Navigation of Distinct Euclidean Particles
via Hierarchical Clustering

Omur Arslan, Dan P. Guralnik and Daniel E. Koditschek

Abstract We present a centralized online (completely reactive) hybrid navigation
algorithm for bringing a swarm of n perfectly sensed and actuated point particles
in Euclidean d space (for arbitrary n and d) to an arbitrary goal configuration with
the guarantee of no collisions along the way. Our construction entails a discrete
abstraction of configurations using cluster hierarchies, and relies upon two prior
recent constructions: (i) a family of hierarchy-preserving control policies and (ii)
an abstract discrete dynamical system for navigating through the space of cluster
hierarchies. Here, we relate the (combinatorial) topology of hierarchical clusters to
the (continuous) topology of configurations by constructing “portals”—open sets of
configurations supporting two adjacent hierarchies. The resulting online sequential
composition of hierarchy-invariant swarming followed by discrete selection of a
hierarchy “closer” to that of the destination along with its continuous instantiation via
an appropriate portal configuration yields a computationally effective construction
for the desired navigation policy.

Keywords Multi-agent coordination - Integrated planning and control - Swarm
robotics - Hierarchical formation

1 Introduction

This paper introduces the use of cluster hierarchies in vector field planners for coor-
dinated swarming. Hierarchical clustering offers an interesting means of ensemble
task encoding and control. It provides a formalism for precise yet flexible expres-
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sion, relaxing local proximity relations while allowing the imposition of more global
requirements—and at whatever level of resolution may be appropriate to a given set of
goals in a given problem setting. Here, we take a fresh and, as it turns out, completely
successful look at what may be considered the simplest instance of a longstanding,
familiar, hard problem: coordinated motion planning of a configuration of multiple
bodies. Specifically, we address the case of fully actuated, first order point parti-
cles constrained only by the requirement to avoid self-intersection in their otherwise
free ambient Euclidean space, controlled by a centralized vector field planner that
has instantaneous, exact information about the location of each individual. Given a
desired, labeled, free configuration of this swarm, along with a labeled target hierar-
chy that goal configuration instantiates, we construct a hybrid controller guaranteed
to bring almost every initial free configuration to that destination with no collisions
along the way via a sequence of continuous controllers. The construction is compu-
tationally effective: the number of discrete transitions grows in the worst case with
the square of the number of particles; each successive discrete transition can be com-
puted reactively (i.e., as a function of the present configuration) in time that grows
linearly with the number of particles; and the formulae that define each successive
smooth vector field are rational functions (i.e. defined by quotients of polynomials
over the ambient space) entailing terms whose number grows quadratically with the
number of particles.

1.1 Background

We do not imagine that the hierarchy abstraction (nor any other) can budge the
intrinsic complexity of the coordinated motion planning problem. Beyond this “sim-
plest” (but non-trivial) problem, we suspect that systematic recourse to hierarchy can
likely also afford computationally effective solutions to more “realistic”’ problem
settings! —so long as they do not step across the line of intractability. For exam-
ple, whereas motion planning for finite disks in a polygonal environment is strongly
NP-hard [32], more relaxed versions entailing (perhaps partially) unlabeled speci-
fications have yielded interesting planners in the recent literature [1, 31, 34], and
we suspect that the cluster hierarchy abstraction may be usefully applicable to such
partially labeled settings.

Within the domain of reactive or vector field motion planning, it has proven
deceptively hard to determine exactly this line of intractability. Since the problem of
reactively navigating swarms of disks was first introduced to robotics [35, 36], most
research into dynamical coordination planners has embraced the navigation function
paradigm [28]. A recent review of this two decade old literature is provided by [33]
where a combination of intuitive and analytical results yields centralized planners for
achieving goal configurations specified up to rigid transformation. But moving thick
bodies in a compact workspace yields hard problems: even determining when and

'We will mention in the conclusion a few such extensions presently in progress.
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how the configuration space is connected entails an encounter with the ancient sphere
packing problem [7]; past reactive solutions have produced controllers with terms
growing super-exponentially in the number of disks even when the workspace is not
compact [14]; and we suspect that the (hard won) conditions sufficient for guarantee-
ing the correctness of the traditional navigation function constructions applied to this
problem [19] will turn out to imply as hinted in [7] that the resulting free space has
the same homotopy type as the “simple” problem we solve here. In sum, we believe
there is plenty of useful and challenging work to be done in such tractable settings—
with few agents [27]; in low dimensions [10]; and so on—and it seems likely that
the ability to specify organizational structure in the precise but flexible terms that
hierarchy permits will add a useful tool to the robot motion planner’s toolkit.

