
Chapter 1
Preliminary Facts

Abstract In this chapter we present some definitions and statements from the points
of view of both physicists and mathematicians to be used in the next chapters. We
mean especially the definitions of the lattices, periodic functions, Brillouin zones,
Schrödinger operator, Bloch eigenvalues, Bloch functions, diffraction planes, band
structures and Fermi surfaces. Moreover, we try to explain the transition between
these notions due to the understanding of the physicists andmathematicians. Besides,
wegive a brief discussion ofwhat is known from the literature andwhat is presented in
the book about the perturbation theory of the multidimensional Schrödinger operator
with a periodic potential. For this aimwe consider the largeBloch eigenvalues and the
correspondingBloch functions of the one-dimensional periodic Schrödinger operator
by the approachofChap.2, since it helps to compare thewell-knownone-dimensional
case with the multidimensional case and to see the complexity of the results obtained
in this book.

1.1 Lattices, Brillouin Zones, and Periodic Functions in R
d

The structure of the crystals can be described in termsof the lattice (called in geometry
and crystallography, a Bravais lattice), with a group of atoms attached to every lattice
point. The Bravais lattice in

R
d =: {(x1,x2, . . . , xd) : x1 ∈ R, x2 ∈ R, . . . , xd ∈ R

}
,

where R is the set of all real numbers, is defined by d linearly independent vectors
ω1,ω2, . . . ,ωd . In the case d = 3 these vectors are known as fundamental trans-
lations vectors such that every atomic arrangement looks the same in every respect
when viewed from the point r as when viewed from the point

r +
3∑

k=1

nkωk,
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2 1 Preliminary Facts

where n1, n2 and n3 are integers. The lattice � generated by the vectors ω1,

ω2, . . . ,ωd is the set of all linear combinations of these vectors with the integer
coefficients:

� =
{

ω =
d∑

k=1

nkωk : n1 ∈ Z, n2 ∈ Z, . . . , nd ∈ Z

}

, (1.1.1)

whereZ is the set of all integers. The vectorsω1,ω2, . . . ,ωd used for the generation of
� are known as the primitive vectors or basis vectors for the lattice. The parallelotope
(d-dimensional parallelogram)

F =
{

x =
d∑

k=1

ykωk : y1 ∈ [0, 1), y2 ∈ [0, 1), . . . , yd ∈ [0, 1)
}

(1.1.2)

is called the fundamental parallelotope or the primitive unit cell of the lattice. In
the cases d = 2 and 3 the parallelotope F is the parallelogram and parallelepiped,
respectively. It has the origin in R

d as one corner and the vectors ω1,ω2, . . . ,ωd

form the sides which meet at that corner. Thus a crystal is characterized by its
regular periodically repeated structure. The smallest unit of this structure is called
the primitive unit cell. The primitive cells (parallelotopes) are joined together filling
the entire volume and giving rise to the periodicity of the crystal lattice.

The measure μ(F) (generalized volume) of the parallelotope F is equal to the
absolute value of the determinant of the d × d matrix (ωi, j ) created from the d row
vectors

ω1 = (ω1,1,ω1,2, . . . ,ω1,d ), ω2 = (ω2,1,ω2,2, . . . ,ω2,d ), . . . , ωd = (ωd,1,ωd,2, . . . ,ωd,d ).

Everywhere, for simplicity of notation and without loss of generality we assume that
the generalized volume (measure μ(F)) of the parallelotope F is equal to 1. Thus

μ(F) = ∣
∣det(ωi, j )

∣
∣ = 1. (1.1.3)

There are infinitely many choices for the basis vectors and hence for the unit cells.
In other words, the set of generators for a lattice is not uniquely determined. It is
well-known that the vectors b1, b2, . . . , bd are the other generators of � if and only
if there is a d × d matrix A = (ai, j ) with integer matrix elements and | det A| = 1
such that

bi =
d∑

j=1

ai, jω j

for i = 1, 2, . . . , d. Therefore, condition (1.1.3) is not a restriction for the choices
for the basis vectors of the lattice �.
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Note that when F is translated through all the vectors in the lattice � fills all of
the space Rd without overlapping. Therefore the fundamental domain (unit cell) F
of the lattice � can be identified with the factor space (quotient group) Rd/� which
is the set of equivalent classes, where the equivalence of two elements x and y of
R

d is defined as follows: we say that x and y are equivalent if x − y ∈ �. Thus
any measurable set M that contains, for each x ∈ R

d , exactly one representative of
the set

x + � =: {x + y : y ∈ �}

is called a unit cell of the lattice �. It is also clear that Rd/� is a d-dimensional
torus (direct product of d circles).

We say that a function f : Rd → C is periodic with respect to the lattice � if

f (x + ω) = f (x)

for all ω ∈ �, where x = (x1,x2, . . . , xd) ∈ R
d and C is the set of all complex

numbers. Note that the periodic function f can be regarded in this case as a function
on the torus Rd/�. It is clear that the wave function ei〈γ,x〉 is periodic with respect
to the lattice � if and only if

〈γ,ω〉 ∈ 2πZ, (1.1.4)

for all ω ∈ �, where γ ∈ R
d and 〈·, ·〉 is the inner product in R

d . The set of all
vectors γ ∈ R

d satisfying (1.1.4), that is,

� =: {γ ∈ R
d : 〈γ,ω〉 ∈ 2πZ,∀ω ∈ �} (1.1.5)

is the lattice dual to � and is called the reciprocal lattice. The basis vectors of the
reciprocal lattice � are the vectors γ1, γ2, . . . , γd satisfying

〈γi ,ωi 〉 = 2π & 〈γi ,ω j 〉 = 0 (1.1.6)

for i, j = 1, 2, . . . , d and j �= i. Thus the fundamental parallelotope of the lattice �

is

F∗ =
{

ω =
d∑

k=1

akγk : a1 ∈ [0, 1), a2 ∈ [0, 1), . . . , ad ∈ [0, 1)
}

. (1.1.7)

As we noted above, F∗ can be identified with the fundamental domain Rd/� of the
lattice �.

The other and famous fundamental domains (unit cells) of the reciprocal lattice
� are the Brillouin zones. The first Brillouin zone (called Brillouin zone) of � is
defined to be the set of points x ∈ R

d in reciprocal space which are nearer (not
necessarily unique) to the origin than any point x + γ with γ ∈ � and γ �= 0.
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The nth Brillouin zone is the set of all points x in the reciprocal space which have
the origin as their (not necessarily unique) nth nearest point of the set

x + � =
{

y ∈ R
d : y = x + γ, γ ∈ �

}
. (1.1.8)

Note that any interior point of the nth Brillouin zone is the unique nth nearest point.
If the several points of (1.1.8) are the nth nearest points (i.e. are equidistant from the
origin) then these points belong to the boundaries of the Brillouin zones and only
one of them belongs to the nth Brillouin zone.

It readily follows from this definition the following properties of the Brillouin
zone:

(a) All zones have equal volumes,
(b) Each zone can be translated into the first zone so as to fill it exactly by

translating different pieces of the zone by appropriate reciprocal lattice-vectors.
(c) For arbitrary fixed n the nth Brillouin zone contains unique element from any

equivalent classes defined as follows: x and y are equivalent if x − y ∈ �. Therefore
the Brillouin zones can be identified with the fundamental domain R

d/� of the
lattice �.

The geometrical description of the Brillouin zones will be given in Sect. 1.3.
Now let us give the brief description of the problem discussed above. The recip-

rocal lattice vectors are the special wave vectors γ for which the free electron wave
function ei〈γ,x〉 is periodic with respect to the direct lattice. The wave vectors having
this property will be said to belong to the reciprocal lattice. The primitive vectors
γ1, γ2, . . . , γd of the reciprocal lattice can be generated from the primitive vectors
ω1,ω2, . . . ,ωd of the direct lattice by the equalities (1.1.6). A crystal is made up of
a periodic arrangement of one or more atoms (the basis) repeated at each Bravais
lattice point. Consequently, the crystal looks the same when viewed from any equiv-
alent lattice point, namely those separated by the translation of one unit cell. Every
periodic function is associated with a Bravais lattice. You can think of the function
as being defined in a primitive unit cell and then repeating the primitive unit cell at
every point of the Bravais lattice.

As we noted above the wave function ei〈γ,x〉 is periodic, with respect to the lattice
�, if and only if γ ∈ �. One can easily verify that the system

{
ei〈γ,x〉 : γ ∈ �

}
(1.1.9)

is an orthonormal basis in the Hilbert space L2(F) of square integrable functions
with the inner product

( f, g) =
∫

F
f (x)g(x)dx .

