
Cache Storage Attacks

Billy Bob Brumley(B)

Department of Pervasive Computing, Tampere University of Technology,
Tampere, Finland

billy.brumley@tut.fi

Abstract. Covert channels are a fundamental concept for cryptanalytic
side-channel attacks. Covert timing channels use latency to carry data,
and are the foundation for timing and cache-timing attacks. Covert stor-
age channels instead utilize existing system bits to carry data, and are not
historically used for cryptanalytic side-channel attacks. This paper intro-
duces a new storage channel made available through cache debug facili-
ties on some embedded microprocessors. This channel is then extended
to a cryptanalytic side-channel attack on AES software.

Keywords: Side-channel attacks · Covert channels · Storage channels ·
Timing attacks · Cache-timing attacks

1 Introduction

In one of the seminal computer security works, Schaefer et al. [12] define a covert
channel as follows.

Covert channels are [data] paths not meant for communication but that
can be used to transmit data indirectly.

They go on to define both storage and timing channels:

Storage channels consist of variables that are set by a system process on
behalf of the sender, e.g., interlocks, thresholds, or an ordering. In timing
channels, the time variable is controlled: resource allocations are made
to a receiver at intervals of time controlled by the sender. In both cases,
the state of the variable (“on” or “off”, “time interval is 2 seconds”) is
made to represent information, e.g., digits or characters.

Continuing this line of research, a team of researchers at DEC in the 1990s wrote
a number of influential papers regarding covert channels [4–6,13], in particular
those enabled by caching technologies.

Traditional cryptanalysis views cryptosystems as mathematical abstractions
and develops attacks using theoretical models consisting of only inputs and out-
puts of the cryptosystem. In the case of e.g. a block cipher, the input would be
the plaintext and output the ciphertext, and cryptanalysis tasked with recover-
ing the key using sets of these inputs and outputs.
c© Springer International Publishing Switzerland 2015
K. Nyberg (ed.): CT-RSA 2015, LNCS 9048, pp. 22–34, 2015.
DOI: 10.1007/978-3-319-16715-2 2

Cache Storage Attacks 23

In contrast, side-channel cryptanalysis exploits implementation aspects to
aid in key recovery. What constitutes a side-channel is technically ill-defined,
but generally speaking it is an implementation-dependent signal procured dur-
ing the execution of a cryptographic primitive. This is where the fields of covert
channels and side-channel analysis intersect: identifying some microarchitecture
or software feature within a cryptosystem implementation that can be used to
transfer data between two legitimate parties, then developing it into a cryptan-
alytic side-channel attack when one party is legitimate and one illegitimate.

Cache-timing attacks exploit the varying latency of data load instructions
to carry out cryptanalytic side-channel attacks. These attacks are recognized by
both academia and industry as a serious threat to security-critical software: from
Page’s seminal work [9], to Bernstein’s attack on AES [2], to Percival’s attack on
RSA [11], to Osvik et al.’s attack on AES [8], to Brumley and Hakala’s attack
on ECDSA [3], to Aciiçmez et al.’s attack on DSA [1]. Arguably the most recent
example of cache-timing attacks affecting real-world systems and software is
Yarom and Benger’s work [14] that led to CVE-2014-0076 and induced changes1

in OpenSSL’s Montgomery ladder implementation.
Placing cache-timing attacks within the covert timing channel framework, it

is fair to say that utilizing covert timing channels for cryptanalytic side-channel
attacks is a popular, well-established paradigm. Covert storage channels, how-
ever, are essentially ignored due to lack of application.

This paper introduces a novel, practical covert storage channel. The basis
for the channel is that many caches have hardware support for per-cache line
privilege separation. The access control enforced by this separation creates a
storage channel that can be used to violate the system security policy. As with
most covert channels, it is then possible to extend this particular covert storage
channel to a cryptanalytic side-channel attack.

