particle will move faster if values are larger) and the random learning
factors. This allows PSO to simulate, during a single run, various search strategies.
The solution that the algorithm outputs at the end of the run is obtained from the
information stored in the memory of each particle after the last iteration is
completed.

The search for the optimal solution in PSO is described by the iterative procedure
in Fig. 11. The fitness function is denoted by f and is formulated for maximization.

Particle pi is chosen in the basic version of the algorithm to be the best position
in the problem space visited by particle i. However, the best position is not always
dependent only on the fitness function. Constraints can be applied in order to adapt
PSO to various problems, without slowing down the convergence of the algorithm.
In constrained nonlinear optimization, the particles store only feasible solutions and
ignore the infeasible ones (Hu and Eberhart 2002). In multi-objective optimization,
only the Pareto-dominant solutions are stored (Coello and Lechunga 2002; Hu and

84 H. Luchian et al.

Eberhart 2002). In dynamic environments, particle p is reset to the current position
if a change in the environment is detected (Hu and Eberhart 2001).

The selection of particle gi is performed in two steps: neighborhood selection
followed by particle selection. The size of the neighborhood has a great impact on
the convergence of the algorithm. It is generally accepted that a large neighborhood
speeds-up the convergence, while small neighborhoods prevent the algorithm from
premature convergence. Various neighborhood topologies were investigated with
regard to their impact on the performance of the algorithm (Kennedy 2002; Ken-
nedy and Mendes 2003); however, as expected, there is no free lunch: Different
topologies are appropriate to different problems.

A major problem investigated in the PSO literature is the premature conver-
gence of the algorithm in multi-modal optimization. This problem has been
addressed in several papers and solutions include addition of a queen particle (Clerc
1999), alternation of the neighborhood topology (Kennedy 1999), introduction of
subpopulations (Lïvbjerg et al. 2001), giving the particles a physical extension
(Krink et al. 2002), alternation between phases of attraction and repulsion (Riget
and Vesterstrøm 2002), giving different temporary search goals to groups of par-
ticles (Al-kazemi and Mohan 2002), giving particles quantum behavior (Sun et al.
2004), and the use of specific swarm-inspired operators (Breaban and Luchian
2005).

Another crucial problem is parameter control. The values and choices for some
of these parameters may have significant impact on the efficiency and reliability of
the PSO. There are several papers that address this problem; in most of them, the
values for parameters are established through repeated experiments but there also
exist attempts to adjust them dynamically, using EC algorithms.

The role played by the inertia weight was compared to that of the temperature
parameter in simulated annealing (Shi and Eberhart 1998). A large inertia weight
facilitates a global search, while a small inertia weight facilitates a local search. The
parameters c1 and c2 are called generically learning factors; because of their distinct
roles, c1 was named the cognitive parameter (it gives the magnitude of the infor-
mation gathered by each individual) and c2 the social parameter (it weights the
cooperation between particles). Another parameter used in PSO is the maximum

1. t := 0
2. Initialize xti, i = 1..n
3. Initialize vti , i = 1..n
4. Store personal best pti = xti, i = 1..n
5. Find neighborhood best gti = argmaxy∈Nxt

i
(f(y)), i = 1..n

6. while halting condition not met do
7. t := t+ 1
8. Update vti , i = 1..n using equation 13a
9. Update xti, i = 1..n using equation 13b

10. Update personal best pti = argmax(f(pt−1
i), f(xti))

11. Find neighborhood best gti = argmaxy∈Nxt
i
(f(y))

12. end while

Fig. 11 Basic PSO

On Meta-heuristics in Optimization and Data Analysis. Application to Geosciences 85

velocity which determines the maximum change each particle can take during one
iteration. This parameter is usually proportional with the search domain.

One run of the PSO algorithm can be illustrated using package pso built for R
which is consistent with standard PSO, as described in Bratton and Kennedy
(2007):

> library(pso)
> PSO.sols <- psoptim(rep(NA,2),SixHumpV,lower=c(-3,-2),upper=c(3,2),

control=list(maxit=50, s=20, trace=1, REPORT=1))
S=20, K=3, p=0.1426, w0=0.7213, w1=0.7213, c.p=1.193, c.g=1.193
v.max=NA, d=7.211, vectorize=FALSE, hybrid=off
It 1: fitness=-0.3635
It 2: fitness=-0.8261
It 3: fitness=-0.8261
It 4: fitness=-0.8623
It 5: fitness=-0.9337
...

The final solution obtained in 50 iterations with a population of 20 individuals
reaches the global optima:

> show(PSO.sols)
$par
[1] 0.09041749 -0.71296641

$value
[1] -1.031627

The algorithm reaches quickly the global optima, as shown in Fig. 12.
Figure 13 illustrates the distribution of the individuals in population during one

run, at iterations 1, 2, 5, 10, 20, and 50.

3.2 PSO on Binary Domains

Although PSO was conceived for continuous optimization, an effort was done to
adapt the algorithm in order to be used for solving a wide range of combinatorial
and binary optimization problems. A short discussion of the binary version of PSO
is presented in this section, following the presentation from (Bautu 2010).

Kennedy and Eberhart (1997) introduced a first variant of binary PSO, com-
bining the evolutionary cultural model with the reasoned action model. According
to the latter, the action performed by an individual is the stochastic result of the
intention to do that action. The strength of the intention results from the interaction
of the personal attitude and the social attitude on the matter (Hale et al. 2002).

86 H. Luchian et al.

0 10 20 30 40 50

−
1.

0
−

0.
9

−
0.

8
−

0.
7

−
0.

6
−

0.
5

−
0.

4

iteration

f

Fig. 12 The evolution of the best value of the objective function for one run of PSO

 0.07403146

 1.174207
 2.274382

 2
.2

74
38

2

 3.374558

 4.474733

 5.574909

 6.675084
 7.77526

 8.875435

 9.975611

 11.07579
 12.17596

 13.27614 14.37631

 15.47649 16.57666

 17.67684 18.77701

 19.87719
 20.97737

 22.07754

 23.17772 24.27789 25.37807

 26.47824

 27.57842

 28.67859

 29.77877 30.87894

 3
1.

97
91

2

 33.0793

 34.17947
 35.27965

 36.37982

 37.48 38.58017 39.68035

 4
0.

78
05

2

 41.8807
 42.98087

 44.08105

 45.18123

 46.2814
 47.38158

85183.74

57
18

4.
84

57
18

4.
84

 5
0.