Indeed, by (1.1.3) we have

∥
∥
∥ei〈γ,x〉

∥
∥
∥
2 =

∫

F

∣
∣
∣ei〈γ,x〉

∣
∣
∣
2

dx =
∫

F
1dx = μ(F) = 1,
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where ‖·‖ is the norm in the space L2(F) defined by

‖ f ‖ =
(∫

F
| f (x)|2 dx

)1/2

.

The orthogonality of the system (1.1.9) means that

(
ei〈γ,x〉, ei 〈̃γ,x〉) =

∫

F
ei〈δ,x〉dx = 0

for all γ̃ �= γ, where δ = γ − γ̃ ∈ �. The last integral can be calculated by using the
substitution

(x1, x2, . . . , xd) ↔ (y1, y2, . . . , yd),

where y1, y2, . . . , yd equal to the coefficients of the expansion x in the basis
ω1,ω2, . . . ,ωd [see (1.1.2)] and by (1.1.2) this substitution transforms the parallelo-
tope F to the cube [0, 1)d . Moreover the Jacobian J of this substitution is nonzero
since the vectors ω1,ω2, . . . ,ωd are linearly independent. Therefore using

x =
d∑

k=1

ykωk (1.1.10)

and taking into account that δ ∈ �\ {0} , that is,

δ =
d∑

k=1

nkγk

where n1, n2, . . . , nd are integers and at least one of them is not zero we have

∫

F
ei〈δ,x〉dx = |J |

1∫

0

1∫

0

. . .

1∫

0

ei2πn1y1ei2πn2 y2 . . .ei2πnd yd dx1dx2. . .dxd = 0.

Since the system

{
ei2πn1y1ei2πn2 y2 . . .ei2πnd yd : n1 ∈ Z, n2 ∈ Z, . . . , nd ∈ Z

}

is complete in L2
([0, 1)d

)
, the above substitution shows that (1.1.9) is complete in

the Hilbert space L2(F) and hence is an orthonormal basis. Therefore every function
q ∈ L2(F) has the decomposition

q(x) =
∑

γ∈�

qγei〈γ,x〉, (1.1.11)
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where

qγ =
(

q, ei〈γ,x〉) =
∫

F
q(x)e−i〈γ,x〉dx

for γ ∈ � are the Fourier coefficients of q with respect to the orthonormal system
(1.1.9) and the Fourier series (1.1.11) converges to q in the norm of L2(F). If

∑

γ∈�

|qγ | < ∞,

then the series (1.1.11) converges uniformly to the periodic function q.
The smoothness of q depends on the Fourier coefficients. For simplicity, let us

first consider the case d = 1. Let � = Z. Then � = 2πZ and the system

{ei2πnx : n ∈ Z} (1.1.12)

is the orthonormal basis in L2[0, 1]. Using the integrations by part, one can readily
see that if the sth derivative of the periodic functions q of period 1 belongs to L2[0, 1]
then the Fourier coefficient q(s)

n of q(s) with respect to (1.1.12) satisfies the equality

q(s)
n =: (2πn)−sqn

where

qn =
∫ 1

0
q(x)e−i2πnx dx

is the Fourier coefficient of q. Therefore the periodic function q belongs to the
Sobolev space

W s
2 [0, 1] =:

{
f : f (s) ∈ L2[0, 1]

}

if and only if ∑

n∈Z
|2πn|2s |qn|2 < ∞

Similarly for arbitrary dimension d the relation q ∈ W s
2 (F) for the periodic, with

respect to the lattice �, function q means that

∑

γ∈�

|qγ |2|γ|2s < ∞
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1.2 Schrödinger Operator and Bloch Functions

The energy operator is often referred to as the Hamiltonian and it is also called (in
nonrelativistic quantummechanics) the Schrödinger operator. The Schrödinger oper-
ator with a periodic potential arises in the quantum theory of crystals and describes
the motion of a particle in the crystal. The ions forming a crystal lattice � actually
generate a periodic field and one can examine the motion of a electron in this field.
Thus if V (x) is the potential seen an electron at x then V (x + ω) = V (x) for all
ω ∈ �. The wave function u(x) of the electron placed in the periodic potential V
must satisfy the Schrödinger equation

− h2

2m
�u(x) + V (x)u(x) = Eu(x),

where

�u =
d∑

j=1

∂2u

∂x2j
,

h is Planck’s constant, m and E are respectively the mass of the electron and its
energy eigenvalue.

In the mathematical literature the Schrödinger equation is written in the form

−�u(x) + q(x)u(x) = �u(x), (1.2.1)

where

q(x) = 2m

h2
V (x),� = 2m

h2
E .

The Schrödinger operator L(q) with a real periodic, relative to a lattice �, potential
q is defined in space L2(R

d) as follows, where L2(R
d) is the Hilbert space of square

integrable functions with the inner product

( f, g)Rd =
∫

Rd
f (x)g(x)dx .

Let D be the set of all functions u ∈ L2(R
d) such that

(i) u is compactly supported, that is, the set

{
x ∈ R

d : f (x) �= 0
}

is a bounded closed subset of Rd ,

(ii)
∂u

∂x j
exists and is an absolutely continuous function of x j for j = 1, 2, . . . , d,

(iii) −�u + qu ∈ L2(R
d).
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Let L0(q) be an operator defined in D by

L0(q)u = −�u + qu.

One can readily verify that L0(q) is a symmetric operator, that is,

(
L0(q) f, g

)

Rd
=
(

f, L0(q)g
)

Rd

for all f, g ∈ D. The Schrödinger operator (Hamiltonian) L(q) is the self-adjoint
extension of L0(q). The existence and uniqueness of the extension are well-known
(see [BeShu]).

Now we consider the connection of the Hamiltonian L(q) with the Bloch Func-
tions. Recall that Bloch wave or Bloch state, named after Felix Bloch, is the wave
function of a particle (usually, an electron) placed in a periodic potential q. Bloch’s
theorem states that for a particle moving in the periodic potential, the wave functions
�(x) are of the form

�(x) = ei〈t,x〉 p(x), (1.2.2)

where p(x) is a periodic function with the same periodicity that the potential q
has and t ∈ R

d is a crystal momentum (quasimomentum). The exact form of p(x)

depends on the potential associated with atoms (ions) that form the solid. The motion
of an electron in the free space, where the potential q is zero everywhere, is described
by the simplest form of the Schrödinger equation

−�u(x) = λu(x)

and the wave function ei〈t,x〉 is the solution of this equation, since

−�ei〈t,x〉 = |t |2 ei〈t,x〉.

Thus by Bloch’s theorem the wave function �(x) of the electron in the periodic
potential is the product of the wave function ei〈t,x〉 of the electron in the free space
and the periodic function p(x). The wave function expressed by Eq. (1.2.2) is called
the Bloch wave or Bloch state.

The Bloch’s theorem is very important, since by applying this theorem, the wave
function in a macroscopic crystal containing as many atoms as the Avogadro number
can be determined by solving the Schrödinger equation into which information from
just one unit cell is inserted.

One of the often used (in mathematics) forms of Bloch’s theorem is the following
(see [Eas]):

Theorem (Bloch) Let S consist of the real numbers � for which theEq. (1.2.1) has
a non-trivial bounded solution in R

d . If � ∈ S then (1.2.1) has a solution �t (x,�)

of the form
�t (x,�) = ei〈t,x〉 p(x), (1.2.3)
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where p is a periodic function having the same periodicity that the potential q has,
the vector t ∈ R

d in (1.2.3) is called a crystal momentum (quasimomentum) and S
is said to be stability set of the Eq. (1.2.1)

The solution of (1.2.1) of the form (1.2.3) is called the Bloch solution of (1.2.1)
(see [Ku]). It readily follows from (1.2.3) that if ω ∈ �,where� is the period lattice
of the potential q and hence of p, then

�t (x + ω,�) = ei〈t,x+ω〉 p(x + ω) = ei〈t,x〉ei〈t,ω〉 p(x) = ei〈t,ω〉�t (x,�)

Therefore the Bloch solution �t (x,�) of (1.2.1) can be considered as an eigenfunc-
tion of the eigenvalue problem (1.2.1) and

u(x + ω) = ei〈t,ω〉u(x) (1.2.4)

for all ω ∈ �. Conversely, if�(x,�) is an eigenfunction of this eigenvalue problem
then by (1.2.4) we have

|�(x + ω,�)| = |�(x,�)|

for all ω ∈ �. It implies that �(x,�) is bounded in Rd and by Bloch’s theorem has
the form (1.2.3), that is, �(x,�) is the Bloch solution of (1.2.1). Thus �(x,�) is a
Bloch solution of (1.2.1) if and only if it is an eigenfunction of the eigenvalue problem
(1.2.1) and (1.2.4) for somevalues of the quasimomentum t ∈ R

d . The corresponding
eigenvalue �(t) is called the Bloch eigenvalue for the crystal momentum t. In other
words, the Bloch eigenvalue �(t) and Bloch function �t (x,�) for fixed crystal
momentum t are the eigenvalue and eigenfunction of −� + q acting on the space