The organization of this paper is as follows. Section 2 provides necessary
background on popular AES software and existing cache-timing attacks against
such software implementations. Then Sec. 3 describes the new covert storage
channel, including the prerequisite hardware differences in the cache implemen-
tation compared to a traditional cache (Sec. 3.1), why such differences exist in
modern caches (Sec. 3.2), how this feature leads to a covert storage channel
(Sec. 3.3), how this channel extends to a cryptanalytic side-channel (Sec. 3.4),
and what practical architectures this applies to (Sec. 3.5). Final thoughts and
conclusions are drawn in Sec. 4.

2 Background

Applications of covert channels and subsequently side-channels are important
aspects from the practicality perspective. To this end, Sec. 2.1 gives some back-
ground on typical high-performance AES software implementation, and Sec. 2.2
on cache-timing attacks on such software. While this background is important
1 https://www.openssl.org/news/secadv 20140605.txt

https://www.openssl.org/news/secadv_20140605.txt

24 B.B. Brumley

to show the immediate applicability of the results in this paper, keep in mind
the underlying main results of this paper is the covert channel itself, and not its
application to any one cryptosystem in particular. That is, the covert channel
described in this paper will absolutely have applications outside of AES, but at
the same time AES serves as a good example of its application.

2.1 AES Software

Viewing the 16-byte AES state as a 4 × 4 matrix, the first nine AES rounds are
identical and consist of steps SubBytes, ShiftRows, MixColumns, and AddRound-
Key. The last round omits the MixColumns step. SubBytes γ : M4×4[IF28] →
M4×4[IF28] is a fixed non-linear substitution S : IF28 → IF28 (S-box) using finite
field inversion applied to all state bytes.

γ(a) = b ⇔ bij = S[aij], 0 ≤ i, j < 4

MixColumns θ : M4×4[IF28] → M4×4[IF28] is a fixed linear transformation.

θ(a) = b ⇔ b = M · a

Here M is the following 4 × 4 matrix.

M =

⎡
⎢⎢⎣

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

⎤
⎥⎥⎦

Traditional AES software is heavily lookup table based. The reason for this is
that many of the low-level finite field operations, such as multiplications in θ and
inversions in γ, are simply not natively supported on mainstream microproces-
sors. To compensate for the understandable lack of Instruction Set Architecture
(ISA) support for such operations, a 32-bit processor leverages the linearity prop-
erty of the MixColumns step to improve performance. Consider the following four
tables, each containing 256 4-byte words.

T0[x] = (2 · S[x], S[x], S[x], 3 · S[x])
T1[x] = (3 · S[x], 2 · S[x], S[x], S[x])
T2[x] = (S[x], 3 · S[x], 2 · S[x], S[x])
T3[x] = (S[x], S[x], 3 · S[x], 2 · S[x])

That is, each Ti maps one byte for a particular component through the non-
linear layer input to the linear layer output. With these tables in hand, one AES
round amounts to 16 table lookups and 16 bitwise XORs, illustrated in Fig. 1.

Since the last round omits the MixColumns step, its implementation differs.
One popular way to implement the last round is as follows. Consider the following
table, containing 256 4-byte words.

T4[x] = (S[x], S[x], S[x], S[x])

Cache Storage Attacks 25

Fig. 1. One AES round with the T tables approach. 32-bit unsigned integers xi hold
state column i and rki are words of the particular round key.

Duplicating the S-box output across the word means that no shifting is necessary
to place the S-box output in the proper component. Instead, the redundant bytes
in the output get masked off with a bitwise AND operation after the lookup.
Implementation of the last round otherwise follows the computation in Fig. 1,
with the lookups into all Ti replaced with lookups into T4.

As a final note, there are countless strategies for implementing AES software,
but the preceding description is accurate for the popular C reference imple-
mentation rijndael-alg-fst.c by P. Barreto et al. used already in the AES
competition.

2.2 Cache-Timing Attacks

This T tables implementation approach potentially exposes the AES software to
cache-timing attacks. Lookups into the memory-resident T tables cause data
cache lines to be populated and evicted. Consider a typical data cache line
size of 64 bytes. Each T table is 1kB, hence spans 16 lines in the cache. For
one particular lookup of the 10 × 16 = 160 lookups in an AES encryption (or
decryption), the latency of the lookup depends on the state of the cache and
hence the state of the AES algorithm. Amongst the plentiful AES cache-timing
results over the past decade that leverage this varying latency to carry out
cryptanalytic side-channel attacks, two are particularly relevant to this paper
and are discussed below.

