On the Choice of Tensor Estimation for Corner
Detection, Optical Flow and Denoising

Freddie Astrom®2?®™) and Michael Felsberg!»?

! Computer Vision Laboratory, Linképing University, Linképing, Sweden
freddie.astrom@liu.se
2 Center for Medical Tmage Science and Visualization (CMIV),
Link6ping University, Link6ping, Sweden

Abstract. Many image processing methods such as corner detection,
optical flow and iterative enhancement make use of image tensors. Gen-
erally, these tensors are estimated using the structure tensor. In this work
we show that the gradient energy tensor can be used as an alternative
to the structure tensor in several cases. We apply the gradient energy
tensor to common image problem applications such as corner detection,
optical flow and image enhancement. Our experimental results suggest
that the gradient energy tensor enables real-time tensor-based image
enhancement using the graphical processing unit (GPU) and we obtain
40 % increase of frame rate without loss of image quality.

1 Introduction

A drawback of many current state of the art image processing methods is the
high computation requirements necessary to achieve high-quality results. As a
consequence, the computational constraints limit the methods applicability as
useful tools in real-time applications, implying that processing-pipelines oper-
ate on suboptimal image data. Specifically, the structure tensor introduced by
Forstner and Giilch [1] and Biglin and Granlund [2] is an integral part of many
image processing applications, such as corner detection [3,4], optical flow [5] and
tensor-based image denoising [6].

In this paper we propose to replace the structure tensor with an alternative
tensor, the gradient energy tensor [7] that does not (necessarily) require a post-
convolution of its tensor-components to form a rank-2 tensor. The principal
difference to the structure tensor is that the gradient energy tensor use higher-
order derivatives to capture the orientation in a neighbourhood. In Fig. 1 we have
used the tensors for corner detection and dense optical flow and as visualized the
two tensors produce very similar results. As a major contribution of this work
we present an adaptive tensor-based image denoising method implemented using
Nvidia CUDA programming language. Our approach is superior to those based
on the structure tensor with regards to computational performance, without loss
of image quality.

The structure tensor is defined as the outer product of the image gradient
directions and in the case of two-dimensional images, the tensor is at most of

© Springer International Publishing Switzerland 2015
C.V. Jawahar and S. Shan (Eds.): ACCV 2014 Workshops, Part II, LNCS 9009, pp. 16-30, 2015.
DOI: 10.1007/978-3-319-16631-5_2

On the Choice of Tensor Estimation 17

X Structure Tensor
-+ Gradient Energy Tensor

Corner Detection Optical flow
Good Features to Track [4] Dense Lucas-Kanade [5]

Fig. 1. An illustration that the Gradient Energy Tensor performs comparably to the
Structure tensor in the two applications of corner detection and optical flow estimation
(sequence Teddy frames 10 and 11 [9]). The gradient energy tensor does not (necessar-
ily) require a post-convolution of its tensor-components, which is the case in the case
of corner detection. See text for details.

rank-2 and determines the local energy distribution of a neighbourhood. In prac-
tice, to enforce robustness to noise and to form a rank-2 tensor, the structure ten-
sor components are averaged using a post-smoothing of the tensor-components.
Furthermore, without the post-convolution operation the tenor is of rank-1 and
thus it cannot be used to describe corners and junctions in the image structure.
The averaged structure tensor can also be viewed as a second-moment matrix,
which estimates the local variance of the image data [8].

The gradient energy tensor is particularly suitable when considering graph-
ical processing units (GPU). A GPU is a high-performance graphics card and
is designed for massive parallelization of data-processing tasks. The GPU archi-
tecture is most suitable for problems with high spatial locality in the image
plane and is therefore very fitting for the solution of partial differential equa-
tions (PDE). In this work we present a novel tensor-based PDE, which uses the
gradient energy tensor for image enhancement and utilize the GPU architecture
to enable real-time image enhancement.