{
u ∈ H2

loc(R
d) : u(x + ω) = ei〈t,ω〉u(x),∀ω ∈ �

}
,

where H2
loc(R

d) is the space of locally square integrable functions u such that ∂αu,

for |α| ≤ 2, is also locally square integrable.
In the language of the operator theory the Bloch eigenvalue �(t) and Bloch

function�t (x,�) for fixed crystal momentum t are the eigenvalue and eigenfunction
of the differential operator Lt (q) generated in L2(F) by the differential expression

−�u(x) + q(x)u(x) (1.2.5)

and the boundary conditions (1.2.4), where in the writing the boundary conditions
in the form (1.2.4) we take it that the eigenfunction u is extended to the whole Rd

as continuously differentiable functions. More precisely, the operator Lt (q) can be
defined in L2(F) as the differential operator generated by (1.2.5) and the boundary
conditions

u(x + ω j ) = ei〈t,ω j 〉u(x),uy j (x + ω j ) = ei〈t,ω j 〉uy j (x) (1.2.6)
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for x ∈ F( j) and j = 1, 2, . . . , d,where F is the closure of the parallelotope (1.1.2),
that is,

F =:
{

x =
d∑

k=1

ykωk : y1 ∈ [0, 1], y2 ∈ [0, 1], . . . , yd ∈ [0, 1]
}

(1.2.7)

is the closed parallelotope,

F( j) =:
⎧
⎨

⎩
x =

∑

k∈{1,2,...,d}\{ j}
ykωk : y1 ∈ [0, 1], y2 ∈ [0, 1], . . . , yd ∈ [0, 1]

⎫
⎬

⎭

(1.2.8)

is the face of the boundary ∂F of the parallelotope F generated by
ω1,ω2, . . . ,ω j−1,ω j+1,ω j+2, . . . ,ωd and uy j =: ∂u

∂y j
is the derivative of u with

respect to the variable y j defined by (1.1.10) [see also (1.2.7)].
Note that the boundary conditions (1.2.6) mean that the values of u and uy j on

the face ω j + F( j) of ∂F are equal to ei〈t,ω j 〉 times of their values on opposite face
F( j). The boundary conditions (1.2.6) are equivalent to the conditions (1.2.4) if, as
we noted above, in the writing the boundary conditions in the form (1.2.4) we take it
that the eigenfunction u is extended to the whole Rd as continuously differentiable
functions. Therefore in the next chapters for simplicity we say that the operator Lt (q)

is generated in L2(F) by the differential expression (1.2.5) and boundary conditions
(1.2.4). Thus the operator Lt (q) is defined as follows. Domain of definition D(Lt (q))

of Lt (q) is the set of u ∈ L2(F) such that:

(a)
∂u

∂x j
exists and is an absolutely continuous function of x j for j = 1, 2, . . . , d,

(b) −�u + qu ∈ L2(F),

(c) u satisfies the boundary conditions (1.2.6).
For u ∈ D(Lt (q)) the operator Lt (q) is defined by

Lt (q)u = −�u + qu

It is well-known the following statements about the spectral properties of Lt (q)

and L(q):
Theorem (On the spectra of the operators Lt (q) and L(q)).
(a) The spectrum σ(Lt (q)) of the operatorLt (q) is discrete and consists of the

eigenvalues
�1(t) ≤ �2(t) ≤ · · · (1.2.9)

such that � j (t) → ∞ as j → ∞ which are the Bloch eigenvalues with the fixed
quasimomentum t . The corresponding normalized eigenfunctions (Bloch functions)
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�1,t (x),�2,t (x), . . .

form an orthonormal basis in L2(F).

(b) The function �n is continuous with respect to t and its range

δn =: {�n(t) : t ∈ F∗} ,

where F∗ is the fundamental parallelotope of the reciprocal lattice �, is a closed
interval of R .

(c) The operator L(q) has no eigenvalue and has only the continuous spectrum.
The spectrum σ(L(q)) of the operator L(q), the stability set S defined in the above
formulation of Bloch’s theorem, and the union of the spectra of the operators Lt (q)

for t ∈ F∗ are the same, that is,

σ(L(q)) = S =
⋃

t∈F∗
σ(Lt (q)) =

⋃

t∈F∗

( ∞⋃

n=1

{�n(t)}
)

=
∞⋃

n=1

δn . (1.2.10)

Thusσ(L(q)) consists of the intervals δn for n = 1, 2, . . . , that are called the band
of the spectrum of L(q). The spaces between neighboring bands are called the band
gaps or the gaps in the spectrum of L(q). In the physical literature these bands and
gaps are named as energy bands (allowed regions of energy) and forbidden regions
of energy respectively

Note that the rigorous proof of this theoremcan be found in [Eas] (see also [BeShu,
ReSi]). First the physicists observed that the spectrum of L(q) has a band structure
[SomBe, Ki, Mad]. The eigenfunctions�1,t (x), �1,t (x), . . . , of Lt (q) for all values
of the quasimomentum t are the Bloch waves [Bl]. For the multidimentional case
Gelfand proved Parseval’s relation for the Bloch waves in L2(R

d) [Gel]. Oder and
Keller [OdKe] proved that the spectrum of L(q) is the union of all Bloch eigenvalues
�1(t),�2(t), . . . , for all t ∈ F�. Thomas [Th] proved that the spectrum of L(q)

is absolutely continuous. Wilson [Wi] studied the analytic properties of �n(t) as a
function of the quasimomentum t.

Now let us discuss this theorem from the point of view of the mathematicians
and physicists. The statement (a) follows from the fact that Lt (q) is a self-adjoint
operator defined in a bounded region of Rd .

Now we discuss (b). The function �n is continuous with respect to t due to the
following. Let Pn(x) be a function defined by

Pn(x) = e−i〈t,x〉�n,t (x), (1.2.11)

where �n,t (x) is the eigenfunction of Lt (q) corresponding to the eigenvalue �n(t),
that is,

−��n,t (x) + q(x)�n,t (x) = �n(t)�n,t (x), (1.2.12)

�n,t (x + ω) = ei〈t,ω〉�n,t (x),∀ω ∈ �. (1.2.13)
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Using (1.2.11), (1.2.12), and (1.2.13) one can easily verify that Pn(x) satisfies the
following equalities

−
Pn(x) − 〈2i t,∇〉 Pn(x) + 〈t, t〉 Pn(x) + q(x)Pn(x) = �n(t)Pn(x)

and
Pn(x + ω) = Pn(x) (1.2.14)

for all ω ∈ �. Hence �n(t) is the eigenvalue of the operator generated by the
operation

−
 − 〈2i t,∇〉 + 〈t, t〉 + q (1.2.15)

and the periodic boundary conditions. Since the periodic boundary conditions do not
depend on t and the operation (1.2.15) continuously depends on t the eigenvalue
�n(t) also continuously depends on t. Therefore its range

δn =: {�n(t) : t ∈ F∗} , (1.2.16)

where F∗ is the fundamental parallelotope of the reciprocal lattice �, is an interval
of R. The closedness of δn will be discussed later.

Now let us discuss (c). The operator L(q) is associated with the whole space Rd

and by the Floquet theory (see [Ku]) the Schrö dinger equation (1.2.1) has no solution
belonging to L2(R

d). Therefore L(q) has no eigenvalue. In fact, the numbers �n(t)
are not the eigenvalues of the operator L(q) since the corresponding Bloch solutions
�n,t (x) do not belong to L2(R

d) and by definition,� is an eigenvalue of the operator
L(q) if there exists

� ∈ D(L(q)) ⊂ L2(R
d)

such that
L(q)� = ��. (1.2.17)

Therefore Bloch eigenvalues are called the generalized eigenvalues of the operator
L(q). However, in some literatures �n(t) is named as an eigenvalue of L(q); that is
natural, say, in the following sense. Instead of the operator L(q)) in whole space Rd

one can consider an operator L(q, n) in the very large parallelotope

Fn =
{

x =
d∑

k=1

ykωk : y1 ∈ [−n1, n1], y2 ∈ [−n2, n2], . . . , yd ∈ [−nd , nd ]
}

,

(1.2.18)

with the periodic boundary conditions, where n = (n1, n2, . . . , nd) and n1,

n2, . . . , nd are large positive integers. Due to the fact that Rd is a limit of Fn as
n j → ∞ for j = 1, 2, . . . , d, the eigenvalues of the operator L(q, n) or the limit
points of its eigenvalues can be named (in some sense) the eigenvalues of L(q).
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Moreover using this argument, it was proved that (see [Eas]) the set of limit points,
of the eigenvalues of L(q, n) as n j → ∞ for j = 1, 2, . . . , d, coincides with
σ(L(q)). On the other hand, using another argument one can see that the set of
all eigenvalues of L(q, n) and their limit points as n j → ∞ for j = 1, 2, . . . , d,

coincide with the set of Bloch eigenvalues

{
�n(t) : t ∈ F�, n ∈ N

}
.