Prime and Probe. Osvik et al. [8] devise a number of cache-timing attacks
against T table based implementations of AES. For the purposes of this paper,
the most important part of their work is the strategy they devise to procure
the timings called “Prime+Probe”. In this strategy, the attacker first brings the
cache to a known state by either filling the entire cache or relevant cache sets by
performing loads and stores, inducing cache line population and eviction. The
attacker then submits a plaintext block. After the encryption completes, the
attacker, cache set-wise, measures the time required to re-read the data in the
cache sets, obtaining a latency measurement for each set. High latency implies
cache misses and that the victim accessed data mapping to the cache set, and
low latency the opposite.

Targeting the Last Round. Considering the first 9 AES rounds, each T
table has 4 lookups into it per round for a total of 36 lookups. Assuming each

26 B.B. Brumley

table spans 16 cache lines, the amount of state information that can be learned
from these lookups is limited because the order of the lookups is not (necessarily)
known w.r.t. the trace timing data. For example, after the probe step the attacker
knows which lines were evicted, but not what exact lookup caused the eviction.
Neve and Seifert [7] instead target the last round, specifically the T4 table. The
authors devise two attacks that seek to recover the last round key. The most
important for the purposes of this paper is the “elimination method” summarized
below.

The average number of cache sets accessed in the last round is 10.3 [7, Sec. 5]
and not accessed is 5.7 [7, Sec. 7.2]. This method keeps a set of candidate bytes for
each round key byte. An unreferenced set implies the corresponding upper four
bits of state are not possible for any state byte. Use the corresponding ciphertext
to compute the resulting impossible key bytes. This eliminates up to sixteen
key byte candidates from each key byte, or 256 candidates total. The attack
proceeds iteratively through the traces in this fashion, trimming the candidate
sets. Naturally as more traces are processed less trims are made as collisions
start occurring, i.e., eliminating bytes that have already been eliminated, but
the authors show that roughly 20 queries suffices to recover the key using this
method [7, Sec. 7.2].

3 Cache Storage Attacks

Consider the following hypothetical, simple data cache. There are 16 lines and
each line is 64 bytes. Assume wlog the cache is direct mapped. Whether the
cache is virtually/physically indexed/tagged is irrelevant to this paper. With
respect to the cache, a 32 bit address breaks down as follows. The lg(64) = 6
LSBs denote the offset within a line. The next lg(16) = 4 bits denote the set
index. The remaining 32− 6− 4 = 22 bits denote the tag. The set index and tag
combine to determine cache hits and misses, i.e. if the tag matches and the set
index matches, a cache hit occurs. In practice, while there are often more lines
and sets, this cache (or one extremely similar to it) is overwhelmingly what goes
into modern commodity microprocessors.

3.1 Hardware Privilege Separation

Now consider the following hypothetical, simple data cache that is similar but
supports privilege separation in hardware. What this means is the per-line meta-
data for the previous cache consisting of the tag gets extended to also include the
privilege level for that line’s contents. For simplicity’s sake this paper considers
only 1-bit privilege levels but the results are more generally applied. Figure 2
compares these two cache structures. One example of this 1-bit privilege level
could be identifying ring 0 or ring 3 in the cache for x86 protection mode: a 0
(or 1) could denote the physical memory corresponding to that particular cache
line belongs to ring 0 (or 3).

Cache Storage Attacks 27

Fig. 2. Left: Example traditional cache without hardware privilege separation. Right:
Example cache augmented with hardware privilege separation.

This paper assumes the cache replacement policy is oblivious to the seman-
tics of this privilege level bit, i.e., it is simply another bit of the tag that only
determines cache hits and misses. This means that privilege level 0 can evict
privilege level 1 data and vice versa. If this were not the case, resource starva-
tion would occur unless employing a more sophisticated cache structure (see e.g
[10] for a discussion). Also a common argument for this behavior is better cache
utilization, causing improved software performance that is a leading driver in
industry.