The standard approach to image filtering using PDE’s is defined using the
structure tensor, a rank-2 tensor which is transformed such that it describes the
direction parallel to the image structure. This approach does not allow for real-
time computations of high-resolution colour images since the tensor is defined
using several convolutions of the tensor components. In contrast, the gradient
energy tensor does not requires any convolution to form a rank-2 tensor but
yet performs equally well, or better in denoising, when considering the resulting
peak signal to noise ratio (PSNR) and structural similarity index (SSIM) [10].

18 F. Astrom and M. Felsberg

1.1 Contributions

In this work we present a lesser known tensor: the gradient energy tensor as an
alternative to the commonly used structure tensor. Our main contribution is a
novel PDE-based denoising scheme which utilize the gradient energy tensor to
drive an image enhancement process. In Sect. 3.1 we adopt the Good Features to
Track [4] framework to our tensor formulation and show comparable performance
to the structure tensor using a repeatability test for different viewpoint angles.
We also demonstrate that it is possible to solve the Lucas-Kanade [5] optical
flow formulation using the gradient energy tensor. In Sect. 3.2 we illustrate the
approach on sequences from the Middleburry optical flow dataset [9].

Finally, in Sect.4 we do an exhaustive evaluation on high-resolution colour
images and describe the GPU implementaion using Nvidias CUDA programming
language. We show that by using the gradient energy tensor we significantly
boost the achieved frames per second (fps) compared to the structure tensor to
enable real-time image denoising.

2 Estimating Directional Information

Many image processing algorithms contain an estimate of local orientation as an
integral part of the methods. Often the directional information is computed using
the so called structure tensor [1,2]. The tensor is the outer product of the image
gradients whereafter the components are averaged in a local neighbourhood. If
the averaging operator, w(z) is circular (i.e. Gaussian) then the structure tensor
is isotropic in homogeneous regions. Below, we define the structure tensor and the
gradient energy tensor which we show in the experimental part outperforms the
structure tensor with regards to computation efficiency without compromising
the accuracy of the final result.

2.1 Structure Tensor

The structure tensor, T € R?*2 is symmetric and positive semi-definite [1,2].
The tensor is defined as the outer product of the image gradients followed by
post-convolutions, one for each component, i.e.

/@@mAx—amg /wﬁwﬂx—ﬁww—fwi

T(Uﬂcvuy) =
/@@MAw—OwQFfM£ /w@Wﬂm—Q%f

(1)

The effect of the post-convolution operator is that 7" will have two non-zero
eigenvalues, thus the operator can be used to estimate the orientation of image
structures. In the case the convolution is given by the identity i.e. w(x) =1 for
2 = 0 and w(z) = 0 otherwise, then the eigenvalues are given by the trace of
T and 0.

On the Choice of Tensor Estimation 19

2.2 Gradient Energy Tensor

The gradient energy tensor (GET) was first introduced by Felsberg and Kéthe [7].
Let Hu = VV'u be the Hessian and VAu = VV!Vu, then GET is

GET(Vu) = HuHu — %(Vu[VAu]t + [VAu]Vtu). (2)

In contrast to the structure tensor (1), the gradient energy tensor (2) does not
(necessarily) require a convolution operator to form a rank 2 tensor. The response
from the two tensors are illustrated in Fig. 2. The presence of second and third-
order derivatives in GET does makes it more sensitive to noise than the structure
tensor, however, it allows us to capture orientation of structures not possible to
detect using the structure tensor.

The second difference to the structure tensor is that the gradient energy ten-
sor is not necessarily positive semi-definite. In applications where it is required to
have a positive semi-definite tensor it is straightforward to define the eigenvalues
of GET to be positive. That is, simply compute the eigenvaluedecomposition of
GET and use the alternative definition

GET™ (Vu) = vv'|uy| + ww'|ps| (3)

where v, w are the eigenvectors and p1, po eigenvalues of GET respectively.
From (3) the tensor’s orientation information is made explicit, the eigenvectors
describe the local orientation of the neighbourhood and the eigenvalues describe
the magnitude.