68
21

12
86

.0
5

 51.78228

 5
5.

08
28

 58.38333

 7
1.

58
54

4 72.68561

 82.58719

 85.88772
95

88
3.

19

95883.19

77
88

4.
29

59
88

5.
39

21
98

6.
49

 9
5.

78
93

 100.19

 0.07403146

 1.174207
 2.274382

 2
.2

74
38

2

 3.374558

 4.474733

 5.574909

 6.675084
 7.77526

 8.875435

 9.975611

 11.07579
 12.17596

 13.27614 14.37631

 15.47649 16.57666

 17.67684 18.77701

 19.87719
 20.97737

 22.07754

 23.17772 24.27789 25.37807

 26.47824

 27.57842

 28.67859

 29.77877 30.87894

 3
1.

97
91

2

 33.0793

 34.17947
 35.27965

 36.37982

 37.48 38.58017 39.68035

 4
0.

78
05

2

 41.8807
 42.98087

 44.08105

 45.18123

 46.2814
 47.38158

85183.74

57
18

4.
84

57
18

4.
84

 5
0.

68
21

12
86

.0
5

 51.78228

 5
5.

08
28

 58.38333

 7
1.

58
54

4 72.68561

 82.58719

 85.88772
95

88
3.

19

95883.19

77
88

4.
29

59
88

5.
39

21
98

6.
49

 9
5.

78
93

 100.19

 0.07403146

 1.174207
 2.274382

 2
.2

74
38

2

 3.374558

 4.474733

 5.574909

 6.675084
 7.77526

 8.875435

 9.975611

 11.07579
 12.17596

 13.27614 14.37631

 15.47649 16.57666

 17.67684 18.77701

 19.87719
 20.97737

 22.07754

 23.17772 24.27789 25.37807

 26.47824

 27.57842

 28.67859

 29.77877 30.87894

 3
1.

97
91

2

 33.0793

 34.17947
 35.27965

 36.37982

 37.48 38.58017 39.68035

 4
0.

78
05

2

 41.8807
 42.98087

 44.08105

 45.18123

 46.2814
 47.38158

85183.74

57
18

4.
84

57
18

4.
84

 5
0.

68
21

12
86

.0
5

 51.78228

 5
5.

08
28

 58.38333

 7
1.

58
54

4 72.68561

 82.58719

 85.88772
95

88
3.

19

95883.19

77
88

4.
29

59
88

5.
39

21
98

6.
49

 9
5.

78
93

 100.19

 0.07403146

 1.174207
 2.274382

 2
.2

74
38

2

 3.374558

 4.474733

 5.574909

 6.675084
 7.77526

 8.875435

 9.975611

 11.07579
 12.17596

 13.27614 14.37631

 15.47649 16.57666

 17.67684 18.77701

 19.87719
 20.97737

 22.07754

 23.17772 24.27789 25.37807

 26.47824

 27.57842

 28.67859

 29.77877 30.87894

 3
1.

97
91

2

 33.0793

 34.17947
 35.27965

 36.37982

 37.48 38.58017 39.68035

 4
0.

78
05

2

 41.8807
 42.98087

 44.08105

 45.18123

 46.2814
 47.38158

85183.74

57
18

4.
84

57
18

4.
84

 5
0.

68
21

12
86

.0
5

 51.78228

 5
5.

08
28

 58.38333

 7
1.

58
54

4 72.68561

 82.58719

 85.88772
95

88
3.

19

95883.19

77
88

4.
29

59
88

5.
39

21
98

6.
49

 9
5.

78
93

 100.19

 0.07403146

 1.174207
 2.274382

 2
.2

74
38

2

 3.374558

 4.474733

 5.574909

 6.675084
 7.77526

 8.875435

 9.975611

 11.07579
 12.17596

 13.27614 14.37631

 15.47649 16.57666

 17.67684 18.77701

 19.87719
 20.97737

 22.07754

 23.17772 24.27789 25.37807

 26.47824

 27.57842

 28.67859

 29.77877 30.87894

 3
1.

97
91

2

 33.0793

 34.17947
 35.27965

 36.37982

 37.48 38.58017 39.68035

 4
0.

78
05

2

 41.8807
 42.98087

 44.08105

 45.18123

 46.2814
 47.38158

85183.74

57
18

4.
84

57
18

4.
84

 5
0.

68
21

12
86

.0
5

 51.78228

 5
5.

08
28

 58.38333

 7
1.

58
54

4 72.68561

 82.58719

 85.88772
95

88
3.

19

95883.19

77
88

4.
29

59
88

5.
39

21
98

6.
49

 9
5.

78
93

 100.19

 0.07403146

 1.174207
 2.274382

 2
.2

74
38

2

 3.374558

 4.474733

 5.574909

 6.675084
 7.77526

 8.875435

 9.975611

 11.07579
 12.17596

 13.27614 14.37631

 15.47649 16.57666

 17.67684 18.77701

 19.87719
 20.97737

 22.07754

 23.17772 24.27789 25.37807

 26.47824

 27.57842

 28.67859

 29.77877 30.87894

 3
1.

97
91

2

 33.0793

 34.17947
 35.27965

 36.37982

 37.48 38.58017 39.68035

 4
0.

78
05

2

 41.8807
 42.98087

 44.08105

 45.18123

 46.2814
 47.38158

85183.74

57
18

4.
84

57
18

4.
84

 5
0.

68
21

12
86

.0
5

 51.78228

 5
5.

08
28

 58.38333

 7
1.

58
54

4 72.68561

 82.58719

 85.88772
95

88
3.

19

95883.19

77
88

4.
29

59
88

5.
39

21
98

6.
49

 9
5.

78
93

 100.19

−3 −2 −1 3

2
1

0 1 2

0
1

2

−3 −2 −1 0 1 2 3

−
2

−
1

0
1

2

−3 −2 −1 0 1 2 3

−
2

−
1

0
1

2

−3 −2 −1 0 1 2 3

2
1

0
1

2

−3 −2 −1 0 1 2 3

−
2

−
1

0
1

2

−3 −2 −1 0 1 2 3

−
2

−
1

0
1

2

(a)

(b)

Fig. 13 The evolution of the population in PSO during one run of the algorithm: the distribution of
the candidate solutions at iterations 1, 2, 5, 10, 20, and 15

On Meta-heuristics in Optimization and Data Analysis. Application to Geosciences 87

The PSO algorithm for real-valued optimization updates the positions of parti-
cles based on a function that depends (indirectly) of various personal and social
factors. In the binary domain, the intention of particles to move between the two
allowed positions: 0 and 1 is modeled in a similar manner. The probability that the
particle will move to position 1 is computed by:

Pðpt ¼ 1Þ ¼ f 0ðpt�1; vt�1; pt�1
i ; gt�1

g Þ: ð15Þ

The individual learning factor and the social learning factor act as personal and
social attitudes that help to select one of the two binary options.