3.2 Motivation

There are potentially many reasons to store the per-line privilege level with the
cache metadata. Arguably the most appropriate use case is in debug scenarios.
To debug the cache itself or programs where cache performance is critical, some
architectures expose low level instructions that allow invasive access to the cache
data and metadata. For example, this could be used by software engineers:

– To examine cache state and eliminate it as a potential source of bugs e.g. in
hardware errata scenarios or coherency issues.

– To better understand their software’s cache impact, and subsequently
improve performance through analysis of said impact.

However, the cache cannot simply allow unchecked access to the lines and meta-
data. For example, privilege separation fails if privilege level 1 directly reads a
cache line belonging to privilege level 0. So the cache needs to know the privilege
level of each line’s data for security reasons to enforce a sane access control pol-
icy, and having that information stored directly alongside the tag is arguably the
most logical solution for the hardware itself to enforce said policy. For attempted
accesses that would violate the access control policy, a reasonable response would
be to issue a processor exception. This is similar to how e.g. a Memory Manage-
ment Unit (MMU) handles accesses to unmapped virtual addresses, i.e. invalid
page faults that usually result in segmentation faults.

28 B.B. Brumley

3.3 A Covert Channel

Alice (privilege level 0) and Bob (privilege level 1) construct a storage covert
channel out of the cache with privilege separation as follows. Assume wlog the
cache structure in Fig. 2 and that Alice wants to send lg(16) = 4 bits to Bob,
denoted nibble b.

1. Bob loads from 16 memory locations that all have different index bits. This
is the “prime” step and completely pollutes the cache, as well as populates
all privilege level bits in the cache to 1, corresponding to Bob’s privilege
level.

2. Alice loads from a single memory location with index bits b. She gets a cache
miss and evicts Bob’s line from index b. Note that, after this step, Alice leaves
the cache in the same state as Bob left it, other than index b: all lines have
privilege level bit set to 1 except line with index b now set to 0.

3. Bob tries to read directly from all 16 lines in the cache: this is the “probe”
step. When he reaches index b he triggers a processor exception because he
is attempting to violate privilege separation, but nonetheless receives b from
Alice, evidenced by the exception.

From the dishonest users’ perspective, the main disadvantage of this covert
channel is its detectability. Timing covert channels are difficult to detect since
the only evidence of their presence is performance degradation. In this case,
every time this particular processor exception occurs the system gets informed
so there is an audit trail.

The main advantage of this covert channel is its signal-to-noise ratio. By
nature, timing channels are heuristic – they are noisy and require tuning to
a particular system and cache performance. This cache storage channel, how-
ever, goes unaffected by these variables that affect cache hit and miss latencies.
The only thing the recipient needs to observe is the presence of the processor
exception. This exception is deterministic, not heuristic.

3.4 A Side-Channel Attack

An access-driven cache-timing trace, as used in e.g. the attacks described in Sec.
2.2, is interpreted as a sequence of cache hits (H) and misses (M) on a per cache
set (or line) basis. Note that the hits and misses are based on the memory access
timings being above or below some threshold, so they are quite sensitive to a
particular processor, cache, operating system, and system load – in practice they
are rarely error-free but instead require some statistical analysis. Nevertheless,
assume this timing trace is error-free. Attackers can “reconstruct” access-driven
cache-timing traces with the cache storage channel described above with the
following steps.

1. Read directly from a cache line. A processor exception indicates M, otherwise
H.

2. If M go back to the first step. This requires another query because the pro-
cessor exception most like wipes the cache state and/or triggers a reset.

3. If H continue with the next line.

Cache Storage Attacks 29

For example, Consider the following timing trace.

HMHHHMHHHHHHMHHH

The read from line 0 does not cause an exception, so the attacker logs H and
continues. Line 1 causes an exception. The attacker logs M, queries the same
plaintext again, reads from line 2, logs H and continues in this manner. Line 5
causes an exception. The attacker logs M, queries the same plaintext again, and
continues in this manner. It takes the attacker four queries to reconstruct the
trace: one for the initial query, and one for each processor exception (“cache
miss”).