Since the positivity of the tensor is reflected in the sign of its eigenvalues
the presence of negative eigenvalues can be determined on beforehand if the
condition tr (HuHu) — V'uVAu > /1 is not satisfied where | = (tr GET)? —
4det(GET) > 0. Since GET is symmetric it has real eigenvalues. Thus by its
eigenvalue decomposition it is sufficient to show that tr GET > v/ in order for
GET to be positive semi-definite. [is necessarily positive since [= (a—c)?+4b% >

0 where a, b and ¢ are the components GET(Vu) = (a b) and

bc
a=u’, + uiy — Ug Uz + Uzyy) (4)
b= Ugaliay + Uyallyy — %(ux(uym + Uyyy) + Uy (Uszz + Usyy)) (5)
€= u12/y + uiy = Uy (Uyaz + Uyyy). (6)

An analysis of the positivity of the 1-dimensional energy operator was done
n [11]. In the remainder of the paper we apply the GET for corner detection,
more specifically the good features to track approach, and GET™ is used to
compute the Lucas-Kanade optical flow and tensor-based image denoising.

2.3 Eigendecomposition of 2 X 2 Tensors

In the previous section we have shown that both the structure and gradient
energy tensor can be used to compute the local orientation. By factorizing the

20 F. Astrom and M. Felsberg

Structure Tensor (1) Gradient Energy Tensor (2)

Fig. 2. Illustration of the resulting tensor-fields. The structure tensor require additional
post-smoothing to form a rank-2 tensor compared to the gradient energy tensor which
is defined without post-smoothing. Note that the size of the ellipses has been scaled
for improved visualization.

tensors into their eigendecomposition the directional change and its magnitude
is made explicit. Specifically, a matrix S € R?*2 can be decomposed into its
eigenvalues 1 2 and eigenvectors v, w representation such that

S = vvlpy + wwps (7)

where v, w are two orthonormal vectors. The eigenvectors describe the orienta-
tion and the eigenvalues the magnitude of the directional change in a neighbour-
hood. The eigenvalues can be computed by solving the characteristic polynomial
det(S — plI) = 0 and the solution is given by

H12 = % (trS:I:\/(tr S)2—4detS). (8)

For the applications presented in this work we are not required to compute
the explicit eigendecompistion (7), rather we are primarily interested in the
eigenvalues. Thus, by observing that vvt + ww! = I <= ww® = I — vv?, then
S can be expressed as [12],

S = (11 — p2)vo’ + Iy (9)

and we compute the eigenvector-product vv! as

t_ 1 _
vo' = n —MQ)(S Tus). (10)

On the Choice of Tensor Estimation 21

—— Structure Tensor
70 —>»—Gradient Energy Tensor

Repeatability (%)

0
20 30 40 50 60
Viewpoint angle

20 degrees viewpoint angle 40 degrees viewpoint angle

Fig. 3. Examples of corner detection for the structure tensor (with post-smoothing)
and the gradient energy tensor (without post-smoothing) using Good Features to Track.
Both tensors detect corners accurately but not always the same corners.

3 GET Corner Detection and Optical Flow

3.1 Corner Detection

The first application we consider is corner detection using Good Features to
Track [4]. The problem of corner detection is part of many image processing
pipelines such as interest point detection and sparse optical flow. The Good
Features to Track framework detects corners by considering the eigenvalues of
the structure tensor. If the structure tensor has two non-zero eigenvalues fi1 2,
both larger than some threshold p then the orientation tensor is necessarily
invertible, i.e. the tensor is of rank 2. If min(uy, pu2) > 1 where y is often set to
a fraction of the largest minimum eigenvalue then the neighbourhood contains
a corner point.

In this work we set © = 0.01 and Fig. 3 shows the 128 strongest detected cor-
ners for the structure tensor and the gradient energy tensor. We use a Gaussian
kernel with standard deviation 1 for post-smoothing of the structure tensor
components. We also computed the repeatability measure [13] at 40 % over-
lap (see Fig.3) for the viewpoint dataset where the viewpoint angle has been
changed from 20-60 degrees from the reference image [14]. The repeatability

22 F. Astrom and M. Felsberg

Gradient Energy Tensor

-~ Structure Tensor
——Gradient Energy Tensor|

2 3 4
< coarse - scale - fine >

Structure Tensor Gradient Energy Tensor

Fig. 4. Optical flow estimated from frames 7 and 8 of the Schefflera sequence in the
Middleburry optical flow dataset [9]. Top row illustrate the vector field. On the bottom
we show the obtained flow fields where the direction is colour coded and intensity
corresponds to the magnitude. The graph to the right show the mean squared error
between the warped image J(z + d) and the reference image I(z) in (11).

measure is similar for the two tensors. Note that the gradient energy tensor, in
this example, does not contain a post-smoothing of the tensor components.