These arguments encourage to believe the validity of (1.2.10).
To be more precise let us define the operator L(q, n) precisely. Moreover con-

sideration the Schrödinger operator in the bounded and large parallelotope Fn is
interesting, since an electron in a metal must be confined in a bounded space. The
effect of a finite size of a system on the motion of an electron must be taken into
account. The electron wave function u(x) is assumed along the parallelotope Fn.

Since macroscopic crystal contains as many atoms as the Avogadro number it is
interesting to consider the large parallelotope Fn which means that n1, n2, . . . , nd

are large numbers. Let us impose the periodic boundary conditions

u(x + 2n jω j ) = u(x),uy j (x + 2n jω j ) = uy j (x) (1.2.19)

on this parallelotope for x ∈ Fn( j) and j = 1, 2, . . . , d, where Fn( j) is the face
of the boundary ∂Fn of the parallelotope Fn which is parallel to F( j) [see (1.2.8)]
and passes through the point −n jω j and the variable y j is defined by (1.1.10). Note
that the boundary conditions (1.2.19) means that the values of u and uy j on the face
Fn( j) of the parallelotope Fn are equal to their values on the opposite face.

Let L(q, n) be an operator generated in L2(Fn) by the differential expression
(1.2.5) and the boundary conditions (1.2.19). Since L(q, n) is associated with the
bounded domain Fn of Rd its spectrum is discrete and consists of the eigenvalues.
One can readily verify that the set of the eigenvalues of L(q, n) are the union of the
Bloch eigenvalues �n(t) for n ∈ N and t ∈ A(n), where

A(n) =
⎧
⎨

⎩
t =

d∑

j=1

k j

2n j
γ j : k j = 0, 1, . . . , 2n j ; j = 1, 3, . . . , d

⎫
⎬

⎭
. (1.2.20)

Indeed, if u(x) satisfies the first condition of (1.2.6) for t ∈ A(n), then applying it
2n j times and using (1.1.6) we obtain that

u(x + 2n jω j ) = exp

⎛

⎝
d∑

j=1

k j

2n j
γ j , 2n jω j

⎞

⎠u(x) = ei2πk j u(x) = u(x),

that is, the first condition of (1.2.19) holds. In the same way one can show that the
second condition of (1.2.6) implies the second condition of (1.2.19). The proof of
the converse statements are similar (see [Eas]). Thus we have
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σ(L(q, n)) =
⋃

t∈A(n)

σ(Lt (q)). (1.2.21)

Denote by � the union of the spectrum σ(L(q, n)) of the operators L(q, n) for
n ∈ N

d . It is clear that the closure� of� is the set of all limit points of the spectrum
σ(L(q, n)) as n j → ∞ for j = 1, 2, . . . , d. Since, as we noted above, the set of
these limit points is σ(L(q)), we have

� = σ(L(q)). (1.2.22)

On the other hand, taking into account that the set of all limit points of

{
k

2n
: k = 0, 1, . . . , 2n

}

as n → ∞ is [0, 1] and using the equalities (1.2.20) and (1.1.7) one can readily
see that the set of all limit points of A(n) as n j → ∞ for j = 1, 2, . . . , d is F∗.
Therefore (1.2.21) and the continuity of the function �n(t) on F∗ show that

� =
⋃

t∈F∗
σ(Lt (q)). (1.2.23)

Thus we tried to explain the reason of the well-known equalities

S =
⋃

t∈F∗
σ(Lt (q)) = � = σ(L(q)). (1.2.24)

Now let us discuss the well-known mathematical statements described above and
some properties of theBloch eigenvalues�n(t) and theBloch functions�n,t (x) from
the point in view of physicists. Considering �n(t) as an eigenvalue of the boundary
value problem (1.2.1) and (1.2.4) and taking into account that for any γ ∈ �, where
� is the reciprocal lattice, the equality

ei〈t+γ,ω〉 = ei〈t,ω〉 (1.2.25)

holds, we obtain
�n(t + γ) = �n(t) (1.2.26)

and
�n,t+γ(x) = �n,t (x) (1.2.27)

for all γ ∈ �.

By (1.2.26) for given n the energy eigenvalue�n(t) is periodic with periodicity of
a reciprocal lattice. The energies�n(t) associated with the index n vary continuously
with the wave vector t and form an energy band δn identified by the band index n.
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All distinct values of�n(t) occur for t-values within the fundamental domainRd/�

of the lattices �, say within the first Brillouin zone or the unit cell (fundamental
parallelotope F∗) of the reciprocal lattice. In (1.2.26) replacing γ by γ j for j =
1, 2, . . . , d and using (1.1.7) we see that �n(t) takes the same values in the opposite
faces of the closed parallelotope F∗. Therefore the bands δn for n = 1, 2, . . . , of
the spectrum of L(q) are closed intervals, since they are the images of the closed
parallelotope F∗ under the continuous function �n(t). These intervals are allowed
zones of energy and the spaces between the neighboring intervals are forbidden
zones.

TheBlochwave energy eigenstate�n,t (x) iswrittenwith subscripts n and t , where
n is a discrete index, called the band index, which is present because there are many
different Bloch waves with the same quasimomentum t (each has a different periodic
component p). Within a band (i.e., for fixed n), �n,t (x) varies continuously with t ,
if its energy �n(t) is a simple eigenvalue. Since (1.2.27) holds for any reciprocal
lattice vector γ, all distinct Bloch waves occur for t-values within the first Brillouin
zone of the reciprocal lattice.

Suppose an electron is in a Bloch state�n,t (x). It follows from (1.2.11), (1.2.14),
and (1.2.25) that

�n,t (x) = ei〈t,x〉 Pn(x) = ei〈t+γ,x〉 Pn,γ(x), (1.2.28)

where Pn and Pn,γ for γ ∈ � are periodic with the same periodicity as the crystal
lattice �. Thus the actual quantum state of the electron is entirely determined by
�n,t (x), not t or Pn(x) directly, since t or Pn(x) are not unique. Indeed, if �n,t (x)

can be written as above using t , it can also be written using t + γ, where γ is any
reciprocal lattice vector [see (1.2.27)] and this replacement changes the periodic
component Pn(x) in (1.2.28).

Equality (1.2.27) shows that the wave vectors (quasimomenta) that differ by a
reciprocal lattice vector are equivalent, in the sense that they characterize the same
set of Bloch states. The first Brillouin zone is a restricted set of wave vectors with
the property that no two of them are equivalent, yet every possible wave vector is
equivalent to one (and only one) vector in the first Brillouin zone. Hence, if we restrict
to the first Brillouin zones, then every Bloch state has a unique t . Therefore the first
Brillouin zone is often used to depict all of the Bloch states without redundancy, for
example in a band structure, and it is used for the same reason in many calculations.

1.3 Band Structure, Fermi Surfaces and Perturbations

In Sect. 1.2 we discussed the description of the levels of an electron in a periodic
potential in terms of a family of continuous functions �n(t) called as the band
functions. For each n, the set of electronic levels specified by �n(t) is called an
energy band. The information contained in these functions for different n and t is
referred to as the band structure of the solid. The electron in the free space corresponds



16 1 Preliminary Facts

to the Schrödinger operator with zero potential. In the case q = 0 the eigenvalues
and eigenfunctions of Lt (q) are |γ + t |2 and ei〈γ+t,x〉 for γ ∈ �, since

−�ei〈γ+t,x〉 = |γ + t |2ei〈γ+t,x〉,

the function ei〈γ+t,x〉 satisfies (1.2.4) and the system

{
ei〈γ+t,x〉 : γ ∈ �

}

is an orthonormal basis in L2(F).

(i) Diffraction hyperplanes and Brillouin zones. The eigenvalue |γ + t |2 of
Lt (0) coincides with the other eigenvalue |γ + t + δ|2, that is, |γ + t |2 is a multiple
eigenvalue of Lt (0) if and only if γ + t belongs to the diffraction hyperplane

Dδ =: {x ∈ R
d : |x |2 = |x + δ|2} (1.3.1)

for some δ ∈ �.By (1.3.1), x ∈ Dδ if and only if the points x and x +δ have the same
distance from the origin. Therefore Dδ is the hyperplane normal to the reciprocal
lattice vector −δ at their midpoint. Moreover by the same reason Dδ is the boundary
of the Brillouin zones defined in Sect. 1.1. The diffraction hyperplanes play a crucial
role in the perturbation theory. Let us have a look the diffraction hyperplanes and
Brillouin zones in the following cases:

Case 1. d = 1. Consider the case of one-dimensional Schrödinger operator L(q)

with a periodic, with respect to the lattice Z, potential q. Then the reciprocal lattice
is 2πZ and the solution of the equation

|x |2 = |x + 2πn|2

in R is the point πn. Thus in this case the diffraction hyperplanes are the points
πn for n = ±1,±2, . . . that are the boundaries of the Brillouin zones. The first
Brillouin zone is (−π,π]. The second Brillouin zone is (π, 2π] ∪ (−2π,−π] and
the nth Brillouin zone is ((n − 1)π, nπ] ∪ (−nπ,−(n − 1)π].