That a hierarchy of proximities might play a key role in the coordinated motion
planning had already been hinted at in early work on this problem [22, 23]. A
cover over the neighborhood of the configuration space boundary by cluster hierar-
chies (closely related to what we term “strata” here—see [5] and below) plays an
important role in the analysis of navigation functions for thickened disks operat-
ing with centralized control in a compact workspace [19]. Formulae incorporating
“relation verification” functions (again expressing properties of cluster hierarchies
closely related to our “strata”) that grow super-exponentially with the number of
disks appear directly in the decentralized controllers for the thickened disks in an
unbounded workspace proposed by [14]. Partial hierarchies that limit the combina-
torial growth of complexity have been explicitly applied algorithmically to organize
and simplify the systematic enumeration of cluster adjacencies in the configuration
space [6]. Thus, while the utility of hierarchies and expressions for manipulating
them are by no means new to this problem domain, we believe that the explicit
formal connection we make between the topology of configuration space [15] and
the topology of tree space [16] through the hierarchical clustering relation [18] is
entirely new.

1.2 Organization and Contributions of the Paper

Section 2 introduces some underlying technical concepts and suggests via abstractly
stated requirements that there are likely to be many alternative routes to the desired
result other than specific instances we recruit from some of our recent previous
work (Algorithm 1, constructing a hierarchy-preserving navigation scheme in the
configuration space [5]; and Algorithm 2, constructing a computationally effective
navigation scheme in the space of abstract clustering trees [4]). Section 3 presents
the new results that enable the central contribution of this paper, the HNC Algorithm
(Table 1). Namely, we show how to define and compute a “portal map” (17)—a com-
putationally effective geometric realization in the configuration space of the edges
of a graph over the space of abstract hierarchies (Theorem 1)—that will serve the
role of a dynamically computed “prepares graph” [9] for the sequentially composed
particle controllers whose correct recruitment solves the reactive motion planning
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problem (Theorem2). Section4 presents illustrative simulations of this new hybrid
dynamical system. We conclude with a brief discussion of future work in Sect. 5.

2 General Framework

2.1 Background and Notation

Configuration Space Given an index set, J = [n] := {1, ...,n} C N, a configura-
tion, X = (X;);cy, 1s a labeled placement of |J| = n distinct Euclidean particles, X;.
We find it convenient to identify the configuration space [15] with the set of distinct
labelings, i.e., the injective mappings of J into RY,

Conf(Rd, J): ={xe(R")’(||x,-—x,|| £0, Vi ;éjeJ}. (1)

Cluster Hierarchies A rooted semi-labelled tree T over a fixed finite index set J,
illustrated in Fig. 1, is a directed acyclic graph G = (V;, E;), whose leaves, vertices
of degree one, are bijectively labeled by J and interior vertices all have out-degree at
least two; and all of whose edges in E; are directed away from a vertex designated
to be the root [8]. A rooted tree with all interior vertices of out-degree two is said
to be binary or, equivalently, non-degenerate, and all other trees are said to be
degenerate. In this paper BT ; denotes the set of rooted nondegenerate trees over
leaf set J.

A rooted semi-labelled tree 7 uniquely determines (and henceforth will be inter-
changeably used with) a cluster hierarchy [25]. By definition, all vertices of 7 can
be reached from the root through a directed path in 7. The cluster of a vertex v € V-
is defined to be the set of leaves reachable from v by a directed path in 7. Let C (1)
denote the set of all vertex clusters of 7.

T .- T,

*" " “root
® jnterior node
° leaf node ~ _
C )
.’ Y.’
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1 2 3 4 5 6 7 8 9 10 11 12 13 (a.B)

Fig. 1 (Left) Hierarchical relations: parent—Pr (1, 7), children—Ch (7, 7), and local complement
(sibling)—/~" of cluster I of a rooted binary tree, 7 € BT[i3). An interior node is referred by
its cluster, the list of leaves below it; for example, I = {4, 5, 6, 7}. (Right) An illustration of NNI
moves between binary trees: each arrow is labeled by a source tree and associated cluster defining
the move
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Fig. 2 An illustration of a a configuration in Conf (RZ, [6]) and b its iterative 2-mean clustering
[30] hierarchy in BJ[s], where the dashed lines in (a) depict the separating hyperplanes between
clusters. ¢ The quotient space Conf(C, [3]) / ~, where for any X,y € Conf(C, [3]),x ~y <