3.2 Optical Flow

Our second application is to apply the gradient energy tensor to the original
Lucas-Kanade optical flow formulation [5] to compute a dense motion field. By
minimizing the below energy functional the structure tensor appear as part of
the minimizer

B(u) = /Q (@ + d) — I(@)Pw(z) de (11)

where J and I are two images of size {2 with some unknown displacement vec-
tor d. The minimizer of (11) is obtained by solving (see [15])

[/Q[VJ(x)VtJ(m)]w(x) dx] d= [/Q[(J(x) —I(2))VJ(z)|w(z) dz|. (12)

The bracket in the left hand side of (12) is the structure tensor, T in (1). Figure 4
shows the results when we solve (12) with the structure tensor and when we
interchanged the structure tensor with the gradient energy tensor with positive

On the Choice of Tensor Estimation 23

-~ Structure Tensor
— Gradient Energy Tensol

-©-Structure Tensor -©-Structure Tensor
s —*Gradient Energy Tensol —+—Gradient Energy Tensol

Z\F \9\6\

2 3 4 1 2 3 4 1 2 3 4
< coarse - scale - fine > < coarse — scale - fine > < coarse - scale - fine > < coarse - scale — fine >

Backyard Dumptruck Wooden Yosemite

Fig.5. Mean squared error (MSE) graphs between the first and second image after
warping the first image with the estimated motion field. The sequences are part of the
Middlebury dataset [9]. The estimate of the motion field in the Wooden sequence for
the gradient energy tensor diverge on the finest scale, but in the other sequences the
MSE yield comparable final displacement estimate.

eigenvalues, i.e. GET™T in (3). Due to the large displacement between the image
pairs we are required to have a post-convolution of the GET™ components sim-
ilarly to the structure tensor in order to capture the motion.

For both tensors we solve the normal Eq. (12) explicitly using the pseudo-
inverse on multiple scales. The solution we obtain at a coarse scale is propagated
to a finer scale and after each scale we apply a median-filter to the estimated
motion field [16]. Furthermore, we found that the magnitude scaling of the gra-
dient energy tensor eigenvalues resulted in a poor motion estimation. Therefore,
we scale the eigenvalues of the gradient energy tensor using the factor oi/I where
i€l =1{1,2,3,4} are the scales, ¢ = 1 is the fines scale, and o is the standard
deviation of the Gaussian filter w(x). As for the structure tensor, the selection
of o is dependent on the absolute motion present within the frames, i.e. if the
displacement is large then a larger ¢ is required. In Fig.5 we show the mean
squared error between J(x +d) and I(x) for some additional sequences from the
Middlebury optical flow dataset [9].

The optical flow formulation (11) does (obviously) not give state of the art
results, however the approach illustrates that the gradient energy tensor is a
possible alternative to the structure tensor. We expect that many interesting
further results can be derived from this approach.

4 Iterative Tensor-Based PDE Denoising

Image enhancement methods based on partial differential equations (PDE) are
often considered to be too computationally expensive for practical applications.
The main bulk of computations is the iterative update scheme and the calculation
of the post-convolution of the structure tensor components [6].

It is in this application that the gradient energy tensor really excels over the
structure tensor. In this section we implement the proposed iterative denoising
scheme on the GPU. We show how to utilize the highly parallelizable nature
of iterative PDE-based denoising schemes and benefit from the locality of the
gradient energy tensor. The implementation is done using Nvidias CUDA pro-
gramming language with OpenGL support, the GPU we use is the GTX 670

24 F. Astrom and M. Felsberg

with 4 Gb on card memory and the workstation is equipped with an Intel Xeon
CPU at 3 GHz and 8 Gb of installed RAM memory. Even though the hardware
specification is in the middle segment of the consumer-market we show that
by using the gradient energy tensor, the proposed iterative tensor-based PDE
denoising scheme can reach near maximum PSNR at 60 frames per second (fps)
for a three channel colour 1280 x 720 pixel image (HD720p). This is a significant
improvement over the structure tensor running at 30 fps while achieving similar
peak signal to noise ration (PSNR) and structural similarity [11] (SSIM) values.