Case 2. d = 2. Let the reciprocal lattice � be the two-dimensional lattice in R
2

and δ be a vector of the lattice. Then x ∈ Dδ if and only if x lies in the line normal to
the vector −δ at its midpoints. Thus in this case the diffraction hyperplanes are the
lines normal to the reciprocal lattice vectors at their midpoints and the nth Brillouin
zone is the union of the polygons bounded by the diffraction lines.

Similarly in the case d = 3 the diffraction hyperplanes are the planes normal
to the reciprocal lattice vectors at their midpoints. Therefore the reciprocal space
is partitioned into polyhedra bounded by the planes normal to the reciprocal lattice
vectors at their midpoints. These planes are boundaries of the Brillouin zone. Hence
the Brillouin zone appears in reciprocal space as an assembly of polyhedra bounded
by the planes normal to the reciprocal lattice vectors at their midpoints.
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(ii) Isoenergetic surface. The isoenergetic surface representing the momentum
distribution of the electrons is also constructed in reciprocal space. Note that the
isoenergetic surface Iq(λ) corresponding to the energy λ refers to a constant energy
surface and is defined by

Iq(λ) = {t ∈ F∗ : ∃N ,�N (t) = λ},

that is, Iq(λ) is the set of quasimomenta t in the primitive cell F∗ of the reciprocal
lattice for which there exists a Bloch eigenvalue �N (t) coinciding with the constant
energyλ,where the band function�N (t) is defined in Sect. 1.2. This surface for some
special and important (in physics) value of λ is called the Fermi surface. Since for
the free electrons (in the case q = 0) the band functions are |γ + t |2, the isoenergetic
surface I0(λ) in this case is

I0(λ) = {t ∈ F∗ : ∃γ ∈ �, |γ + t |2 = ρ2}

which is the translation of the sphere {x ∈ R
d : |x | = ρ}, where λ = ρ2, to the

primitive cell F∗ by the vectors of the reciprocal lattice �. In fact this sphere can be
illustrated as the isoenergetic surfaces of the free electron.

(iii) Perturbation of the free electron. Now we discuss how the free-electron is
perturbed by the periodic potential and then demonstrate it in the one-dimensional
case (see iv). The effect of the periodic potential on the electron can be treated
in the reciprocal space in terms of the interaction of the isoenergetic surface with
the diffraction hyperplanes, that is, with the boundaries of the Brillouin zones. The
isoenergetic surface begins to be distorted from a sphere before making contacts with
the Brillouin zone planes. The gaps in the spectrum emerges as a result of distortion
of the isoenergetic surface in the diffraction planes. Recall that the spectrum of the
Schrödinger operator L(q) with a periodic potential consists of the energy bands
δn for n = 1, 2, . . . , that are defined in (1.2.16) and named as the allowed bands.
The gap in the spectrum is the region between the energy bands δn and δn+1 and in
the physical literature is named the forbidden band or the energy gap. This means
that the electron is not allowed to take energies between the allowed bands δn and
δn+1 and, hence, there appears an energy discontinuity. Thus an energy gap appears
across the Brillouin zone plane. The isoenergetic surface becomes discontinuous,
being separated into pieces by the zone boundary. This means that a part of the
isoenergetic surface appears in the (n + 1)th zone but the rest remains in the nth
zone, leaving unoccupied states holes. It can be easily seen in the one-dimensional
case [see the example below in (iv)].

The formation of the energy gap can also be discussed from the point of view
of the diffraction phenomena of the Bloch wave. For this let us recall the Bragg
reflection. The quasimomentum γ + t is said to satisfy the Laue condition or the
Bragg condition if it belongs to the diffraction plane Dδ for some δ, that is,
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|γ + t |2 = |γ + t + δ|2.

The Bloch wave changes its direction due to the Bragg reflection.
In the following one-dimensional example we demonstrate both how the inter-

action of the isoenergetic surface with the diffraction hyperplanes and how the dif-
fraction phenomena of the Bloch waves result in the energy gap. Note that the band
structure calculation of a real lattice is much more complicated and this example
should be looked upon as a simple demonstration.

(iv) One-dimensional Model. Let H(q) be the one-dimensional Schrödinger
operator (named as Hill’s operator) generated in L2(−∞,∞) by the expression

−y′′ + q(x)y, (1.3.2)

where q is a real-valued function satisfying q(x) = q(x + 1). Note that there are a
lot of books and papers about the one-dimensional case (see [DuSch, Eas, Le, MaVi,
Mar, Na, Ti] and the references on them), where the spectrum of H(q) is investigated
and the asymptotic formulas for the eigenvalues λ and the eigenfunctions � when
λ → ∞ were obtained by different methods. Here we consider the large Bloch
eigenvalues and the corresponding Bloch functions of H(q) by the approach which
is useful for understanding the results of Chap. 2. Moreover, it helps to compare
the well-known one-dimensional case with the multidimensional case and to see the
complexity of the results obtained in this book.

For simplicity assume that

sup
x∈[0,1]

|q(x)| = M < ∞ &
∫ 1

0
q(x)dx = 0. (1.3.3)

Note that the first condition in (1.3.3) can be replaced by q ∈ L1[0, 1] (see [VeDe,
VeDu]) and the second condition is assumed without loss of generality. Thus the
period lattice of the potential q is Z and the reciprocal lattice is 2πZ. As we stressed
above if the reciprocal lattice is 2πZ then the diffraction planes are the points πn for
n = ±1,±2, . . . , since the Bragg condition holds at them. We see below that this is
indeed the wave number at which the energy gap appears. Moreover we see readily
the cases when the plane wave ei(2πn+t)x is reflected and when it is not reflected by
the crystals.

Let us recall some well-known results about H(q) that we use for the discussion
of this model. The spectrum σ(H) of the operator H(q) is the union of the spectra
σ(Ht ) of the operators Ht (q) for t ∈ [0, 2π), which are generated in L2[0, 1] by the
expression (1.3.2) and the t-periodic boundary conditions

y(1) = eit y(0), y′(1) = eit y′(0).

In the case q = 0 the eigenvalues and eigenfunctions of Ht (0) are respectively
(2πn + t)2 and ei(2πn+t)x for n ∈ Z. All eigenvalues of Ht (0) for t �= 0,π are

http://dx.doi.org/10.1007/978-3-319-16643-8_2
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simple, while the eigenvalues of H0(0), except 0, and Hπ(0) are double. Since the
eigenvalues of H−t (q) coincide with those of Ht (q), we discuss only the case t ∈
[0,π]. For simplicity let us investigate the case t ∈ [0, π

2 ]. (The case t ∈ (π
2 ,π] can

be considered in the same way). By well-known perturbation theory the eigenvalues

λ0(t) ≤ λ−1(t) ≤ λ1(t) ≤ λ−2(t) ≤ λ2(t) ≤ · · · (1.3.4)

of Ht (q) for t ∈ [0, π
2 ] satisfy the inequalities

∣
∣
∣λn(t) − (2πn + t)2

∣
∣
∣ ≤ M (1.3.5)

for all n ∈ Z due to (1.3.3).
First let us give the rigorous mathematical proof of the asymptotic formulas and

then discuss the band structure from the point of view of the physicists. To obtain
the asymptotic formula for the eigenvalues λn(t) and corresponding normalized
eigenfunctions �n,t (x) of Ht (q), let us use the following relation

(λn(t) − (2πk + t)2)(�n,t , ei(2πk+t)x ) = (q�n,t , ei(2πk+t)x ) (1.3.6)

which can be obtained from the equation

−� ′′
n,t (x) + q(x)�n,t (x) = λn(t)�n,t (x)

by multiplying e−i(2πk+t)x and integrating the resulting expression over [0, 1] by
parts, where (·, ·) denotes the inner product in L2[0, 1]. By (1.3.3) and Schward’s
inequality we have ∣

∣
∣(q�n,t , ei(2πk+t)x )

∣
∣
∣ ≤ M. (1.3.7)

If t ∈ [0, π
2 ] then ∣∣(2πn + t)2 − (2πk + t)2

∣
∣ ≥ 2π(|n − k|) |(2π |n + k| − π)| for

k �= ±n. This with (1.3.5) gives us

∣
∣
∣λn(t) − (2πk + t)2

∣
∣
∣ > 3π2 |(n − k)(n + k)| (1.3.8)

for k �= ±n and for the large values of n.