In particular, with respect to classical PSO, in binary PSO:

• the domain of particle positions in the context of binary optimization problems
is P ¼ f0; 1gn;

• the cost function that describes the optimization problem is hence defined
c : f0; 1gn ! R;

• the position of a particle consists in the responses of the particle to the n binary
queries of the problem. The position in the search space is updated during each
iteration depending on its velocity.

Let pt 2 P and vt 2 R denote the position and the velocity of a particle at
iteration t. The update equation for the particle’s position in binary PSO is as
follows:

p ¼ 1; if /3\ð1þ expð�vÞÞ�1

0; otherwise
;

�
ð16Þ

where /3 is a random uniformly distributed variable in ½0; 1Þ. It results that higher
velocity induces higher probabilities for the particle to choose 1. The equation for
the particle ensures that the particle stays within the search space domain; hence, no
relocation procedure is required.

The velocity of the particle is updated using the same equation as in classical
PSO. The semantics of each term in (13a) for binary PSO are special cases of their
original meaning. For example, if the best position of the particle (pti) is 1 and the
current position (pt) is 0, then pti � pt ¼ 1. In this case, the second term in (13a) will
increase the value of vt; hence, the probability that the particle with choose 1 will
also increase. Similarly, the velocity will decrease if pti ¼ 0 and pt ¼ 1. If the two
positions are the same, the individual learning term will not change the velocity in
order to try to maintain the current choice. The same is true for the velocity updates
produced by the social learning term. The position of the particle may change due to
the stochastic nature of (16), even if the velocity does not change between
iterations.

The complete PSO algorithm for binary optimization problems is presented in
vector form in (Fig. 14).

88 H. Luchian et al.

Other PSO variants can also be successfully used on binary spaces. In Wang
et al. (2008), the authors propose the outcome of the binary queries to be estab-
lished randomly based on the position of the particle within a continuous space.
Khanesar et al. (2009) present a variation of the binary PSO in which the particle
toggles its binary position with probability depending its velocity.

4 Integrating Meta-heuristics with Conventional Methods
in Data Analysis: A Practical Example

Meta-heuristics stand as basis for the design of efficient algorithms for various data
analysis tasks. Such approaches are extensions of conventional techniques, obtained
as hybridizations with meta-heuristics, or evolved as new self-contained data
analysis methods.

There is a large variety of approaches for data clustering based on GAs (Breaban
et al. 2012; Hruschka et al. 2009; Luchian et al. 1994), DE (Zaharie 2005), PSO
(Breaban and Luchian 2011; Rana et al. 2011), and ACO (Shelokar et al. 2004).
Learning Classifier Systems (Lanzi et al. 2000) are one of the major families of
techniques that apply EC to machine learning; these systems evolve a set of con-
dition–action rules able to solve classification problems. Decision trees (Turney
1995) and support vector machines (Stoean et al. 2009, 2011) are also evolved with
GAs. The representative application example of EAs in regression analysis is the
use of genetic programing for symbolic regression, topic covered in detail in
Chapter “Genetic Programming Techniques with Applications in the Oil and Gas
Industry” of this book. Many algorithms based on meta-heuristics tackle feature
selection and feature extraction.

Require: c - the objective function
Ensure: S - the position that encodes the best solution
1. t = 0
2. Initialize particle positions (pt)
3. Initialize particle velocities (vt)
4. Store particle best solutions (gti = pt)
5. while searching allowed do
6. t = t+ 1
7. Update positions using equation (16)
8. Find neighborhood best solutions with neighborhood operator N

(gtg = argminx∈{bti |N} c(x))
9. Update velocity using equation (13a)

10. Limit velocity using equation (14)
11. end while
12. Retrieve the solution.
13. return S

Fig. 14 The particle swarm optimization algorithm for binary optimization

On Meta-heuristics in Optimization and Data Analysis. Application to Geosciences 89

http://dx.doi.org/10.1007/978-3-319-16531-8_3
http://dx.doi.org/10.1007/978-3-319-16531-8_3

We restrict the discussion in this section to one particular application: Optimi-
zation of the parameters of machine learning algorithms used in data analysis. The
performance of several machine learning algorithms depends heavily on some
parameters involved in their design; such parameters are often called meta-
parameters or hyper-parameters. The problem of choosing the best settings for these
parameters is also known as model selection.

Examples may vary from simple algorithms such as k-nearest neighbors where k
is such a hyper-parameter, to more complex algorithms. In the case of artificial
neural networks, the structure of the network (the number of hidden layers, the
number of neurons in each layer, the activation function) has a high impact on the
accuracy of the results in classification or regression analysis; the degree of com-
plexity of the network is a critical factor in the trade-off between overfitting the
model to the training data and underfitting, and the right balance can be achieved
only with extensive experiments. In the definition of support vector machines
(SVMs), two numerical parameters play important roles: a constant C called reg-
ularization parameter and a constant e corresponding to the width of the �-insen-
sitive zone, influence the number of support vectors used in the model, controlling
the trade-off between two goals, fitting the training set well, and avoiding overfit-
ting; parameters characterizing various kernel functions are also involved.

We illustrate here a simple model selection scheme by means of EAs for
regression analysis. A small dataset called “rock,” included in R, is used with this
purpose. It consists of 48 rock samples from a petroleum reservoir characterized by
the area of pores, total perimeter of pores, shape, and permeability.

> show(rock)
area peri shape perm

1 4990 2791.900 0.0903296 6.3
2 7002 3892.600 0.1486220 6.3
3 7558 3930.660 0.1833120 6.3
4 7352 3869.320 0.1170630 6.3
...
48 9718 1485.580 0.2004470 580.0

We illustrate regression analysis by training a support vector machine to learn a
model able to predict permeability. The quality of the regression model is usually
measured by the mean squared error, as defined below.