%;%:11- = % Here, configurations are quotient out by translation, scale and rotation, and so
x; =0+4+0i,x = 1 4+ 0i and x3 € C\ {xy, X2}. Regions are colored according the associated

cluster hierarchies resulting from their iterative 2-mean clustering. For instance, any configuration
in the white region supports all hierarchies in BTJ|3;

For every cluster I € C(7) we recall the standard notion of parent (cluster)
Pr (1, 7) and lists of children Ch (1, 7) of I in 7. Additionally, we find it useful to
define the local complement (sibling) of cluster I € C(r)as ™" :=Pr (I, 7) \ I.

Configuration Hierarchies A hierarchical clustering® HC C Conf (Rd ,J )X‘B‘T 7 is
a relation from the configuration space Conf (]Rd ,J ) to the abstract space of binary
hierarchies BTy [18], an example depicted in Fig. 2. Here, we will only be interested
in clustering methods that can classify all possible configurations (i.e. for which HC
assigns some tree to every configuration), and so we impose the condition:

Property 1 HC is a multi-function.

Most standard divisive and agglomerative hierarchical clusterings exhibit this prop-
erty, but generally fail to be functions because choices may be required between
different but equally valid cluster splitting or merging decisions [18].

Given such an HC, for any x € Con£ (R¢, J) and 7 € BT, we say X supports
if and only if (x, 7) € HC. The stratum associated with a binary hierarchy 7 € BT,
is the set of all configurations x € Conf (Rd, J ) supporting the same tree 7 [5],

S(r) = {x c Conf(Rd, J) |(x,7) € HC} , )

2 Although clustering algorithms generating degenerate hierarchies are available, many standard
hierarchical clustering methods return binary clustering trees as a default, thereby avoiding com-
mitment to some “optimal” number of clusters [18, 37].
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and this yields a tree-indexed cover of the configuration space. For purposes of
illustration, we depict in Fig. 2c the strata of Conf (C, [3])—a space that represents
a swarm of three particles on the plane.

The restriction to binary trees precludes combinatorial tree degeneracy [8] and
we will avoid configuration degeneracy by imposing:

Property 2 Each stratum of HC includes an open subset of configurations, i.e. for
every T € BTy, S (1) # 0.3

Once again, most standard hierarchical clusterings respect this requirement: they
generally all agree (i.e. return the same result) and are robust to small perturbations
of a configuration whenever all its clusters are well separated [37].

Graphs on Trees Define the adjacency graph A; = (BT, € 4) to be the 1-skeleton
of the nerve [17] of the Conf (Rd, J )-cover induced by HC. That is to say, a pair of
hierarchies, o, 7 € BT, is connected with an edge in € 4 if and only if their strata
intersect, S (o) N & (1) # @. The adjacency graph is a central object of interest
in this paper; however, as Fig. 2c anticipates, HC strata generally have complicated
shapes, making it usually hard to compute the complete adjacency graph.

Fortunately, the computational biology literature [16] offers an alternative notion
of adjacency that turns out to be both feasible and nicely compatible with our needs,
yielding a computationally effective, fully connected subgraph of the adjacency
graph, A, as follows.

The Nearest Neighbor Interchange (NNI) move at a cluster A € C (o) on a binary
hierarchy o € BT}, as illustrated in Fig. 1, swaps cluster A with its parent’s sibling
C = Pr(A, 0)77 to yield another binary hierarchy 7 € BT, [26, 29]. Say that
o, T € BT ; are NNI-adjacent if and only if one can be obtained from the other by a
single NNI move. Moreover, define the NNI-graph N; = (BT 7, E) to have vertex
set BT 7, with two trees connected by an edge in 4y if and only if they are NNI-
adjacent. A central result of this paper will be to show how the NNI-graph yields a
computationally effective sub-graph of the adjacency graph (Theorem 1).