4.1 The Proposed Filtering Scheme

The standard formulation of tensor-based anisotropic diffusion [6] using the
structure tensor is given in the PDE below with Neumann boundary condition

u—u® — B div(D(Vu)Vu) =0 in 2 (13)

n - Vu =0 on 912

where (3 is a stepsize parameter which controls the smoothness of the solution u
that minmizes the PDE. In (13), D(Vu) is the diffusion tensor computed as

D(T(Vu)) = vo'g(p1) + ww'g(pa) (14)

where v, w and p; 2 are the eigenvectors and eigenvalues of the structure tensor
T in (1). g is the diffusivity function and here we set it as g(s) = exp(—s/k)
where k is the edge-stopping parameter determining the adaptivity to the image
structure. Instead of using the diffusion tensor in the PDE (13) we propose to
use the gradient energy tensor with positive eigenvalues, GETY in (3), as the
tensor controlling the orientation estimate of the image structures, i.e. we define
the following PDE

{u —u® — B div (D (Vu)Vu) = 0 in 2 (15)

n-Vu=0on0"

The computation of the eigenvalues are done according (9), i.e.

9(A1) — g(A2)

DY (GET* (Vu)) = < -

) (Gr'E‘T+ — I)\Q) + Ig(/\g) (16)

where \j o are the eigenvalues of GET™ computed according to (8) where we
set S = GET™. In practice we compute (14) using (16) with S =T.

In order to solve the PDEs (13) and (15), we use a forward Euler itera-
tive scheme with finite differences to approximate the image derivatives. For a
discussion on the numerical stability of iterative scheme see [17].

4.2 Implementation Details

A GPU implementation is about how to efficiently utilize the parallelism of the
graphics card architecture. Using CUDA terminology, the parallelism is achieved

On the Choice of Tensor Estimation 25

Table 1. Algorithm pseudo-code for the main CUDA kernels. Left: Standard approach
to adaptive image diffusion using the structure tensor. Right: adaptive image diffusion
using the gradient energy tensor. The convolutions are separable Gaussian functions
of size 5 x 5 with standard deviation of 1.

Anisotropic Diffusion [6] Gradient Energy Diffusion

for i=0 to maxint do { for i=0 to maxint do {
convolution_rows () convolution_rows ()
convolution_cols () convolution_cols ()
compute_structure_tensor () compute_energy_tensor ()
filter_update () filter_update ()

} }
compute_structure_tensor () { compute_energy_tensor () {
gradient_products(a,b,c) a = (4)
convolution_rows (a) b = (5)
convolution_cols (a c = (6)
convolution_rows remapp-_eigenvalues(a,b,c)

}

convolution_rows
convolution_cols

(

(b
convolution_cols (b
(c
(¢
remapp_eigenvalues

)
)
)
)
)
(

a,b,c)

by dividing the image data into blocks, each block contains the threads that are
to be executed in parallel on a streaming multiprocessor. Today’s GPU archi-
tectures offer many memory types (global, texture, shared, local ...) and our
implementation is focused on utilizing the high-performance shared memory.
We achieve this by coalescing memory access when streaming data from global
memory to shared memory. We considered using texture memory due to its
automatic handling of Neumann boundary conditions and memory-access opti-
mization for localized reads, however texture memory is read-only and we require
dynamic updates of intermediate results. Also, shared memory is on-chip, and
therefore read-access requires less clock-cycles than the texture memory. These
differences in memory-latency have a significant impact on runtime performance,
for example in convolutions [18].