> MSE <- function(x,y)
+ {
+ mean((x-y)^2)
+ }

Support vector regression is implemented in R under package “e1071.” The
results obtained using radial kernel are shown below:

90 H. Luchian et al.

> library(e1071)
> svr <- svm(perm ~ area+peri+shape, data=rock,
+ type="eps-regression", kernel = "radial")
> predicted <-predict(svr,newdata=rock,type="response")
> MSE(predicted, rock$perm)
[1] 35316.21
> cor(predicted, rock$perm)
[1] 0.9040716
> plot(predicted, rock$perm)

The default settings of the three hyper-parameters used in the run above can be
inspected next: Cost is the regularization parameter, gamma is a parameter of the
kernel function, and epsilon is the size of the insensitive tube.

> summary(svr)
Parameters:

SVM-Type: eps-regression
SVM-Kernel: radial

cost: 1
gamma: 0.3333333

epsilon: 0.1

These numerical parameters can be optimized in order to minimize the predic-
tion error measured by MSE. We formulate this task as a numerical optimization
problem defined over three numerical parameters (cost, gamma, and epsilon),
aiming to minimize the MSE of the predictions obtained with support vector
regression under the given settings:

> trainingError <- function(params)
+ {
+ svr <- svm(perm ~ area+peri+shape, data=rock, type="eps-regression",
+ kernel = "radial", gamma=params[1], cost = params[2], epsilon = params[3])
+ predicted <-predict(svr,newdata=rock,type="response")
+ MSE(predicted, rock$perm)
+ }

Any of the meta-heuristics presented in this chapter can be used to tackle this
minimization problem. We illustrate here the use of DE:

On Meta-heuristics in Optimization and Data Analysis. Application to Geosciences 91

> DEparams <- DEoptim(trainingError, lower = c(0, 0, 0), upper = c(4, 4, 1),
+ control = list(strategy = 1,NP=20, itermax=20, trace = TRUE))
Iteration: 1 bestvalit: 5937.692186 bestmemit: 1.929174 2.872409 0.012022
Iteration: 2 bestvalit: 5630.575260 bestmemit: 3.110530 3.717773 0.166768
Iteration: 3 bestvalit: 3623.210268 bestmemit: 2.818071 3.682759 0.077892
...
Iteration: 20 bestvalit: 1473.135923 bestmemit: 3.983884 3.812688 0.046011

The solution obtained by DE is stored next in the vector params and is used to
train a new SVM.

> params <- DEparams$optim$bestmem
> svr <- svm(perm ~ area+peri+shape, data=rock, scale = TRUE, type="eps-regression",
+ kernel = "radial", gamma=params[1], cost = params[2], epsilon = params[3])
> predicted <-predict(svr,newdata=rock,type="response")
> MSE(predicted, rock$perm)
[1] 1473.136
> cor(predicted, rock$perm)
[1] 0.9968882

Figure 15 illustrates the predicted values compared to real values for the case of
SVR with default settings (a) and for the case of SVR with optimized hyper-
parameters (b).

Nevertheless, the optimized model gives much better results with regard to the
error of predictions, but is prone to overfitting: A single dataset was used both for
training and testing; in this situation, the model is highly adapted to the dataset and
may suffer from poor generalization power. We can avoid overfitting by using dis-
tinct sets for training and testing. The new function to be optimized should be
formulated as shown below. Very similar with the previous version regarding its
definition, this function is significantly different in behavior: It invokes a “training”
dataset in the learning phase but computes the prediction error on a “testing” dataset:

predicted

ro
ck

$p
er

m

0 200 400 600 800 1000 0 200 400 600 800 1000 1200

0
20

0
40

0
60

0
80

0
10

00
12

00

predicted

ro
ck

$p
er

m

0
20

0
40

0
60

0
80

0
10

00
12

00

(a) (b)

Fig. 15 Predicted over expected values in regression analysis with SVR using: a default hyper-
parameters settings and b optimized settings

92 H. Luchian et al.

> testingError <- function(params)
+ {
+ svr <- svm(perm ~ area+peri+shape, data=training, type="eps-regression",
+ kernel = "radial", gamma=params[1], cost = params[2], epsilon = params[3])
+ predicted <-predict(svr,newdata=testing,type="response")
+ MSE(predicted, rock$perm)
+ }

The validation of the regression model obtained with the optimized hyper-
parameters requires in this case a third dataset called validation set. This phase
closes the analysis which, as recommended in the case of any supervised learning
task, is composed of three phases: training, testing, and validation. If the accuracy/
error obtained in the validation phase is satisfactory, the model can be used in
production.

5 Applications of Meta-Heuristics in Geosciences

Evolutionary algorithms have been used in solving geophysics optimization
problems in two main directions: either by performing the optimization, or by
optimizing parameters of other methods (e.g., neural networks) used in specific
problems.

Evolutionary methods are compared to PSO in a study on optimization of res-
ervoir models to match past petroleum production data in Yasin Hajizadeh et al.
(2011). ACO, DE, PSO, and the neighborhood algorithm are integrated in a
Bayesian framework in order to measure the uncertainty of the predictions obtained
by each algorithm, in a case study involving two petroleum reservoirs. Ahmadi
et al. (2013) perform the task of predicting reservoir permeability using a soft
sensor implemented on the basis of a feed-forward artificial neural network, which
was then optimized using a hybrid GA and PSO method. History matching is also
the research topic in Park et al. (2014). A multi-objective evolutionary algorithm
identifies optimal solutions and outperforms a traditional weighted-sum approach.

GAs are acknowledged as important tools for successful neural network data-
driven models with applications in the oil and gas industry (Mohaghegh 2005;
Shahab et al. 2005). Intelligent software tools used in the industry integrate hard
(statistical) and soft (intelligent) computing techniques, such as fuzzy cluster
analysis, genetic optimization, or neural computing (Shahab et al. 2005).

Direct use of a GA helps to evaluate hydrocarbon resource in a field dataset from
North Cambay basin, India (Thander et al. 2014). Several parameters are required
for resource estimation (e.g., areal extent, net pay thickness, oil saturation, etc.), yet
a limited set is recorded in the exploration phase. Also, recordings are done with
uncertainty, due to reservoir heterogeneity. GA copes well with the uncertainty in
data and delivers estimations of the oil reserve using a real dataset.

On Meta-heuristics in Optimization and Data Analysis. Application to Geosciences 93

An oil production planning problem that appears in the context of oil wells with
insufficient oil pressure and which consists in identifying the amount of gas that
should be injected in a well in order to maximize the amount of oil extracted from
that well is solved by an evolutionary algorithm in Singh et al. (2013). The problem
is more difficult since it is constrained by the total amount of gas available daily.
The authors propose a multi-objective approach to the problem and also formulate a
single objective version, focused on the maximization of profit, instead of the oil
quantity. The problem of gas allocation among oil wells is also tackled in Ghaedi
et al. (2013), by means of a hybrid GA, and in Abdel Rasoul et al. (2014). The
problem of gas allocation among oil wells is also tackled in Ghaedi et al. (2013), by
means of a hybrid GA, and in Abdel Rasoul et al. (2014).