2.2 Closely Related Prior Work

Hierarchy-Invariant Control Policies For ease of exposition we restrict attention
to first order (completely actuated single integrator) particle dynamics, and we will

3Here, A denotes the interior of set A.
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be interested in smooth closed loop feedback laws (or hybrid controllers composed
from them) that result in complete flows,

X=f(x), 3)

where f : Conf(Rd, J) — (Rd)J is a vector field over Conf(Rd, J).4
Denote by ¢ the flow [2] on Con£ (R?, J) induced by the vector field, f.In [5]
we introduce the class of hierarchy-invariant vector fields,

Fuc(r) : = [f :conf(RY, 7) > (R")J W (Em) cém.r > 0], (@)

and use them to construct a hybrid controller that invariantly retracts almost all of a
stratum onto any designated interior goal configuration. Namely, working with the
2-means divisive hierarchical clustering method [30], HC2.means, given a hierarchy
7€BT; and an interior goal, yeé (1) we construct a pair of vector fields, fy, fsy) €
JFuc (1) with the following properties. The goal field, fy, has y as a point attractor
and includes in its basin a neighborhood of a suitably well separated and compactly
clustered “standard” exemplar, s (y) € & (7). The global field, f;(y) has s (y) as
a point attractor and includes in its basin a set &, (7) C & (7) that excludes at
most a zero measure subset of & (7). The formulae defining fj(y) and fy are both
rational functions (i.e. defined by quotients of polynomials over the ambient space)
entailing terms whose numbers, respectively, grow quadratically and linearly with
the number of particles. Using the standard “prepares” construction [9], wherein
initial application of control fy) is switched to fy upon reaching a suitably small
neighborhood of s (y), there results a deformation retraction [17], R; y, of (almost
all of) G, (7) onto {y}.

Key for purposes of the present application is the observation that any hierarchy-
invariant field f € Fyuc (7) must leave Conf(Rd ,J) invariant as well, and thus
avoids any self-collisions of the particles along the way. There are likely to be many
alternative approaches to such results, but for purposes of this paper we will simply
assume the availability of exactly such a prior construction that we summarize as
follows.

Algorithm 1 ([5]) Forany 7 € BT andy € & (7) associated with HC construct a
(possibly hybrid) quadratic, O (| J| 2), time computable control policy, f; y, using the
hierarchy invariant vector fields of Fyc (7) whose closed loop results in a retraction,
R; y, of &, (7) onto {y}, where & (1) \ &; (7) has zero measure.

Navigation in the Space of Binary Trees Whereas the controlled deformation retrac-
tion, Ry, above generates paths “through” the strata, we will also want to navigate
“across” them along the NNI-graph. In principle, this is a trivial matter since the

“ A long prior robotics literature motivates the utility of this fully actuated “generalized damper”
dynamical model [24], and provides methods for “lifts” to controllers for second order plants [20,
21] as well.
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number of trees over a finite set of leaves is finite. In practice, the cardinality grows
super exponentially [8],

BT/ l=QIJ|-3)=2|J|-3)2|J|—-5)...3, (5)

for |J| > 2. Hence standard graph search algorithms, like the A* or Dijkstra’s
algorithm [11], become rapidly impracticable. In particular, computing the shortest
path (geodesic) in the NNI-graph is NP-complete [13].

Given a 7 € BT, we have recently developed in [4] an efficient recursive proce-
dure for endowing the NNI-graph with a directed edge structure whose paths all lead
to 7, and whose longest path (from the furthest possible initial hierarchy, o € BT ;)
is tightly bounded by % (JI =D (J| —2) for |J| = 2. We interpret that directed
NNI-graph as defining a deterministic discrete dynamical system in BT ; that recur-
sively generates paths toward the specified destination tree 7 € BTy from all other
trees in BTy by reducing a “discrete Lyapunov function” relative to that destination.
Given such a goal we show in [4] that the cost of computing an appropriate NNI move
from any other 0 € BTJ; toward an adjacent tree at a lower value of the Lyapunov
function is O (| J]).

In this paper, such a provably correct, computationally efficient and recursively
generated choice of next NNI moves will play the role of a discrete feedback policy
used to define the reset map of our hybrid dynamical system. Thus, we further require
the availability of such a construction, summarized as:

Algorithm 2 ([4]) Given any 7 € BT ; construct recursively a closed loop discrete
dynamical system in the NNI-graph, taking the form of a deterministic discrete
transition rule, g, with global attractor at 7 and longest trajectory of length O (| J |2)
endowed with a discrete Lyapunov function relative to which computing a descent
direction from any o € BT ; requires a computation of time O (|J|).

3 Hierarchical Navigation

The central technical result of this paper endows the strata of HCy.means [30] with a
complete prepares graph [9] via a computationally effective geometric realization of
the NNI-graph on trees.