Given the above analysis, cache storage attacks should exhibit the following
characteristics when compared to cache-timing attacks.

– The number of queries theoretically increases because, compared to cache-
timing attacks, each “cache miss” costs an additional query due to the pro-
cessor exception.

– The traces themselves, however, are overwhelmingly more accurate because
they are not heuristically based on timings.

This ease of reconstructing error-free cache-timing traces from error-free cache
storage traces allows leveraging previous cache-timing results directly. For exam-
ple, consider the attack by Neve and Seifert [7] summarized in Sec. 2.2. The
key recovery algorithm is essentially the same, but the number of queries will
increase. Figure 3 illustrates the implementation of the Neve and Seifert cache-
timing attack using the cache storage attack techniques in this paper. In the
cache-timing case, they state roughly 20 queries are needed to recover the last
round key. Given that their analysis shows the average number of cache sets
accessed is 10.3 and cache storage attacks need an initial query plus one query
for each cache set accessed (“cache miss”), the expectation is 20 ·(10.3+1) = 226
queries on average for the cache storage attack to succeed. The simulation results
in Fig. 3 are consistent with this estimate.

3.5 Relevant Architectures

The running example in this paper has been privilege levels 0 and 1 correspond-
ing to e.g. ring 0 and ring 3. To make these results more concrete, arguably
the most relevant architecture for cache storage attacks is ARM with TrustZone
extensions.

TrustZone technology provides hardware-assisted security mechanisms to
software, in particular Trusted Execution Environments (TEE). TEEs are ubiq-
uitous in the embedded space, e.g. mobile phones. In these cases, the mobile
operating system such as Android runs in the normal world or untrusted world
or insecure world or rich execution environment while the security-critical code
runs in the secure world or trusted world or trusted execution environment.

At any given moment, ARM microprocessors that support TrustZone exten-
sions operate in either secure or insecure mode. Insecure mode uses system calls

30 B.B. Brumley

 0

 20

 40

 60

 80

 100

 120

 0 50 100 150 200 250

Re
m

ai
ni

ng
 k

ey
 c

an
di

da
te

s
(lg

)

Queries

Fig. 3. AES cache storage attack simulation results. Average number of remaining key
candidates (base-2 logarithm) as the number of encryption queries increases. Error bars
are one standard deviation on each side.

(dedicated instructions in the ISA) to switch to secure mode, the transition
handled by a piece of software ARM calls the monitor. From the system per-
spective, bus transactions originating from either the secure or non-secure world
are tagged using the AxPROT bus attribute, essentially a binary value that tracks
the privilege level of the transaction. Figure 4 illustrates this concept. Quoting
the ARM documentation:

In the caches, instruction and data, each line is tagged as Secure or Non-
secure, so that Secure and Non-secure data can coexist in the cache. Each
time a cache line fill is performed, the NS tag is updated appropriately.

Mapping this architecture to the previously described cache storage covert chan-
nel is simple: privilege level 0 corresponds to NS=0 and privilege level 1 to NS=1.
This statement directly from ARM validates the previous assumptions in this
paper with respect to the cache replacement policy – the data at different priv-
ilege levels coexists in the cache yet the replacement policy is oblivious to this
distinction. Secure data can evict non-secure data and vice versa.

Further illustrating the applicability of cache storage attacks to ARM archi-
tecture with TrustZone extensions, the documentation continues, illustrated in
Fig. 5:

It is a desirable feature of any high performance design to support data
of both security states in the caches. This removes the need for a cache
flush when switching between worlds, and enables high performance soft-
ware to communicate over the world boundary. To enable this the L1,

Cache Storage Attacks 31

and where applicable level two and beyond, processor caches have been
extended with an additional tag bit which records the security state of
the transaction that accessed the memory.
The content of the caches, with regard to the security state, is dynamic.
Any non-locked down cache line can be evicted to make space for new
data, regardless of its security state. It is possible for a Secure line load to
evict a Non-secure line, and for a Non-secure line load to evict a Secure
line.
The cache attempts the [sic] match the PA and the NS-bit from the TLB
with the tag of an existing cache line. If this succeeds it will return the
data from that cache line, otherwise it will load the cache line from the
external memory system.