It follows from (1.3.6)–(1.3.8) that

∑

k∈Z,k �=±n

∣
∣
∣(�n,t (x), ei(2πk+t)x )

∣
∣
∣
2 =

∑

k∈Z,k �=±n

M2

(3π2(n − k)(n + k))2
= O(

1

n2 ).

Hence ∥
∥
∥
∥
∥
∥

∑

k∈Z,k �=±n

(�n,t (x), ei(2πk+t)x )ei(2πk+t)x

∥
∥
∥
∥
∥
∥

= O(
1

n
).
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Therefore the expansion of �n,t (x) by the orthonormal basis {ei(2πn+t)x : n ∈ Z}
has the form

�n,t (x) = un(t)e
i(2πn+t)x + vn(t)ei(−2πn+t)x + O(n−1), (1.3.9)

where un(t) = (�n,t , ei(2πn+t)x ), vn(t) = (�n,t , ei(−2πn+t)x ),

|un(t)|2 + |vn(t)|2 = 1 + O(n−2). (1.3.10)

Now we consider the following two cases. First let us consider the case when the
quasimomentum 2πn + t is far from the diffraction points πk, that is, there exists a
positive constant c � 1 such that t ∈ [c, π

2 ]. Then
∣
∣
∣(2πn + t)2 − (−2πn + t)2

∣
∣
∣ ≥ 8π |n| c.

Therefore using (1.3.5) and (1.3.6) for k = −n we obtain

∣
∣
∣λn(t) − (−2πn + t)2

∣
∣
∣ ≥ 8π |n| c − M

and
(�n,t (x), ei(−2πn+t)x ) = O(n−1)

This with (1.3.9) and (1.3.10) implies that

�n,t (x) = ei(2πn+t)x + O(
1

n
) (1.3.11)

for t ∈ [c, π
2 ].

Now using (1.3.11) in (1.3.6), letting k = n and taking into account the second
relation of (1.3.3) we obtain that

λn(t) = (2πn + t)2 + O

(
1

n

)
. (1.3.12)

Now let us consider the case t ∈ [0, c], that is, the case when the quasimomentum
2πn + t is close the diffraction point 2πn. In the case t = 0 the eigenvalues (2πn)2

for n �= 0 of the unperturbed operator H0(0) are double and the corresponding
eigenfunctions are the linear combinations of ei2πnx and e−i2πnx . All eigenvalues of
Ht (0) for t �= 0,π are simple. However if t is very close to 0 then the eigenvalues
(2πn + t)2 and (−2πn + t)2 are close to each other.

Let us consider the case t = 0. Since the eigenvalues (2πn)2 for n �= 0 of the
unperturbed operator H0(0) are double, by (1.3.4) and (1.3.5) the perturbed operator
H0(q) has two eigenvalues (counting multiplicity) denoted by λn =: λn(0) and
λ−n =: λ−n(0) such that
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λ−n ≤ λn,

∣
∣
∣λ±n − (2πn)2

∣
∣
∣ ≤ M.

First let us prove that the eigenvalues λn and λ−n are simple if

|nq2n|−1 = o(1), (1.3.13)

that is, |q2n| � 1
n , where

q2n =
(

q, ei4πnx
)

=
∫ 1

0
q (x) e−i4πnx dx .

Suppose to the contrary that λn is a double eigenvalue, that is, λn = λ−n . Then by
(1.3.9) and (1.3.10) the corresponding eigenspace is close to the span of the plane
waves ei2πnx and e−i2πnx , and there exists an eigenfunction of the form e−2πnx +
O
(
n−1

)
. Using this eigenfunction instead of �n,0(x) in the formula

(λn − (2πn)2)(�n,0, ei2πnx ) = (q�n,0, ei2πnx ), (1.3.14)

obtained from (1.3.6) by taking t = 0 and k = n, we get O
(
n−1

) = q2n + O
(
n−1

)

which contradicts (1.3.13). Thus the eigenvalues λn and λ−n are simple for large
values of n if (1.3.13) holds.

Now, for simplicity, let us consider the case when q is an even function. Then

q2n =
∫ 1

0
q(x) cos 4πnxdx ∈ R (1.3.15)

and without loss of generality it can be assumed that q2n > 0. Moreover in the case
of even potential q, it is well-known that (see [Eas, MaVi]) the periodic solutions and
hence the eigenfunction�n(x) =: �n,0(x) is either even or odd function. Therefore,
by (1.3.9) either vn = un + O(n−1) or vn = −un + O(n−1), where

un = (�n, ei2πnx ), vn = (�n, e−i2πnx ).

In the first case from (1.3.9) and (1.3.10) one can easily obtain that

�n(x) = unei2πnx + une−i2πnx + O(n−1) = √
2 cos 2πnx + O(n−1). (1.3.16)

Using this and taking into account that (�n, �−n) = 0,where �−n =: �−n,0(x),

we obtain

�−n(x) = unei2πnx − une−i2πnx + O(n−1) = √
2 sin 2πnx + O(n−1). (1.3.17)

Now using (1.3.16) and (1.3.17) in (1.3.14) and taking into account that λn − (2πn)2

is a real number,
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(cos 2πnx)2 = 1

2
(1 + cos 4πnx), (sin 2πnx)2 = 1

2
(1 − cos 4πnx),

and then using (1.3.15) we get

λn = (2πn)2 + q2n + O
(

n−1
)

(1.3.18)

and
λ−n = (2πn)2 − q2n + O

(
n−1

)
(1.3.19)

respectively. Note that the condition λ−n ≤ λn and formulas (1.3.18) and (1.3.19)
show that we have to take vn = un + O(n−1) if q2n > 0 and therefore (1.3.16) and
(1.3.17) hold.

In the same way one can show that the eigenvalues

μ−1 ≤ μ1 ≤ μ−2 ≤ μ2 ≤ · · ·

of Hπ(q) and the corresponding eigenfunction 	−1,	1,	−2,	2, . . . satisfy the
following asymptotic formulas

μn = (2nπ − π)2 + q2n−1 + O
(

n−1
)

(1.3.20)

μ−n = (2πn − π)2 − q2n−1 + O
(

n−1
)

(1.3.21)

and

	n(x) = √
2 cos(2πn − π)x + O(

1

n
). (1.3.22)

	−n(x) = √
2 sin(2πn − π)x + O(

1

n
). (1.3.23)

It iswell-known that [Eas, MaVi, Ti] the spectrumof H(q) consists of the intervals

[λ0,μ−1], [μ1,λ−1], [λ1,μ−2], [μ2,λ−2], . . . , [λ j−1,μ− j ], [μ j ,λ− j−1],
(1.3.24)

where j = 3, 4 . . ., that are the energy bands. Therefore the gaps in the spectrum
(energy gaps) of the Hill’s operator H(q) consist of the intervals

�1 = (μ−1,μ1),�2 = (λ−1,λ1), . . . ,�2 j−1 = (μ− j ,μ j ),�2 j = (λ− j ,λ j ),

(1.3.25)
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where j = 2, 3, . . . , that are the forbidden zones. Then (1.3.18)–(1.3.21) imply that
the length |�n| of the nth forbidden zone �n (gap of the spectrum) satisfies the
asymptotic formula

|�n| = 2 |qn| + O

(
1

n

)
. (1.3.26)

From the point of view of mathematicians the gaps arise as follows. For any real
periodic potential q the spectrum of the Hill’s operator H(q) consists of the intervals
(1.3.24). The ends of the intervals are periodic and antiperiodic eigenvalues. In the
case of unperturbed operator H(0) these intervals are

[0,π2], [π2, (2π)2], . . . , [(2nπ)2, ((2n + 1)π)2], [((2n + 1)π)2, ((2n + 2)π)2]
(1.3.27)

for n = 1, 2, . . . The right end of the nth band coincides with the left end of the
(n + 1)th band and these ends are the double eigenvalues (nπ)2 of periodic (if n is
an even number) or antiperiodic (if n is an odd number). Under the perturbation q
these double eigenvalues (double eigenvalue can be considered as two coinciding
eigenvalues) are separated and one eigenvalue goes to the left and becomes the right
end λ− j of the nth band (if n = 2 j) of the perturbed operator H(q) and the other
eigenvalue goes to the right and becomes the left endλ j of the (n+1)th band of H(q).

The space �2 j between these ends λ− j and λ j can not be occupied by the Bloch
eigenvalues λ− j (t) and λ j (t), since for t ∈ [0, c], where c � 1, the eigenvalues
λ− j (t) and λ j (t) together with λ− j (0) =: λ− j and λ j (t) =: λ j go to the left and
right respectively and hence arise gaps in the spectrum.