Definition 1 The portal, Portal (o, 7), of a pair of hierarchies, o, 7 € BT, is
the set of all configurations supporting interior strata of both trees,

Portal (o,7) : = S (o)N & (7). (6)

Theorem 1 The NNI-graph N; = (BT, E) is a sub-graph of the HC_means adja-
cency graph Ay = (BT ;, € 4), and given an edge, (o, T) € EN C € 4, a geometric
realization via the map Port (s ) : & (0) — Portal (o, 7) (17) can be computed
in linear, O (|J|), time with the number of leaves, |J|.
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Proof The relation between the tree graphs directly follows from Proposition 1. Fur-
ther, Port s, is shown in Proposition2 to be a retraction of & (o) into the set
of standard portal configurations in Portal (o, 7). Observe that by construction
Port(s,7) (17) only requires centroids of clusters of o, computable in linear time
by post-order traversal of o, and some associated cluster radii in (11)—(13), also
computable in linear time given cluster centroids. Thus, the result follows. (I

Before proceeding to the details of this construction, we summarize how it,
together with the constructions reviewed in Sect. 2, solve the centralized hierarchical
navigation problem.

3.1 Specification and Correctness of the Hierarchical
Navigation Control (HNC) Algorithm

Assume the selection of a goal configuration y € S (7) and a hierarchy 7 € BT
that y supports. Now, given (almost) any initial configuration x € & (o) for some
hierarchy o € BT that x supports, Table 1 presents the HNC algorithm.

Theorem 2 The HNC Algorithm in Table 1 defines a hybrid dynamical system whose
execution brings almost every initial configuration, x € Conf (Rd, J ) in finite time

to an arbitrarily small neighborhood of 'y € S (1) with the guarantee of no collisions
along the way and with a computational cost no greater than O (|J|) at each discrete
transition.

Proof In the base case, (1) the conclusion follows from the construction of Algo-
rithm 1: the flow f- y keeps the state in & (7), approaches a neighborhood of y (which
is an asymptotically stable equilibrium state for that flow) in finite time.

In the inductive step, (a) The NNI transition rule g, guarantees a decrement in the
Lyapunov function after a transition from o to y (Algorithm 2), and a new local policy
[,z 1s automatically deployed with a local goal configuration z € Portal (o, )
found in (b). Recall from Algorithm?2 and Theorem 1 that the transition from o to y

Table 1 The HNC algorithm
For (almost) any initial x € & (0) and 0 € BT, and desired y € & (t)and 7 € BTy

1. (Hybrid Base Case) if x € & (7) then apply stratum-invariant dynamics, f; y (Algorithm 1)

2. (Hybrid Recursive Step) else

(a) invoke the NNI transition rule g, (Algorithm2) to propose an adjacent tree, v € BT,
with lowered discrete Lyapunov value

(b) Choose local configuration goal, z := Port (s, ) (x) (17)

(c) Apply the stratum-invariant continuous controller f,, ; (Algorithm 1)

(d) If the trajectory enters S (7) then go to step 1; else, the trajectory must enter S (7y) in
finite time in which case terminate f, ,, reassign o < -y, and go to step (2a)
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and the portal location z can be both computed in linear O (|J|) time. Next, the flow
fs.z 1n (c) is guaranteed to keep the state in S (o) and approach z € Portal (o, )
asymptotically from almost all initial configurations. If the base case is not triggered
in (d), then the state enters arbitrarily small neighborhoods of z and, hence, must
eventually reach Portal (o, ) C & (v) in finite time, triggering a return to (2a).
Because the dynamical transitions g, initiated from any hierarchy in BJ; reaches 7
in finite steps (Algorithm 2), it must eventually trigger the base case. O

3.2 Hierarchical Portals

We now turn attention to construction of the crucial portal map (17) that effects the
geometric realization of the NNI-graph as required for Theorem 1, above. Throughout
the sequel, we confine our attention to 2-means divisive hierarchical clustering [30],
HC).means- We first detail our construction of the realization function, Port (17),
that takes an NNI-edge and returns a target configuration, and then verify that this
image does indeed lie in the interior of Portal (o, 7).

Hierarchical Strata of HCj means The open and closed strata of HC) peans can be
characterized respectively, by the intersection inverse images,> [5]

G m= (1 [\ni.(~0.0. 6@ = () [)nl.(—00.0l

1eC(r\{J} Il TeCr\{J} Tel

(7

of the scalar valued “separation” function, 7; ; - : Conf (Rd ,J ) — RR. This function
returns the distance of agent i in cluster / € C (7) \ {J/} to the separating hyperplane
that is perpendicular to the separation vector, sy r (X), between centroids of com-
plementary clusters / and /™7 and passes through the midpoint, m; - (x), of their
centroids,®

e )= (xi —mp, (®) sp0 (), ®)
where

c(x|D)+c (x[177)
5 )

1
c(x|I): :m Xi, sp-(x):=c(x|I7)—c(x|I), my(x):=

iel

(€))

Definition 2 Letx € Conf(Rd, J) and 7 € BT . Then cluster I of 7 is said to be
admissible (valid) forx if n; ;  (x) < Oforalli € I.