Core

MMU

AXI interface

External
memory

Secure
slave

Non-
secure
slave

Arbiter Master
peripheralDecoder

NSTID

Core world
state

Address

Abort

Cache

Line (n) S
Line (n-1) NS

Line 2 NS
Line 1 S

TCM

Line(n-1)

Line 1

Line(n)

Line 2

NS access bit

Data Data

Data

Page
table
walk

Address

Control

Data

S prot
Abort AxPROT[1]

Abort AxPROT[1]

S prot
Abort AxPROT[1]

NS attribute

NS
SS

NS

NS
S

NS
NS

Descriptor (n-1)

Descriptor 1
Descriptor 2

Descriptor (n)

Fig. 4. ARM architecture with TrustZone extensions: propagation of the
normal (NS=1) and secure (NS=0) signal (AxPROT) system-wide via bus
transactions. Source: http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.
ddi0333h/Chdfjdgi.html

The last ingredient missing for realizing the cache storage covert channel is
invasive access for direct cache line reads. These particular instructions will
generally depends on the chip manufacturer, exposed through instruction-level
CP15 (“coprocessor 15”) commands. Such commands are generally used for
e.g. performance monitoring, but these cache commands are encoded in an

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0333h/Chdfjdgi.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0333h/Chdfjdgi.html

32 B.B. Brumley

TLB

A
X

I B
us

 In
te

rf
ac

e

Core Processing Logic

A
X

I F
ab

ric

VA NSTIDCurrent status:

VA NSTID PA NS

VA NSTID PA NS

Level 1 Cache

Line Data

Line Data

PA NS

PA NS

Arbiter

Security
Check

Decoder

Pagetable
Walk

Data Store

Cache Miss: External Load

Cache Hit

Fig. 5. ARM architecture with TrustZone extensions: cache logic with respect to the
normal (NS=1) and secure (NS=0) worlds. Source: http://infocenter.arm.com/help/
index.jsp?topic=/com.arm.doc.prd29-genc-009492c/ch03s03s02.html

implementation defined space (C15) so they are manufacturer dependent. Nev-
ertheless, some examples follow, e.g. through CP15 and C152:

The purpose of the data cache Tag RAM operation is to:
– read the data cache Tag RAM contents and write into the Data

Cache Debug Register.
– write into the Data Cache Debug Register and write into the Data

Tag RAM.
To read the Data Tag RAM, write CP15 with:

MCR p15, 3, <Rd>, c15, c2, 0 ;Data Tag RAM read operation

Transfer data to the Data Cache Debug Register to the core:

MRC p15, 3, <Rd>, c15, c0, 0 ;Read Data Cache Debug Register

While these particular commands are for reading tag data associated with a
particular line, the effect for the purposes of this paper is the same. The doc-
umentation goes on to describe the register format to specify the set and way
combination for the desired cache operation. Not specific to cache storage attacks
but more generically for issuing instructions to CP15, MCR is for coprocessor to
ARM transfers and MRC for ARM to coprocessor transfers.
2 http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0338g/
Bgbedgaa.html

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.prd29-genc-009492c/ch03s03s02.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.prd29-genc-009492c/ch03s03s02.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0338g/Bgbedgaa.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0338g/Bgbedgaa.html

Cache Storage Attacks 33

4 Conclusion

This paper introduces a new covert channel enabled by the data cache populating
per-line privilege level bits and subsequently enforcing privilege separation on
the lines. In contrast to previous covert timing channels that are inherently noisy,
this covert storage channel is much easier to utilize because it does not rely on
heuristic timings. While the use of this channel is easier to detect than covert
timing channels since the attacker will trigger processor exceptions, it clearly fits
the covert channel definition of Schaefer et al. [12] since the value of privilege
level bits is certainly not intended to carry data.