Now we summarize the discussed statements about the one-dimensional Schr
ödinger operator H(q) with a periodic potential q in the language of physicists. In
the above example, we rigorously constructed the Bloch waves in the high energy
region by asymptotic method that is very similar to the two-wave approximation. As
we noted above the Bragg condition is satisfied at±πn, since the reciprocal lattice is
2πZ. The isoenergetic surfaces I0((πn)2) corresponding to the energy (πn)2 consist
of two points−πn and πn and these points are the diffraction planes of the reciprocal
lattice. Under the perturbations the isoenergetic surfaces are separated into pieces by
the zone boundary and part of the isoenergetic surface appears in the (n + 1)th zone
but the rest remains in the nth zone, leaving unoccupied states holes.

Formula (1.3.11) means that the plane wave ei(2πn+t)x is almost not reflected
by the crystals if the wave number 2πn + t is far from the diffraction planes πn.
Formulas (1.3.16) and (1.3.17) show that under perturbation q the planewaves ei2πnx

and e−i2πnx interface each other. The standing waves
√
2 cos 2πnx and

√
2 sin 2πnx

are the results of the interference between two waves ei2πnx and e−i2πnx traveling in
the opposite directions. On the other hand, it is well-known that the eigenvalues of
Ht (q) for t �= 0,π are simple. Therefore if λn(0) is a simple eigenvalue, then�n,t (x)

continuously depend on t ∈ [0,π). This situation with (1.3.16) and (1.3.17) shows
that if t is close to zero then under perturbation q the plane waves ei(2πn+t)x and
e−i(2πn+t)x interface each other.Moreover, these situationswith (1.3.22) and (1.3.23)
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show the same resultwhen t is close toπ.Thus the electrons in the crystal are arranged
in the energy bands separated by the forbidden regions, called energy gaps or band
gaps, in the energy for which no wavelike electron orbitals exist. The band gap is a
result of the interference between two waves traveling in the opposite directions. The
planewavefunction ei(2πn+t)x represents the runningwave and carries themomentum
k = 2πn + t . If t �= 0,π then this wave function is the travelling wave. However,
the wave function at t = 0 is not wave ei2πnx or e−i2πnx travelling to the right or
left, respectively. Namely when the Bragg reflection condition t = 0 is satisfied by
the wave vector 2πn + t a wave travelling to the right is Bragg-reflected to travel to
the left and vice versa. As a result the standing waves

√
2 cos 2πx and

√
2 sin 2πx

are obtained from the travelling waves ei2πnx and e−i2πnx . The two standing waves√
2 cosπx and

√
2 sin πx pile up the electrons at the different regions. Therefore

the two waves have different values of the potential energy which is the origin of
the energy gap. It is well-known and we can see from the above example that the
magnitude of the energy gap depends on the Fourier coefficients of the periodic
potential. Thus the effect of the periodic potential is to produce an energy gap in
the band structure of the one-dimensional case and the energy gap appears when the
Bragg condition is satisfied at ±πn. In other words, when the wave vector is near to
these diffraction planes the Bloch wave is expressed by a linear combination of the
unperturbed plane waves ei(2πn+t)x and e−i(2πn+t)x perturbed by the lattice planes.
The runningwave−πn is reflected to thewaveπn by receiving the crystalmomentum
2πn from the lattice planes and the reflected wave−πn is again reflected to the wave
πn by receiving the crystal momentum 2πn from the lattice planes. This process
is infinitely repeated, resulting in a cosine- or sine-type stationary wave. Under the
above condition on the potential, the energy of the sine-type Bloch wave is lowered
and the energy of the cosine-type Bloch wave is raised. Thus, the difference in the
energy between these two stationary states must be responsible for the formation of
the energy gap.

1.4 Some Discussions of the Perturbation Theory

In this section we discuss the perturbation theory and isoenergetic surfaces for the
multidimensional Schrödinger operator L(q) in the high energy region. This case,
for the first time, was investigated in the papers [Ve1, Ve2, Ve3, Ve4, Ve5, Ve6]. In
Chap.2 we consider it in detail. Now we only describe briefly the crucial points and
complexity of this theory. For this, first let us recall that, in general, the perturbation
theory is easy if the potential q is smaller than the distance between the eigenvalues
of the unperturbed operator L(0). In other words, as well-known from the quantum
mechanics, if the perturbation is small compared to the energy difference between the
states, then we can use the regular perturbation theory to calculate the wave functions
and energy levels. The perturbation theory breaks down, however, in those caseswhen
the potential cannot be considered as a small perturbation. This happens when the
magnitude of the potential becomes comparable with the energy separation. To be

http://dx.doi.org/10.1007/978-3-319-16643-8_2


1.4 Some Discussions of the Perturbation Theory 25

more precise let us define a constant h for the energy separation, named as the energy
separation constant, as follows. One can readily see from the One-dimensionel
model (see Sect. 1.3) that there are two cases:

Case 1. Isolated eigenvalue. An eigenvalue λ is isolated if all other eigenvalues
are far from λ (see the case t ∈ [c, π

2 ]). Then the energy separation constant h is a
distance from λ to the set of all other eigenvalues.

Case 2. Isolated pair of eigenvalues. If the two eigenvalues λ1 and λ2 are close
to each other and the others are far from these eigenvalues (see the case t ∈ [0, c)),
then the energy separation constant h is a distance from the set {λ1,λ2} to the set of
all other eigenvalues.

If ‖q‖ � h then the perturbation theory is easy and well-known, since in Case 1
and Case 2 one can use the regular perturbation theory and twowave approximations,
respectively,where the relation h � 1means that h is a sufficiently large number. The
inequality ‖q‖ � h which easifies the perturbation theory occurs in the following
two cases:

First case: The perturbation q is bounded or ‖q‖ = O(1) and the energy sep-
aration constant h tends to infinity as the eigenvalues go to infinity. This case is
the one-dimensional case in the high energy region and we demonstrated it in the
One-dimensionel model (see Sect. 1.3) and noted that this case was investigated
very well, there are a lot of books and papers about it.

Second case: The energy separation constant h is greater than some constant and
the potential q is replaced by εq,where ε is a small parameter, that is, ‖εq‖ � h.This
case can be used for the small eigenvalues of the multidimensional operator L(εq)

to obtain the formulas for ε → 0. Indeed if the eigenvalue |γ + t |2 has a distance
greater than some constant from the other eigenvalues then the small perturbation εq
can be investigated by the regular perturbation theory. Moreover if |γ + t |2 coincides
with (or it is near to) the eigenvalue |γ + t + δ|2 but has a distance greater than some
constant from the other eigenvalues, that is, if γ + t lies in (or it is near to) only one
Bragg plane Dδ, then a weak periodic potential εq has its major effect on those free
electron levels whose wave vectors are close to ones at which the Bragg reflection
can occur. In this case, in order to find the energy levels and the wave functions one
can use, for example, the two wave approximations. We will discuss this case in
detail in Chap. 5.

Thus in the first and second case, we can use the regular perturbation theory to
calculate the wave functions and energy levels.

Nowweare ready to discuss themultidimensional operator L(q) in the high energy
region. In this case, in the big contrary of the first and second case (see above) we
meet with the situation h � ‖q‖ instead of ‖q‖ � h, since the denseness of the
Bloch eigenvalues of the free operator increases infinitely with the increasing energy
and hence the distance between the eigenvalues tends to zero or the multiplicity of
the eigenvalues tend to infinity. To describe this case more precisely, let us introduce
some notations. The relation a(ρ) ∼ b(ρ) as ρ → ∞ means that a(ρ) = O(b(ρ))

and b(ρ) = O(a(ρ)), that is, there exist constants c1 and c2 such that

c1b(ρ) < a(ρ) < c2b(ρ).

http://dx.doi.org/10.1007/978-3-319-16643-8_5
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In this case we say that a(ρ) is of order b(ρ). Let E(ρ) be the number of the Bloch
eigenvalues (counting multiplicity) of the unperturbed operator Lt (0) lying in the
interval [ρ2, ρ2 + 1). The number E(ρ) depends on t ∈ F∗, however, in average,
E(ρ) ∼ ρd−2, since |γ + t |2 ∈ [ρ2, ρ2 + 1) if and only if

γ + t ∈ {x ∈ R
d : ρ2 ≤ |x |2 < ρ2 + 1} =: W (ρ). (1.4.1)

On the other hand, the spherical washer W (ρ) is filled with the translations of F∗ by
the vectors γ of the reciprocal lattice �, and

μ(W (ρ)) ∼ ρd−2μ(F∗),

whereμ(A) denotes the volume of the set A.Thus in the interval [ρ2, ρ2+1) of length
1 there are, in average, E(ρ) Bloch eigenvalues |γ + t |2 of the free operator, where
E(ρ) ∼ ρd−2. It means that the eigenvalues are densely situated in the high energy
region [ρ2, ρ2 + 1) and for the energy separation constant h(ρ) (now it depends on
ρ) one can write the equality

h(ρ) = O(ρ2−d). (1.4.2)

Hence in the multidimensional case in the high energy region the bounded potential
q cannot be considered as a small perturbation, since

‖q‖ ∼ ρd−2h(ρ) � h(ρ) (1.4.3)

for d > 2 and ρ � 1. Therefore the regular perturbation theory is ineffective in
this case. In Chap.2 we consider this case in detail. Now we only describe briefly
the following three problems (a), (b) and (c) which are the crucial and remarkable
points of the perturbation theory of the multidimensional operator L(q) in the high
energy region.