SNote that for all 7 € BT, &, (1) € & (7).
SHere, AT denotes the transpose of A.
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Using this terminology, we observe from (7) that & (7) comprises the set of all
configurations in Conf (Rd, J ) for which every cluster of 7 is admissible [5].

Portal Configurations A critical observation for the strata of HC2_means 18:

Proposition 1 The NNI-graph is a sub-graph of the adjacency graph, i.e. for any
pair (o, 7) of NNI-adjacent trees in BT j, Portal (o, 7) # @.

Proof The result directly follows from Corollary 1. ([

Throughout this section, the trees o, 7 € BT ; are NNI-adjacent and fixed, and
we therefore take the liberty of suppressing all mention of these trees wherever
convenient, for the sake of simplifying the presentation of our equations.

Since the trees o, 7 are NNI-adjacent, we may apply Lemma 1 from [4] to find
common disjoint clusters A, B, C suchthat {A U B} = C(0)\C(r)and {BU C} =
C (1) \ C (o). Note that the triplet {A, B, C} of the pair (o, 7) is unique. We call
{A, B, C} the NNI-triplet of the pair (o, 7). Since o and 7 are fixed throughout this
section, so willbe A, B,C and P := AU B UC.

We now introduce a set of useful notation and lemmas for characterizing a par-
ticular subset of Portal (o, 7). A relaxation on Definition 2 is:

Definition 3 Letx € (Rd)], 7€ BT ; and K C J. Then cluster I of 7 is said to be
partially admissible for x| K if n; 1 - (X) <Oforalli e I N K.

For a partition {/,} of cluster I € € (7), observe that cluster I of 7 is admissible for
x if and only if 7 is partially admissible for all x|7,,’s.

Definition 4 Letx € (Rd)j, Q €{A, B,C}, and for any H C R4 define

Yo (x, H): = [y c (Rd)J ‘VRE{A,B, C) c(yIR) = ¢ (x|R),Vi € O yieH].
(10)

The consensus ball By (x) of partial configuration x| Q is defined to be the largest
open ball® centered at ¢ (x|Q) so that for any y Yo (x, By (x)) and v € {o, 7}
every cluster D € {Q, Pr (Q, 7)} \ {P} of v are partially admissible for y| Q.

An explicit form of the radius rg (x) of By (x) can be obtained as [31°

ro (X): = min[—(c (X|Q)—mD’A,(x))T(SD~W’(X))

[sp~e0],

Ne(a,T), De[Q, Pr (Q,'y)}\{P}].
(11)

THere, we use Nilr: (Rd)J — R (8).
8In a metric space (X, d), the open ball B (x, r) centered at x with radius r € Rxq is the set of
points in X whose distance to x is less than r,i.e. B(x,r) ={ye X |d (x,y) < r}.

9Here, we set m =0forx =0.
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Here, rg (x) < 0 means By (x) is empty. We will abuse the notion of the consensus
ball for a single tree, o, and its cluster, I € C (o) \ {J}, as the open ball centered at
¢ (x|I) with radius

Fl.o (X): = min [—(c &I —mp., (x))T(SD’U(X))‘D c {K €C (o) ’1 CKC J}]

Isp.s %) ”2
(12)
It is also convenient to have r (x) denote the centroidal radius of x € (Rd ) J,
r(x) :=max[lx; —c ). (13)
iel

Looking ahead toward Lemma 1, the sufficiency condition for the existence of
nontrivial consensus balls motivates:

Definition 5 We call x € (Rd )J a symmetric configuration associated with (o, 7)
if centroids of partial configurations x|A, x| B and x|C form an equilateral triangle.
The set of all symmetric configurations with respect to (o, 7) is denoted Sym (o, 7).

Lemma 1 ([3]) For any symmetric configuration X € Sym (o, T), the consensus
ball Bg (X) of each partial configuration of cluster Q € {A, B, C} always has a
nonempty interior, i.e. rg (X) > O—see Fig. 3.