Cache storage attacks are related to cache-timing attacks in the sense that
the former can be used to construct an error-free side-channel trace for the latter,
shown in Sec. 3.4. The resulting cache storage attack given on AES is otherwise
a direct analog of the cache-timing attack, but requires more queries as shown
by the experiment results. The outcome is the leaking of an AES key across
privilege levels, clearly a violation of a system security policy.

Section 3.5 shows how cache storage attacks map nicely to ARM’s TrustZone
technology. It is worth noting that the instructions and commands needed to
carry out the cache storage attack are almost certainly not available in NS=1
user space, so the attack would be from NS=1 kernel space (e.g. Android) to the
NS=0 secure space (e.g. a TEE).

While ARM dictates the format used for cache line operations in the speci-
fication, the actual operations used for e.g. data cache line reads and writes are
in the CP15 implementation defined C15 instruction space, left to the manufac-
turer. As such, the most logical countermeasure to cache storage attacks lies in
these implementation defined instructions. Chip manufacturers should disallow
these instructions while in NS=1 mode, or at a minimum default to disallow yet
have the ability to issue these instructions from NS=1 be software configurable
from NS=0.

References

1. Acıiçmez, O., Brumley, B.B., Grabher, P.: New results on instruction cache attacks.
In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 110–124.
Springer, Heidelberg (2010)

2. Bernstein, D.J.: Cache-timing attacks on AES (2005). http://cr.yp.to/antiforgery/
cachetiming-20050414.pdf

3. Brumley, B.B., Hakala, R.M.: Cache-timing template attacks. In: Matsui, M. (ed.)
ASIACRYPT 2009. LNCS, vol. 5912, pp. 667–684. Springer, Heidelberg (2009)

4. Hu, W.: Reducing timing channels with fuzzy time. In: IEEE Symposium on Secu-
rity and Privacy, pp. 8–20 (1991)

5. Hu, W.: Lattice scheduling and covert channels. In: IEEE Symposium on Security
and Privacy, pp. 52–61 (1992)

6. Karger, P.A., Wray, J.C.: Storage channels in disk arm optimization. In: IEEE
Symposium on Security and Privacy, pp. 52–63 (1991)

http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf

34 B.B. Brumley

7. Neve, M., Seifert, J.-P.: Advances on access-driven cache attacks on AES. In:
Biham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp. 147–162. Springer,
Heidelberg (2007)

8. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: The
case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20.
Springer, Heidelberg (2006)

9. Page, D.: Theoretical use of cache memory as a cryptanalytic side-channel. Cryp-
tology ePrint Archive, Report 2002/169 (2002). https://eprint.iacr.org/2002/169

10. Page, D.: Partitioned cache architecture as a side-channel defence mechanism.
Cryptology ePrint Archive, Report 2005/280 (2005). https://eprint.iacr.org/2005/
280

11. Percival, C.: Cache missing for fun and profit. In: Proc. of BSDCan 2005 (2005).
http://www.daemonology.net/papers/cachemissing.pdf

12. Schaefer, M., Gold, B., Linde, R., Scheid, J.: Program confinement in KVM/370.
In: Proceedings of the 1977 Annual Conference, pp. 404–410. ACM (1977)

13. Wray, J.C.: An analysis of covert timing channels. In: IEEE Symposium on Security
and Privacy, pp. 2–7 (1991)

14. Yarom, Y., Benger, N.: Recovering OpenSSL ECDSA nonces using the
FLUSH+RELOAD cache side-channel attack. Cryptology ePrint Archive, Report
2014/140 (2014). https://eprint.iacr.org/2014/140

https://eprint.iacr.org/2002/169
https://eprint.iacr.org/2005/280
https://eprint.iacr.org/2005/280
http://www.daemonology.net/papers/cachemissing.pdf
https://eprint.iacr.org/2014/140

http://www.springer.com/978-3-319-16714-5

	Cache Storage Attacks
	1 Introduction
	2 Background
	2.1 AES Software
	2.2 Cache-Timing Attacks

	3 Cache Storage Attacks
	3.1 Hardware Privilege Separation
	3.2 Motivation
	3.3 A Covert Channel
	3.4 A Side-Channel Attack
	3.5 Relevant Architectures

	4 Conclusion
	References