Since we are interested in processing images with three colour channels, we
simplify our implementation by defining a container describing the three colour
channels red, green and blue as well as the alpha channel (required for visu-
alization using OpenGL). The image data is read and written using 24-bits
but during the filter process we use single precision float. There are primarily
three steps involved in the iterative filtering scheme, pre-filtering for regular-
ization of the image derivatives, orientation estimation and filter update. The
steps are illustrated in Table 1 and highlights the primary difference between the
two implementations: the computation of the structure tensor requires three full
(separable) convolutions of the image data whereas the energy tensor does not

26 F. Astrom and M. Felsberg

(a) Convolution rows (b) Convolution columns (¢) Gradient energy tensor

Fig. 6. We use tiles of size 16 x 16 (blue regions) with padding of 2 pixels (red region) for
the convolution and computation of the gradient energy tensor. We use corresponding
tile layouts for computing the image gradient and filter update (Color figure online).

2560x1920

Fig. 7. Colour test images and the corresponding image sizes in pixels that are used
in the evaluation.

require any post-convolution of the tensor-components, which is key to the gain
in computation speed. Figure 6 shows the memory layout of the shared memory
that we use in the CUDA kernels shown in Table 1. We use tile sizes of 16 x 16 and
note that each entry in the tile consists of four entries i.e. red, green, blue and
alpha channels. This approach is convenient since it both simplifies the code
and facilitates efficient memory access. The padding of the tiles (the red region
in Fig.6) is done with two pixels in the case of the separable convolution since
we use a Gaussian filter of size 5 x 5 with standard deviation of 1 for smoothing
the image and tensor-components. The coefficients of the Gaussian filters is set
using constant memory. The shared memory associated with the gradient energy
tensor require a padding of 2 pixels in horizontal and vertical direction since the
support of the third order finite difference derivative is 5 pixels. Lastly, since
we only require first order diagonal derivatives, it is sufficient to read the clos-
est corner-pixel into the shared memory, further simplifying the global memory
access pattern.

In order to measure the resulting computation times, we are required to
compute the resulting execution speed of the filtering methods. We do this by
using the standard sdkStartTimer() and sdkStopTimer() available in CUDA.
We have chosen to include the OpenGL rendering in the timing of the filter
performance as shown in Table 2 since it more accurately reflects the expected
real-time capabilities of video denoising where each frame in a video sequence
would be visualized.

On the Choice of Tensor Estimation 27

Table 2. Main function of the tensor-based image denoising method. The timer values
reported in Sect. 4.3 are timed including the OpenGL rendering.

void display () {

sdkStartTimer(&timer);

unsigned int *xdResult;

// Initialize OpenGL for visualization

diffusionFilterRGBA (dResult, ...);

// Map dResult to OpenGL resources and draw image on display
sdkStopTimer(&timer);

4.3 Results

The focus of our evaluation is to show that the gradient energy tensor does
not compromise the denoising quality compared to the structure tensor while
achieving a faster runtime. Our measures include the peak signal to noise ratio
(PSNR) and the structure similarity index [10] (SSIM) for the image quality.
With regards to the total runtime (measured as shown in Table2) we report
achieved frames per seconds (fps) for each method. For each of the measures a
higher value is better than a lower value.

Figure 7 show the colour test image pippin_Florida0002.bmp from the McGill
colour image database [19] with the original resolution 2560 x 1920 pixels. The
image was downsampled (using bicubic interpolation) to 1920 x 1080 (HD1080)
and 1280 x 720 (HD720), two common image resolutions in high-definition (HD)
video. We corrupt each image with 20 standard deviations of normal distributed
noise. The filtering scheme is iterated 10 times with a fixed update step of size
0.20 (we refer to [17] for a discussion on convergence results for iterated solutions
of PDEs). The diffusivity constant (see g in (16)) is set to k/10 where we compute
k= (e! —1)/(e* — 2)o? [20], this yields k/10 = 0.0015 when o = 20/255 and
each colour channel is quantized using an 8-bit representation.