Fig. 3 (Left) An illustration of a symmetric configuration X € Sym (o, 7), where the consensus
ball By (x) of partial configuration of cluster Q € {A, B, C} has a positive radius. (Right) Outer
Napoleon triangles A4 prcr and Ayvprer of Aapc and Ay prer, respectively, and Ayvprer is
referred to as the double outer triangle of A 4pc. Note that centroids of all triangles coincides, i.e.
c(Aagc) =c(Lapc) =c(Darprcr)
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In general, the geometric shape of Portal (o, 7) is very hard to characterize,as
suggested by Fig.2. Fortunately, Lemma 1 lets us point out an easily identifiable
open subset:

Definition 6 The standard portal StdPortal (o, 7) of the pair (o, 7) is the set of
all configurations x € &, (o) N Sym (o, 7) with the property that x| Q is contained
in the consensus ball By (x) for all Q € {A, B, C}.

Accordingly, using Lemma I, one can conclude that:

Corollary 1 stdpPortal (o,7) # 0, and StdPortal (o,7) C Portal (o,7).

Portal Transformations

Napoleon Triangles [12] We recall a theorem of geometry describing how to create an
equilateral triangle from an arbitrary triangle: construct, either all outer or all inner,
equilateral triangles at the sides of a triangle in the plane containing the triangle, and
so centroids of the constructed equilateral triangles form another equilateral triangle
in the same plane, known as the “Napoleon triangle” [12]—see Fig. 3. We will refer
to this construction as the Napoleon transformation, and we find it convenient to
define the double outer Napoleon triangle as the equilateral triangle resulting from
two concatenated outer Napoleon transformations of a triangle. Let NT : R3¢ — R34
denote the double outer Napolean transformation, see [3] for an explicit form of NT.

The NNI-triplet {A, B, C} defines an associated triangle with distinct vertices for
each configuration, A4 p,c : & (1) — Conf(RY, [3]),

T
App.c (X) :=[c(x|A),c(x|B).c(x|C)] . (14)
The double outer Napolean tranformation of A4 p ¢ (X) returns symmetric target
locations for ¢ (x|A), ¢ (x| B) and c (x|C), and the corresponding displacement of
c (x| P), denoted Nof £ 4 p ¢ : Conf(R?, J) — R, is given by the formula'®

Noffa pc(X) :=cX|P) =TI -NToA4 pc (X)), (15)

where I' := o [|Al,IB],ICl] ® Is € R?*3, and the vertices of the associated
equilateral triangle with compensated offset of ¢ (x| P) are

T
[ca.cB.cc] :=NTolapc(x)+13QNoffy g (X). (16)
Portal Maps Define a continuous map,

,if x € StdPortal (o, 1),

Port : & (o) > Sym(o,7) : X ~ [(Mrg o Scl o Ctr) (x), otherwise,

a7

10Here, 1, is the d x d identity matrix, and 1 is the R¥ column vector of all ones. Also, ® and -
denote the Kronecker product and the standard array product, respectively.
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where

X; ,ifi g P,
Xi—c (X|Q)+cq,ifieQ, Qe{A, B, C},
(13)

Ctr : 6(0) —» Sym(o,7) : X —>

and c4, cp and c¢ are the new centroids of the corresponding partial configurations
(16). It is important to observe that Ctr keeps the barycenter of x| P fixed, and so
the rest of clusters ascending and disjoint with P are kept unchanged.

After obtaining a symmetric configuration in Sym (o, 7), based on Lemmal,
Scl : Sym(o,T) — Sym(o, T) scales each partial configuration, x|A, x|B and
x|C, to fit into the corresponding consensus ball, and then Mrg : Sym (o, 7) —
Sym (o, 7) scales x| P to merge with the rest of (unchanged) particles, x|J — P, to
simultaneously support both hierarchies o and 7,

rp,o (X)

Scl (x);=¢ (X P)

(xi —c (x| Q) +¢ (x|Q), Mrg (x);=(

(xi—c (x| P))+c (x| P),
(19)

ro (x)
r(x|Q)

foralli € Q and Q € (A, B, C); otherwise (i ¢ P), Scl (x); = Mrg (X); = X,
where ¢ € (0, 1) is a parameter describing the scale of each configuration with
respect to the consensus ball.

Proposition 2 ([3]) Port : G (¢) — StdPortal (o, 7) is a retraction.

4 Numerical Simulations

For the sake of clarity, we first illustrate the behavior of the hybrid system defined in
Sect. 3.1 for the case of four particles moving in a two dimensional ambient space.