The optimal well type and location are determined with PSO in (Onwunalu and
Durlofsky 2010), in a study involving vertical, deviated, and dual-lateral wells.
Comparisons with a GA over multiple runs of both algorithms show that PSO
outperforms, on average, the GA, yet the advantages of using PSO over GA are
varied among the cases surveyed. Driven by the goal of maximizing the total
hydrocarbon recovery, an well placement problem is tackled in Nwankwor et al.
(2013) with a hybrid PSO-DE algorithm is proposed for the problem. The hybrid is
compared to basic variants of PSO and DE on three problem cases concerning the
placement of vertical wells in 2D and 3D reservoir models. Optimal well placement
under uncertainty is tackled in a two-stage approach in Lyons and Nasrabadi
(2013). First, an ensemble Kalman filter is used to perform history matching on the
reservoir data. Then, well placement is solved by a GA combined with pseudohi-
story matching.

Carbon dioxide (CO2) sequestration is of great interest for oil engineers. In
recent years, the idea of storing CO2 in deep geological formations, such as
depleted oil and gas reservoirs (with impermeable rocks), gained a lot of focus from
the community as a solution for greenhouse gas mitigation by avoiding CO2 from
emission into the atmosphere. The CO2 sequestration also helps by enhancing
methods for oil or gas recovery (Zangeneh et al. 2013). Evolutionary algorithms are
used in order to identify carbon dioxide seepage areas in Cortis et al. (2008). In
Zangeneh et al. (2013), the parameters of a CO2 storage model are optimized using
a GA. A multi-objective GA (NSGA) is implemented for optimizing gas storage
alongside oil recovery in Safarzadeh and Motahhari (2014). Based on the results
from the GA, the authors are able to propose some production scenarios.

In (Fichter et al. 2000), a portfolio optimization problem for the oil and gas
industry is tackled by means of a GA. GAs are chosen for this task both due to their
scalability to extremely large portfolios and because they allow the analysis of
portfolios from the point of view of value and risk measures.

GA and PSO are used to find the optimal parameters of a linear and an expo-
nential model for the demand of oil in Iran in Assareh et al. (2010). The models use
as input variables the population, the gross domestic product, import, and export
data; they are used to forecast demand of oil up to 2030.

PSO emerged as a powerful algorithm for geophysical inverse problems when
compared to GAs and simulated annealing in Martnez et al. (2010), Shaw, and

94 H. Luchian et al.

Srivastava (2007). Other applications include inversion of seismic refraction data
Poormirzaee et al. (2014), crosshole traveltime tomography Tronicke et al. (2012),
or reservoir characterization Fernández Martìnez et al. (2012).

A large number of meta-heuristics are compared with respect to training an
artificial neural network for the task of forecasting the water temperature of a natural
river in Piotrowski et al. (2014). The study involves a comparison of several ver-
sions of PSO, DE, direct search to the levenberg–Marquardt (LM) algorithm for
ANN training. The study concludes that only the DE algorithm obtains results
competitive to the LM algorithm. A similar optimization idea is described in Ah-
madi and Ebadi (2014), where a hybrid combination between an artificial neural
network and PSO, extended with dew point pressure data, leads to a better
understanding of reservoir fluid behavior.

References

Abdel Rasoul RR, Daoud A, El Tayeb ESA (2014) Production allocation in multi-layers gas
producing wells using temperature measurements with the application of a genetic algorithm.
Pet Sci Technol 32(3):363–370

Ahmadi MA, Ebadi M (2014) Robust intelligent tool for estimation dew point pressure in
retrograded condensate gas reservoirs: application of particle swarm optimization. J Pet Sci
Eng 123:7–19

Ahmadi MA, Zendehboudi S, Lohi A, Elkamel A, Chatzis I (2013) Reservoir permeability
prediction by neural networks combined with hybrid genetic algorithm and particle swarm
optimization. Geophys Prospect 61(3):582–598

Al-kazemi B, Mohan CK (2002) Multi-phase generalization of the particle swarm optimization
algorithm. In: Proceedings of the IEEE congress on evolutionary computation. IEEE Press

Angeline PJ (1998) Using selection to improve particle swarm optimization. In: Proceedings of the
IEEE international conference on evolutionary computation. IEEE Press, pp 84–89. ISBN 0-
7803-4869-9

Assareh E, Behrang MA, Assari MR, Ghanbarzadeh A (2010) Application of PSO (particle swarm
optimization) and GA (genetic algorithm) techniques on demand estimation of oil in iran.
Energy 35(12):5223–5229

Back T (1996) Evolutionary algorithms in theory and practice. Oxford University Press, New York
Baker JD (1985) Adaptive selection methods for genetic algorithms. In: Proceedings of an

International Conference on Genetic Algorithms and their applications. Hillsdale, New Jersey,
pp 101–111

Baker JD (1987) Reducing bias and inefficiency in the selection algorithm. In: Proceedings of the
second international conference on genetic algorithms. pp 14–21

Bautu A (2010) Generalizations of Particle Swarm Optimization: applications of particle swarm
algorithms to statistical physics and bioinformatics problems. PhD Thesis, Department of
Computer Science, Al. I. Cuza University, Lambert Academic Publishing. ISBN 978-3848417315

Blum C, Roli A (2003) Metaheuristics in combinatorial optimization: overview and conceptual
comparison. ACM Comput Surv 35(3):268–308. ISSN 0360-0300. doi:http://doi.acm.org/10.
1145/937503.937505

Boyd R, Richerson PJ (1985) Culture and the evolutionary process. The University of Chicago
Press, Chicago

Bratton D, Kennedy J (2007) Defining a standard for particle swarm optimization. In: Swarm
intelligence symposium, 2007. SIS 2007, IEEE, pp 120–127

On Meta-heuristics in Optimization and Data Analysis. Application to Geosciences 95

http://doi.acm.org/10.1145/937503.937505
http://doi.acm.org/10.1145/937503.937505

Breaban M (2011) Clustering: evolutionary approaches. PhD Thesis, Department of Computer
Science, Al. I. Cuza University