Figure 8 show the obtained PSNR (a) and SSIM (b) values compared to the
iteration number, as expected the two methods are comparable for the obtained
error measures. The best error values are in agreement between the two methods
but obtained at different iterations numbers, it is not a discrepancy in method
performance but an issue of parameter tuning. In Fig. 8 (c) and (d) we show the
fps that we obtain for each iteration. After four iterations, in (c), the filter using
the gradient energy tensor is stable at 60 fps whereas the standard diffusion
scheme using the structure tensor has dropped to 30 fps for the smallest image
resolution. In (d) we show the tradeoff between PSNR and obtained fps for both
tensors: a higher fps result in a lower PSNR value. Note that the fps count is
independent of the image content. Future work will include a more comprehensive
study of the GET orientation estimation compared to the structure tensor for
other noise levels and image types than considered in this work.

28 F. Astrom and M. Felsberg

34

o
(% 30
a 29
28
27
26 1
25
Iteration Iteration
(a) (b)
« 1280x720
32 - X 1920x1080
O 2560x1290
31 b — Gradient Energy Tensor
— Structure Tensor
30
o 29
=z
(2]
o 28 +
27
26
H H H H H H T T ; 25 i i H H H i
1 2 3 4 5 6 7 8 9 10 10 20 30 40 50 60
Iteration FPS
(c) (d)

Fig. 8. Obtained PSNR (a), SSIM (b) and fps (c) for the considered image sizes.
The PSNR and SSIM values are similar for the two tensors but the obtained fps is
significantly higher for the gradient energy tensor.

In Fig.9 we illustrate an example of the final denoised result, the zoomed
images were cropped from the 2560 x 1920 resolution image and the original
image was corrupted by 20 standard deviations of normal distributed additive
noise. The images illustrate the denoised result after 10 iterations and note that
the gradient energy tensor fps-count is 25 % higher than the structure tensor but
with indiscernible image quality and PSNR (cmp. Fig.8 (a) and (c)). In Table 3
we give the ratio of the gradient energy tensor error measures over the structure
tensor error measures averaged over the iterations, i.e. if the ratio is identical
to 1.0 there is no difference in method performance, if the value is larger than
1.0 then the ratio indicate that the gradient energy tensor performs better.
The SSIM value difference is less than 10~2 whereas the PSNR shows a 3.2 %
difference in the favour of the structure tensor, however considering the final fps-
count the gradient energy tensor is up to 40 % more computationally efficient
for the largest image size.

On the Choice of Tensor Estimation 29

Original Noisy Structure tensor Energy Tensor

Fig. 9. Two patches from the 2560 x 1920 resolution image and the corresponding
denoised images at iteration 10. The applied noise was 20 standard deviation of nor-
mal distributed additive noise. Note that the difference in visual appearance is not
discernible but the fps count is improved by 25 % with the gradient energy tensor.

Table 3. Ratios are computed as the measure obtained by the gradient energy tensor
divided by the measure obtained by the structure tensor and averaged over iterations.
A ratio of 1.0 show that the performance is identical. The SSIM and PSNR ratios are
nearly identical but at up to 40 % higher fps values in the largest image resolution, the
PSNR show a marginal loss in image quality for the gradient energy tensor.

Ratio PSNR | SSIM | fps

1280 x 720 |0.991 | 0.995 | 1.35
1920 x 1080 | 0.982 |0.997 | 1.27
2560 x 1920 0.968 |0.999 | 1.40

5 Conclusion

In this work we have presented the gradient energy tensor as an alternative
to the structure tensor for local orientation. We have considered three appli-
cations: corner detection, optical flow and adaptive image enhancement. Due
to the absence of a post-convolution of the gradient energy tensor components
the tensor is highly suitable for efficient implementation on the GPU, and we
showed that the tensor yield significant improvement in obtained frames per sec-
ond compared to the structure tensor without compromising PSNR and SSIM
error values.

Acknowledgement. This research has received funding from the Swedish Research
Council through grants for the projects Visualization-adaptive Iterative Denoising of
Images (VIDI) and Extended Target Tracking (ETT), within the Linnaeus environment
CADICS and the excellence network ELLIIT.