(a) Simplicity problem. Determine the set of quasimomenta γ + t such that the
corresponding Bloch eigenvalues �(γ + t) ∈ [ρ2, ρ2 + 1) of Lt (q) are simple.

The complexity of this problem is the following. The eigenvalue �(γ + t) ∈
[ρ2, ρ2+1) is a result of moving of the Bloch eigenvalues |γ+ t |2 of the free electron
under the perturbation q. In the interval [ρ2, ρ2 +1) of length 1 there are, in average,
E(ρ) Bloch eigenvalues |̃γ + t |2 of Lt (0), where γ̃ ∈ � and E(ρ) ∼ ρd−2. After the
periodic perturbation q all these eigenvalues move and some of them move of order
1 and hence each of the resulting eigenvalues �(̃γ + t) of Lt (q) may coincide with
�(γ+t). Thuswe need to control themoving of all eigenvalues |̃γ+t |2 ∈ [ρ2, ρ2+1)
for some values of t in order that all resulting eigenvalues �(̃γ + t) do not coincide
with �(γ + t) and hence �(γ + t) becomes a simple eigenvalue. Therefore it seems
that it is impossible to find the values of the quasimomenta γ + t for which the
corresponding Bloch eigenvalues �(γ + t) of Lt (q) are simple. The importance of
the simplicity of �(γ + t) is the following. The simplicity of �(γ + t) is necessary
for the investigation of the corresponding Bloch wave �γ+t (x) and for proving that
it is close to the plane wave ei〈γ+t,x〉 that is, satisfies the formula

http://dx.doi.org/10.1007/978-3-319-16643-8_2
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�γ+t (x) = ei〈γ+t,x〉 + O(|γ + t |−α), (1.4.4)

where α > 0. The last equality means that the plane wave ei〈γ+t,x〉 goes through
the crystal almost without the diffraction. On the other hand, it is well known that
the plane wave ei〈γ+t,x〉 is reflected by the crystal if γ + t belongs to (or it is near
to) a diffraction hyperplane Dδ for some δ ∈ �. Then the reflected wave ei〈γ+δ+t,x〉
interferes with the initial wave ei〈γ+t,x〉 (see [BS], [Ki, Mad]) and (1.4.4) does not
hold. As we noted above there are, in average, E(ρ) eigenvalues

|γ + t |2, |γ + t + δ1|2, |γ + t + δ2|2, . . . , |γ + t + δn|2,

where n = E(ρ) ∼ ρd−2, lying in the interval [ρ2, ρ2 + 1). On the other hand, by
choosing the coordinate axis so that the direction of δ coincides with the direction
of (1, 0, 0, . . . , 0), we can easily verify that if

|γ + t |2 − |γ + t + δ|2 = c

then the quasimomentum γ + t lies on the distance |c|
|δ| from the diffraction plane

Dδ. Therefore all the diffraction planes Dδ1, Dδ2 , . . . , Dδn , may reflect the wave
ei〈γ+t,x〉 with the fixed quasimomentum t . If we do not fix t, then all diffraction planes
passing through the washer W (ρ) may reflect the wave ei〈γ+t,x〉 if the corresponding
eigenvalue |γ + t |2 lies in the interval [ρ2, ρ2 + 1). On the other hand, the number
D(ρ) of the diffraction planes having nonempty intersection with the sphere

S(ρ) = {x ∈ R
d : |x | = ρ}

and hence with W (ρ) is of order ρd , that is, D(ρ) ∼ ρd . Thus the second problem is
the following.

(b) Bragg Reflection Problem.Determine the set of quasimomenta γ+t ∈ W (ρ)

for which the plane wave ei〈γ+t,x〉 under the periodic perturbationq goes through
the crystal without the essential influence of the D(ρ) diffraction hyperplanes, where
D(ρ) ∼ ρd .

That is why the mathematical difficulties of the perturbation theory of the mul-
tidimensional operator L(q) in the high energy region have a physical nature—a
complicated picture of diffraction inside the crystal.

As we explained above in one-dimensional case it is very easy to explain the
arising of the gaps in the spectrum. Briefly speaking, there are only two Bloch
eigenvalues (−nπ)2 and (nπ)2 of the free operator lying at the point λ = (nπ)2 and
the isoenergetic surface I0((nπ)2) consists only of the two points−nπ and nπ which
are the diffraction planes. Under the perturbation q one eigenvalue goes to the left
and one to the right and the gap in the neighborhood of (nπ)2 emerges as a result of
these movings.

In the big contrary of the one-dimensional case, in the multidimensional case the
set of all Bloch eigenvalues |γ + t |2 of the unperturbed operator L(0) lying at the
same point ρ2 asmuch as the points of the sphere S(ρ), since |γ+t |2 = ρ2 if and only
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if (γ+ t) ∈ S(ρ). Some of these eigenvalues |γ+ t |2 are multiple. Recall that |γ+ t |2
is multiple if γ+t lies in the intersection of the sphere S(ρ) and diffraction planes and
the all other eigenvalues are simple. If the sphere is large, then after the perturbation
q the probability that all these eigenvalues go away from the point ρ2 and the other
Bloch eigenvalues do not come to this point and hence the isoenergetic surface
Iq(ρ2) becomes an empty set is very small. (Hence the probability of the validity of
the Bethe-Sommerfeld conjecture is close to 1). However as we noted above there
are the D(ρ) diffraction planes intersecting S(ρ) for large ρ, where D(ρ) ∼ ρd , and
the isoenergetic surface begins to be distorted from a sphere before making contacts
with the diffraction planes. Thus the isoenergetic surface is divided into a lot of
pieces. Therefore the rigorous mathematical investigation of the perturbations of all
these eigenvalues and to prove that the isoenergetic surface Iq(ρ2) can not become
an empty set are extremely complicated. Thus the third problem is the following:

(c) Isoenergetic Surfaces Problem. Determine the shape and measure of the
isoenergetic surface Iq(ρ2) of L(q) which emerges from the isoenergetic sphere
S(ρ) of L(0) as a result of its distortion and separation into very small pieces by the
D(ρ) diffraction planes intersecting S(ρ), where D(ρ) ∼ ρd .

To answer all these three problems (a), (b) and (c), in Chap.2 we develop
a new mathematical approach to this problem. The momentum space is divided
into two domains: U (non-resonance domain) and V (resonance domain) and the
eigenvalues |γ + t |2, for large γ ∈ �, are divided into two groups: non-resonance
ones if γ + t ∈ U and resonance ones if γ + t ∈ V and various asymptotic formulae
are obtained for the perturbations of each groups. (The precise definitions of U and
V are given in the introduction of Chap. 2). For the first time in the papers [Ve1,
Ve2, Ve3, Ve4] we constructed the set B ⊂ U, called as a simple set, such that if
γ + t ∈ B, then the corresponding Bloch eigenvalue �(γ + t) is simple and satisfies

�(γ + t) = |γ + t |2 + O(|γ + t |−α),

whereα > 0 and theBloch function�γ+t (x), corresponding to the eigenvalue�(γ+
t) satisfies (1.4.4). Moreover we proved that the simple set B has the asymptotically
full measure onRd and constructed a part of the isoenergetic surface Iq(ρ2) ⊂ B for
large ρ which is a union of the smooth surfaces and has the measure asymptotically
close to the measure of the sphere S(ρ). Thus, we constructed the set B ⊂ U that
positively solves all the problems (a), (b) and (c) described above. Therefore the
main difficulty and the crucial point of the investigations of the Bloch functions and
isoenergetic surfaces and hence of the perturbation theory of L(q) is the construction
and estimation of the set B. We discuss it in detail in the introduction of Chap. 2.
Note that, in Chap.2, we construct the simple set in the non-resonance domain U
so that it contains a big part of the isoenergetic surfaces of L(q). However in the
case of the resonance domain V we construct the simple set so that it can be easily
used for the constructive determination (in Chap. 3) a family of the spectral invariants
by the given Bloch eigenvalues. Then in Chap.4, we constructively determine the

http://dx.doi.org/10.1007/978-3-319-16643-8_2
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potential q by these spectral invariants. We will continue these discussions at the end
(in Chap.5) of this book after the construction a perturbation theory (Chap. 2) and
its applications (Chaps. 3 and 4).
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