In order to visualize in this simple setting the most complicated instance of
collision-free navigation and observe maximal number of transitions between local
controllers, we pick the initial, x, € & (71), and desired configurations, x* € é& (14),
where particles are evenly placed on the horizontal axis and left-to-right ordering of
their labels are (1, 2, 3, 4) and (3%, 1%, 4*, 2*), respectively, and their corresponding
clustering trees are 71 € BT[4) and 74 € BT 4y, see Fig. 4.

The resultant trajectory of each particle following the hybrid navigation planner
in Sect.3.1, the relative distance between each pair of particles and the sequence
of trees associated with visited hierarchical strata are shown in Fig.4. Here, notice
that when the swarm enters the domain of local controller associated with 7 at
x4 € & (11) N & (12)—shown by green dots in Fig.4, it already finds itself in the
domain of the following controller associated with 73, i.e. X, € & (73), but not still
in G (14). After a finite time navigating in & (73), the swarm enters the domain
of the goal controller fr, x» (Algorithm1) at x, € & (73) N & (74)—shown by red
dots in Fig.4, and f-, x+ asymptotically steers particles to the desired configuration
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Fig. 4 An illustrative navigation trajectory of the hybrid dynamics generated by the HNC algo-
rithm for 4 particles. a The sequence of trees associated with deployed local controllers during the
execution of the hybrid navigation controller. Here, the hybrid planner instantaneously switches
from the second controller to the next controller. b Trajectory of each particle colored according
the active local controller, where X, € & (71) N & (12) N & (73) and X, € & (73) N & (74) shown by
green and red dots, respectively, are portal configurations. (3) Pairwise distances between particles

x* € & (). Finally, note that the total number of binary trees over four leaves is
15; however, our hybrid navigation planner reactively deploys only 4 of them.

We now consider a similar, but slightly more complicated setting: a swarm of six
particles in a plane where agents are initially placed evenly on the horizontal axes
and switch their positions at the destination as shown in Fig. 5a, which is also used
in [33] as an example of complicated multi-agent arrangements. While steering the
swarm towards the goal, the hybrid navigation planner automatically deploys only 8
local controllers out of the family of 945 local controllers. The time evolution of the
swarm is illustrated in Fig. Sa.

Finally, to demonstrate the efficiency of the deployment policy of our hybrid
planner, we separately consider swarms of 8 and 16 particles in an ambient plane,
illustrated in Fig.5. The eight particles are initially located at the corner of two
squares whose centroids coincide and the perimeter of one is twice of the perimeter
of the other. At the destination, agents switch their locations as illustrated in Fig. 5b.
For sixteen particle case, agents are initially placed at the vertices of a 4 by 4 grid,
and their task is to switch their location as illustrated in Fig.5c. Although there
are a large number of local controllers for the case of swarms of 8 and 16 particles
(|3‘I[8] | > 10° and |B‘J'[15] | > 6x 10'3), our hybrid navigation planner only deploys
16 and 34 local controllers, respectively.

The number of potentially available local controllers for a swarm of n particles
(5) grows super exponentially with n. On the other hand, if agents have perfect
sensing and actuation modelled as in the present paper, the hybrid navigation planner
automatically deploys at most % (n — 1) (n — 2) local controllers [4], illustrating the
computational efficiency of our construction.
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Fig. 5 Example trajectories of the hybrid vector field planner for a 6, b 8 and ¢ 16 particles in a
planar ambient space. (Top) trajectory and (bottom) state-time curve of each agent. Each colored
time interval demonstrates the execution duration of an excited local controller. Dots correspond to
the portal configurations where transitions between local controllers occur at

5 Conclusion

In this paper, we introduce an online centralized hybrid vector field planner for nav-
igation in the configuration space of n distinct points in R?, using the hierarchy
invariant controllers of [5], the combinatorial tree navigation algorithm of [4], and
its “pullback” into the configuration space, Port (17). This last step comprises the
central contribution of the paper, revealing the relation between the combinatorial
NNI neighborhood of hierarchy trees and the intersection of their associated con-
figuration space strata. The new result, the HNC Algorithm, now affords provably
correct online reactive planing and execution of arbitrary reconfiguration in the space
of multiple, distinct, completely actuated first order particles in RY.

Work now in progress targets more practical settings in the field of robotics
including navigating around obstacles and handling thickened disk agents in compact
spaces. Another focus of ongoing work addresses the realization of tree space topol-
ogy via online, “cluster-local” computation that might afford a distributed version of
the current centralized framework.
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