Breaban M, Luchian H (2005) PSO under an adaptive scheme. In: Proceedings of the IEEE
congress on evolutionary computation. IEEE Press, pp 1212–1217

Breaban ME, Luchian H (2011) PSO aided k-means clustering: introducing connectivity in
k-means. In: Proceedings of the 13th annual conference on Genetic and evolutionary
computation. ACM, pp 1227–1234

Breaban ME, Luchian H, Simovici D (2012) A genetic clustering algorithm by monomial
projection pursuit. In Symbolic and numeric algorithms for scientific computing (SYNASC),
14th international symposium on 2012. IEEE, pp 214–219

Bremermann HJ (1958) The evolution of intelligence: the nervous system as a model of its
environment. Technical Report No. 1, Department of Mathematics, University of Washington,
Seattle

Burke EK, Gendreau M, Hyde M, Kendall G, Ochoa G, Özcan E, Qu R (2013) Hyper-heuristics: a
survey of the state of the art. J Oper Res Soc 64(12):1695–1724

Clerc M (1999) The swarm and the queen: towards a deterministic and adaptive particle swarm
optimization. In: Proceedings of the IEEE congress on evolutionary computation, vol 3,
pp 1951–1957. doi:10.1109/CEC.1999.785513

Clerc M (2006) Particle swarm optimization. Hermes Sci, London. ISBN 1905209045
Coello CAC, Lechunga MS (2002) Mopso: a proposal for multiple objective particle swarm

optimization. In Proceedings of the IEEE congress on evolutionary computation. IEEE Press,
pp 1051–1056

Cortis A, Oldenburg CM, Benson SM (2008) The role of optimality in characterizing CO2 seepage
from geologic carbon sequestration sites. Int J Greenh Gas Control 2(4):640–652

De Jong KA (2006) Evolutionary computation. A unified approach. MIT Press, Cambridge
Deb K, Goldberg DE (1989) An investigation of niche and species formation in genetic function

optimization. In: Proceedings of the 3rd international conference on genetic algorithms, San
Francisco. Morgan Kaufmann Publishers Inc., pp 42–50, ISBN 1-55860-066-3. http://portal.
acm.org/citation.cfm?id=645512.657099

Dorigo M, Stützle T (2004) Ant colony optimization. Bradford Company, Scituate. ISBN
0262042193

Dumitrescu D (2000) Genetic chromodynamics. Studia Universitatis Babes-Bolyai Cluj-Napoca,
Ser. Informatica 45:39–50

Fernández Martnez JL, Mukerji T, Garca Gonzalo E, Suman A (2012) Reservoir characterization
and inversion uncertainty via a family of particle swarm optimizers. Geophysics 77(1):
M1–M16

Fichter DP et al (2000) Application of genetic algorithms in portfolio optimization for the oil and
gas industry. In: SPE annual technical conference and exhibition. Society of Petroleum
Engineers

Fogel LJ, Owens AJ, Walsh MJ (1966) Artifficial intelligence through simulated evolution. Wiley,
New York

Fraser AS (1957) Simulations of genetic systems by automatic digital computers. Aust J Biol Sci
10:492–499

Ghaedi M, Ghotbi C, Aminshahidy B (2013) Optimization of gas allocation to a group of wells in
gas lift in one of the iranian oil fields using an efficient hybrid genetic algorithm (HGA). Pet Sci
Technol 31(9):949–959

Glover F (1986) Future paths for integer programming and links to artificial intelligence. Comput
Oper Res 13(5):533–549. ISSN 0305-0548. doi:10.1016/0305-0548(86)90048-1

Grefenstette JJ (1986) Optimization of control parameters for genetic algorithms. IEEE Trans Syst
Man Cybern 16(1): 122–128

Grefenstette JJ (1987) Incorporating problem specific knowledge into genetic algorithms. Genet
Algorithms Simul Annealing 4:42–60

Hajizadeh Y, Demyanov V, Mohamed L, Christie M (2011) Comparison of evolutionary and
swarm intelligence methods for history matching and uncertainty quantification in petroleum

96 H. Luchian et al.

http://dx.doi.org/10.1109/CEC.1999.785513
http://portal.acm.org/citation.cfm?id=645512.657099
http://portal.acm.org/citation.cfm?id=645512.657099
http://dx.doi.org/10.1016/0305-0548(86)90048-1

reservoir models. In: Intelligent computational optimization in engineering. Springer, Berlin,
pp 209–240

Hale JL, Householder BJ, Greene KL (2002) The theory of reasoned action. Sage Publications,
Thousand Oaks, pp 259–286

Hillis WD (1990) Co-evolving parasites improve simulated evolution as an optimization
procedure. Phys D Nonlinear Phenom 42(1):228–234

Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann
Arbor

Holland JH (1998) Adaptation in natural and artificial systems: an introductory analysis with
applications to biology, control and artificial intelligence. MIT Press, Cambridge.
ISBN 0-262-58111

Hruschka ER, Campello RJGB., Freitas AA, De Carvalho APLF (2009) A survey of evolutionary
algorithms for clustering. IEEE Trans Syst Man Cybern Part C Appl Rev 39(2):133–155

Hu X, Eberhart RC (2001) Tracking dynamic systems with PSO: where’s the cheese? In
Proceedings of the workshop on particle swarm optimization, pp 80–83

Hu X, Eberhart RC (2002) Multiobjective optimization using dynamic neighborhood particle
swarm optimization. In: Proceedings of the IEEE congress on evolutionary computation. IEEE
Press, pp 1677–1681

Hu X, Eberhart RC (2002) Solving constrained nonlinear optimization problems with particle
swarm optimization. In: Proceedings of the sixth world multiconference on systemics,
cybernetics and informatics

Ionita M, Croitoru C, Breaban M (2006) Incorporating inference into evolutionary algorithms for
max-csp. In: 3rd international workshop on hybrid metaheuristics, LNCS 4030. Springer,
Berlin, pp 139–149

Jong KD (2006) Evolutionary computation: a unified approach. MIT Press. ISBN 0-262-04194
Kennedy J (1999) Small worlds and mega-minds: effects of neighborhood topology on particle

swarm performance. In: Proceedings of the IEEE congress of evolutionary computation, vol 3.
IEEE Press, pp 931–1938. doi:10.1109/CEC.1999.785513

Kennedy J (2002) Population structure and particle swarm performance. In: Proceedings of the
congress on evolutionary computation (CEC 2002). IEEE Press, pp 1671–1676

Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of the 1995 IEEE
international conference on neural networks, vol 4. IEEE Press, pp 1942–1948

Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of IEEE
international conference on neural networks, pp 1942–1948

Kennedy J, Eberhart RC (1997) A discrete binary version of the particle swarm algorithm. In:
Proceedings of the world multiconference on systemics, cybernetics and informatics, vol 5,
Piscataway. IEEE Press, pp 4104–4109

Kennedy J, Mendes R (2003) Neighborhood topologies in fully-informed and best-of neighbor-
hood particle swarms. In: Proceedings of the 2003 IEEE SMC workshop on soft computing in
industrial applications (SMCia03). IEEE Computer Society, pp 45–50

Kenneth ADJ (1975) An analysis of the behavior of a class of genetic adaptive systems. PhD
thesis, University of Michigan, Dissertation Abstracts International, vol 36, no 10, Ann Arbor,
AAI7609381

Khanesar MA, Tavakoli H, Teshnehlab M, Shoorehdeli MA (2009) Novel binary particle swarm
optimization. In: Tech Education and Publishing, pp 1–10. ISBN 978-953-7619-48-0

Kirkpatrick S, Gelatt CD, Vecchi MP et al (1983) Optimization by simmulated annealing. Science
220(4598):671–680

Konak A, Coit DW, Smith AE (2006) Multi-objective optimization using genetic algorithms: a
tutorial. Reliab Eng Syst Safety 910(9):992–1007. http://www.sciencedirect.com/science/
article/B6V4T-4J0NY2F-2/2/97db869c46fc43f457f3d509adaa15b5

Koza J (1992) Genetic programming: on the programming of computers by means of natural
selection. MIT Press, Cambridge

Krink T, Vesterstrom JS, Riget J (2002) Particle swarm optimisation with spatial particle
extension. In: Proceedings of the evolutionary computation on 2002. CEC’02. Proceedings of

On Meta-heuristics in Optimization and Data Analysis. Application to Geosciences 97

http://dx.doi.org/10.1109/CEC.1999.785513
http://www.sciencedirect.com/science/article/B6V4T-4J0NY2F-2/2/97db869c46fc43f457f3d509adaa15b5
http://www.sciencedirect.com/science/article/B6V4T-4J0NY2F-2/2/97db869c46fc43f457f3d509adaa15b5

the 2002 Congress—vol 02, CEC’02. IEEE Computer Society, Washington, pp 1474–1479.
ISBN 0-7803-7282-4. http://portal.acm.org/citation.cfm?id=1251972.1252447

Lanzi PL, Stolzmann W, Wilson SW (2000) Learning classifier systems: from foundations to
applications (No. 1813). Springer, Berlin

Lïvbjerg M, Rasmussen TK, Krink T (2001) Hybrid particle swarm optimiser with breeding and
subpopulations. In: Proceedings of the genetic and evolutionary computation conference
(GECCO-2001). Morgan Kaufmann, pp 469–476

Luchian S, Luchian H, Petriuc M (1994) Evolutionary automated classification. In: Proceedings of
1st congress on evolutionary computation, pp 585–588

Lyons J, Nasrabadi H (2013) Well placement optimization under time-dependent uncertainty using
an ensemble kalman filter and a genetic algorithm. J Petrol Sci Eng 109:70–79

Martnez JLF, Gonzalo EG, Álvarez JPF, Kuzma HA, Pérez COM (2010) PSO: A powerful
algorithm to solve geophysical inverse problems: Application to a 1D-DC resistivity case.
J Appl Geophys 710(1):13–25

Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state
calculations by fast computing machines. J Chem Phys 21(6):1087–1092

Michalewicz Z (1992) Genetic algorithms + data structures = evolution programs (3rd edn).
Springer, Berlin. ISBN 3-540-60676-9

Mitchell M (1996) An introduction to genetic algorithms. MIT Press, Cambridge.
ISBN 0-262-13316-4

Mitchell M, Forrest S, Holland JH (1992) The royal road for genetic algorithms: fitness landscapes
and ga performance. In: Proceedings of the first European conference on artificial life,
pp 245–254. The MIT Press, Cambridge

Mohaghegh SD (2005) A new methodology for the identification of best practices in the oil and
gas industry, using intelligent systems. J Pet Sci Eng 49(3):239–260

Mohaghegh SD et al (2005) Recent developments in application of artificial intelligence in
petroleum engineering. J Pet Technol 57(4):86–91

Mullen KM, Ardia D, Gil DL, Windover D, Cline J (2011) DEoptim: an R package for global
optimization by differential evolution. J Stat Softw 40(6):1–26

Nateri K Madavan (2002) Multiobjective optimization using a pareto differential evolution
approach. In: Proceedings of the world on congress on computational intelligence, vol 2. IEEE,
pp 1145–1150

Nguyen NT, Kowalczyk R (2012) Transactions on computational collective intelligence III.
Springer, Berlin

Nwankwor E, Nagar AK, Reid DC (2013) Hybrid differential evolution and particle swarm
optimization for optimal well placement. Comput Geosci 17(2):249–268

Onwunalu JE, Durlofsky LJ (2010) Application of a particle swarm optimization algorithm for
determining optimum well location and type. Comput Geosci 14(1):183–198

Park H-Y, Datta-Gupta A, King MJ (2014) Handling conflicting multiple objectives using pareto-
based evolutionary algorithm during history matching of reservoir performance. J Pet Sci Eng

Piotrowski AP, Osuch M, Napiorkowski MJ, Rowinski PM, Napiorkowski JJ (2014) Comparing
large number of metaheuristics for artificial neural networks training to predict water
temperature in a natural river. Comput Geosci 64:136–151

Poli R, Kennedy J, Blackwell T (2007) Particle swarm optimization. Swarm Intell 1(1):33–57
Poli R, Langdon WB, McPhee NF (2008) A field guide to genetic programming. http://www.gp-

field-guide.org.uk. (With contributions by JR Koza)
Poormirzaee R, Moghadam RH, Zarean A (2014) Inversion seismic refraction data using particle

swarm optimization: a case study of Tabriz, Iran. Arab J Geosci 1–9
Radcliffe NJ, Surry PD, Jz E (1995) Fitness variance of formae and performance prediction. In:

Foundations of genetic algorithms, pp 51–72
Raidl GR, Gottlieb J (2005) Empirical analysis of locality, heritability and heuristic bias in

evolutionary algorithms: a case study for the multidimensional knapsack problem. Evol
Comput 13(4):441–475