30 F. Astrém and M. Felsberg
References
1. Foérstner, W., Giilch, E.: A fast operator for detection and precise location of

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

distinct points, corners and centres of circular features. In: ISPRS Intercommission,
Workshop, Interlaken, pp. 149-155 (1987)

Bigun, J., Granlund, G.H.: Optimal orientation detection of linear symmetry. In:
Proceedings of the IEEE First ICCV, pp. 433-438 (1987)

Harris, C., Stephens, M.: A combined corner and edge detector. In: Proceedings of
Fourth Alvey Vision Conference, pp. 147-151 (1988)

Shi, J., Tomasi, C.: Good features to track. In: CVPR 1994, pp. 593-600 (1994)
Lucas, B.D., Kanade, T.: An iterative image registration technique with an appli-
cation to stereo vision. In: Proceedings of the 7th International Joint Conference
on Artificial Intelligence - Volume 2. ILJCAI 1981, pp. 674-679. Morgan Kaufmann
Publishers Inc., San Francisco (1981)

Weickert, J.: Anisotropic Diffusion in Image Processing. Teubner-Verlag, Stuttgart
(1998)

Felsberg, M., Kothe, U.: GET: the connection between monogenic scale-space and
gaussian derivatives. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds.) Scale-Space
2005. LNCS, vol. 3459, pp. 192-203. Springer, Heidelberg (2005)

Lindeberg, T.: Scale-Space Theory in Computer Vision. Kluwer international series
in engineering and computer science: Robotics: Vision, manipulation and sensors.
Springer, New York (1993)

Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J., Szeliski, R.: A Database
and Evaluation Methodology for Optical Flow. Int. J. Comput. Vis. 92, 1-31 (2011)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment:
from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600
612 (2004)

Bovik, A.C., Maragos, P.: Conditions for positivity of an energy operator. IEEE
Trans. Signal Process. 42, 469-471 (1994)

Granlund, G.H., Knutsson, H.: Signal processing for computer vision. Kluwer,
New York (1995)

Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE
Trans.Pattern Anal. Mach. Intell. 27, 1615-1630 (2005)

Mikolajczyk, K.: Implementation (2014). http://www.robots.ox.ac.uk/~vegg/
research/affine

Tomasi, C., Kanade., T.: Detection and Tracking of Point Features. Technical
report, Carnegie Mellon University Technical Report CMU-CS-91-132 (1991)
Sun, D., Roth, S., Black, M.J.: Secrets of optical flow estimation and their princi-
ples. In: CVPR2010, pp. 2432-2439 (2010)

Scherzer, O., Weickert, J.: Relations Between Regularization and Diffusion Filter-
ing. J. Math. Imag. Vis. 12, 43-63 (2000)

Podlozhnyuk, V.: Image convolution with CUDA, NVIDIA Corporation white
paper, v1.0 (2007)

Olmos, A., Kingdom, F.A.A.: A biologically inspired algorithm for the recovery of
shading and reflectance images. Percept. 33, 1463-1473 (2004)

Felsberg, M.: Autocorrelation-Driven Diffusion Filtering. IEEE Trans. Image
Process. 20, 1797-1806 (2011)

http://www.robots.ox.ac.uk/~vgg/research/affine
http://www.robots.ox.ac.uk/~vgg/research/affine

2 Springer
http://www.springer.com/978-3-319-16630-8

Computer Vision - ACCY 2014 Workshops

Singapore, Singapore, November 1-2, 2014, Revised
Selected Papers, Part Il

lawahar, CV.; Shan, 5. (Eds.)

2015, XV, 718 p. 419 illus., Softcover

ISBEN: 978-3-319-16630-8

	On the Choice of Tensor Estimation for Corner Detection, Optical Flow and Denoising
	1 Introduction
	1.1 Contributions

	2 Estimating Directional Information
	2.1 Structure Tensor
	2.2 Gradient Energy Tensor
	2.3 Eigendecomposition of 2 2 Tensors

	3 GET Corner Detection and Optical Flow
	3.1 Corner Detection
	3.2 Optical Flow

	4 Iterative Tensor-Based PDE Denoising
	4.1 The Proposed Filtering Scheme
	4.2 Implementation Details
	4.3 Results

	5 Conclusion
	References