98 H. Luchian et al.

http://portal.acm.org/citation.cfm?id=1251972.1252447
http://www.gp-field-guide.org.uk
http://www.gp-field-guide.org.uk

Rana S, Jasola S, Kumar R (2011) A review on particle swarm optimization algorithms and their
applications to data clustering. Artif Intell Rev 35(3):211–222

Rechenberg I (1973) Evolutionsstrategie: optimierung technischer systeme nach prinzipien der
biologischen evolution. In: Frommann-Holzboog

Rechenberg I (1973) Evolutionstrategie: optimierung Technisher Systeme nach Prinzipien der
Biologischen Evolution. Frommann-Holzboog Verlag, Stuttgart

Riget J, Vesterstrøm JS (2002) A diversity-guided particle swarm optimizer-the ARPSO.
Department of Computer Science, University of Aarhus, Aarhus, Denmark, Technical Report,
vol 2. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.2929

Safarzadeh MA, Motahhari SM (2014) Co-optimization of carbon dioxide storage and enhanced
oil recovery in oil reservoirs using a multi-objective genetic algorithm (NSGA-II). Pet Sci 11
(3):460–468

Schwefel H-PP (1993) Evolution and optimum seeking. Wiley, Hoboken
Scrucca L (2013) GA: a package for genetic algorithms in R. J Stat Softw 53(4):1–37. http://www.

jstatsoft.org/v53/i04/
Shakhsi-Niaei M, Iranmanesh SH, Torabi SA (2013) A review of mathematical optimization

applications in oil-and-gas upstream & midstream management. Int J Energy Stat 1
(02):143–154

Shaw R, Srivastava S (2007) Particle swarm optimization: a new tool to invert geophysical data.
Geophysics 72(2):F75–F83

Shelokar PS, Jayaraman VK, Kulkarni BD (2004) An ant colony approach for clustering.
Analytica Chimica Acta 509(2):187–195

Shi Y, Eberhart RC (1998) Parameter selection in particle swarm optimization. In: EP’98:
proceedings of the 7th international conference on evolutionary programming VII. Springer,
London, pp 591–600. ISBN 3540648917

Simon HA (1969) The sciences of the artificial, vol 136. MIT Press, Cambridge
Singh HK, Ray T, Sarker R (2013) Optimum oil production planning using infeasibility driven

evolutionary algorithm. Evolut Comput 21(1):65–82
Stoean R, Preuss M, Stoean C, El-Darzi E, Dumitrescu D (2009) Support vector machine learning

with an evolutionary engine. J Oper Res Soc 60(8):1116–1122
Stoean C, Preuss M, Stoean R, Dumitrescu D (2010) Multimodal optimization by means of a

topological species conservation algorithm. IEEE Trans Evolut Comput 14(6):842–864
Stoean R, Stoean C, Lupsor M, Stefanescu H, Badea R (2011) Evolutionary-driven support vector

machines for determining the degree of liver fibrosis in chronic hepatitis C. Artif Intell Med
51:53–65. ISSN 0933-3657

Storn R, Price K (1997) Differential evolution: a simple and efficient heuristic for global
optimization over continuous spaces. J Glob Optim 11(4):341–359. ISSN 09255001. doi:10.
1023/A:1008202821328

Sun J, Feng B, Xu W (2004) Particle swarm optimization with particles having quantum behavior.
In Proceedings of the IEEE congress on evolutionary computation. IEEE Press, pp 325–331

Talbi E-G (2009) Metaheuristics: from design to implementation, vol 74. Wiley, Hoboken
Thander B, Sircar A, Karmakar GP (2014) Hydrocarbon resource estimation: a stochastic

approach. J Pet Explor Prod Technol 1–8
Tronicke J, Paasche H, Böniger U (2012) Crosshole traveltime tomography using particle swarm

optimization: a near-surface field example. Geophysics 77(1):R19–R32
Turney P (1995) Cost-sensitive classification: empirical evaluation of a hybrid genetic decision

tree induction algorithm. J Artif Intell Res 2:369–409
Voß S (2001) Meta-heuristics: the state of the art. In: Local search for planning and scheduling.

Springer, Berlin, pp 1–23
Wang L, Wang X, Fu J, Zhen L (2008) A novel probability binary particle swarm optimization

algorithm and its application. J Softw 3(9):28–35
Whitley Darrell, Rana Soraya, Heckendorn Robert B (1998) The island model genetic algorithm:

on separability, population size and convergence. J Comput Inf Technol 7:33–47

On Meta-heuristics in Optimization and Data Analysis. Application to Geosciences 99

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.2929
http://www.jstatsoft.org/v53/i04/
http://www.jstatsoft.org/v53/i04/
http://dx.doi.org/10.1023/A:1008202821328
http://dx.doi.org/10.1023/A:1008202821328

Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Comput
1(1):67–82

Zaharie D (2005) Density based clustering with crowding differential evolution. In: International
symposium on symbolic and numeric algorithms for scientific computing, pp 343–350

Zaharie D (2007) A comparative analysis of crossover variants in differential evolution. In:
Proceedings of IMCSIT 2007, pp 171–181

Zangeneh H, Jamshidi S, Soltanieh M (2013) Coupled optimization of enhanced gas recovery and
carbon dioxide sequestration in natural gas reservoirs: case study in a real gas field in the south
of Iran. Int J Greenhouse Gas Control 17:515–522

Zitzler E, Deb K, Thiele L (2000) Comparison of multiobjective evolutionary algorithms:
empirical results. Evol Comput 8:173–195

100 H. Luchian et al.

http://www.springer.com/978-3-319-16530-1

	2 On Meta-heuristics in Optimization and Data Analysis. Application to Geosciences
	Abstract
	1 A Painless Introduction
	1.1 Briefly, on Problems and Methods to Solve Them
	1.2 What Will the Rest of This Chapter and the Next One Elaborate On?
	1.3 Short Comments on Four Transversal Issues
	1.4 Going into Practice: Two Running Examples

	2 Evolutionary Algorithms
	2.1 Terminology
	2.2 Directions in Evolutionary Algorithms
	2.3 Genetic Algorithms
	2.4 Differential Evolution
	2.5 Extensions of EAs for Multi-modal and Multi-objective Problems

	3 Swarm Intelligence
	3.1 Particle Swarm Optimization
	3.2 PSO on Binary Domains

	4 Integrating Meta-heuristics with Conventional Methods in Data Analysis: A Practical Example
	5 Applications of Meta-Heuristics in Geosciences
	References

