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Abstract. In this study, we investigate whether the aggregation of sali-
ency maps allows to outperform the best saliency models. This paper
discusses various aggregation methods; six unsupervised and four super-
vised learning methods are tested on two existing eye fixation datasets.
Results show that a simple average of the TOP 2 saliency maps signifi-
cantly outperforms the best saliency models. Considering more saliency
models tends to decrease the performance, even when robust aggrega-
tion methods are used. Concerning the supervised learning methods, we
provide evidence that it is possible to further increase the performance,
under the condition that an image similar to the input image can be
found in the training dataset. Our results might have an impact for crit-
ical applications which require robust and relevant saliency maps.

1 Introduction

In 1985, Koch and Ullman proposed the first plausible architecture for modelling
the visual attention [1]. This seminal paper has motivated much of the follow-
ing work of computational models of attention. Today there exist a number of
saliency models for predicting the most visually salient locations within a scene.
A taxonomy composed of 8 categories has been recently proposed by Borji and
Itti [2]. The two main categories, encompassing most existing models, are termed
as cognitive models and information theoretic models. The former strives to sim-
ulate the properties of our visual system whereas the latter is grounded in the
information theory. Although all existing models follow the same objective, they
provide results which could be, to some extent, different. The discrepancies are
related to the quality of the prediction but also to the saliency map represen-
tation. Indeed some models output very focused saliency maps [3-5] whereas
the distribution of saliency values is much more uniform in other models [6,7].
Others tend to emphasize more on the image edges [8], the color or luminance
contrast. This saliency map manifold contains a rich resource that should be
used and from which new saliency maps could be inferred. Combining saliency
maps generated using different models might enhance the prediction quality and
the robustness of the prediction. Our goal is then to take saliency maps from
this manifold and to produce the final saliency map.
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To the best of our knowledge, there is no study dealing with the fusion of
saliency maps. In the context-of-object of interest detection, we can mention
two related studies. Borji et al. [9] combined the results of several models and
found out that the simple average method performs well. Mai et al. [10] combined
results of models detecting object-of-interest on simple images (mainly composed
of one object-of-interest with simple background). They use simple methods as
well as the trained methods. The main drawback of the aforementioned studies
concerns the choice of the tested models, which are not The best-in-class. Con-
sequently, the room for improvement is still important and can be obtained, to
some degree, by aggregating different results. However, we draw attention to a
crucial difference between our work and the two aforementioned studies [9,10].
The saliency maps that are aggregated in this study are computed using com-
putational models of visual attention for eye fixation prediction. In [9,10], the
saliency maps are the outputs of saliency models which aim to completely high-
light salient objects such as [11].

Keeping all these points in mind, we investigate whether we could improve on
the prediction quality by aggregating a set of saliency maps or not. Eye fixation
datasets will be used as the ground truth.

The paper is organized as follows. Section2 presents the methods we use
for aggregating saliency maps. Section 3 shows the performance of the saliency
models, taken alone, and the performance of the aggregation functions. Finally,
we draw some conclusions in Sect. 4.

2 Saliency Aggregation

2.1 Context and Problem

As illustrated by Fig. 1, the predicted saliency maps do not exhibit similar char-
acteristics. Figure 1(b), which plots the distribution of saliency values for four
models, clearly shows the discrepancy that exists between saliency maps. Some
are very focused whereas others are much more uniform. We can also notice
that the contrast between salient and non-salient areas can be either high or
very low. This discrepancy between maps can be considered as noise but also as
an important cue that needs to be exploited. Combining saliency models may
enhance the similarity between human and the predicted saliency maps. Human
saliency maps, as we will see in Sect. 3, will be inferred from publicly-available
eye fixation datasets.

To investigate this point, we select 8 state-of-the-art models (GBVS [3],
Judd [12], RARE2012 [13], AWS [5], Le Meur [4], Bruce [7], Hou [8] and Itti [6])
and aggregate their saliency maps into a unique one. The following subsections
present the tested aggregation methods. Two categories of methods have been
tested. The methods in the first category are unsupervised, meaning that there
is neither optimization nor prior knowledge on saliency maps. The methods in
the second category are supervised. Different algorithms are used to train the
best way to combine together saliency maps.
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Fig. 1. (a) Original picture; (b) saliency distribution obtained using 4 models (AWS,
Bruce, Hou and Le Meur); (c) to (j) the predicted saliency maps from the 8 state-of-

the-art saliency models considered in this study.

2.2 Unsupervised Methods

Six aggregation methods are tested here. The first 4 functions are based on a
simple weighted linear summation:

K
plalMy, - M) = 3w % plalMy) 1)

k=1
where p(z|My, -+, Mkg) is the probability of an image pixel x (z € (2, with
2 C R?) to be salient after the combination; p(x|My,--- , Mf) is positive or

null. My, is the saliency map produced by model k. p(z|My) is the probability
of an image pixel = from the saliency map M}, to be salient. wy is the weighting
coefficient, given that Zszl wg = 1 and wy, > 0,Vk. K is the number of saliency
maps (K = 8 in our case).

The main goal is to compute the weighting coefficients in order to improve
the degree of similarity between the ground truth and the aggregated saliency
map. These weights are computed thanks to the following methods:

— Uniform: weights w are uniform and spatially invariant, wy = %;
— Median: weights w are locally deduced from the saliency values. All weights
are null, except for the one which corresponds to the median value of the

saliency values for a given location. In this case, weights are spatially variant;
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— M-estimator: weights w are computed by a weight function commonly used
for robust regression. The weight function aims to limit the influence of outlier
data by decreasing their contributions. We consider three weight functions.
They are defined by the second derivatives of the Welsh, the L;Ls and the
Geman-McClure functions. The first one requires a parameter whereas the
other two functions are non-parametric:

W)

gweish(e(x|My)) = exp (—

1,1 (elal M) = = H(il — 3)
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gGeman( (:E‘Mk))

where, the error e(z|Mj,) for a location = and model & represents the deviation
between the current location and the average saliency value computed locally
over all saliency maps:

K
e(alMy) = (el M) — 2 303 plylMi) (5)

yev k=1

where v is a 3 x 3 local neighbourhood centred on x. Z is a normalization
factor. Functions gweish and ggeman further reduce the effect of large errors
compared to function gy, 1.,. Weights of equation (1) are finally given by wy =
gweish (e (x|My)), wr = gr,1, (e (x[M})) and wr = ggeman (e (x|My)) for
Welsh, L; Ly and the Geman-McClure function, respectively. For the function
gwelsh, the standard deviation is locally estimated using the K saliency maps.

— The last tested method is based on a global minimization of an energy func-
tion. Let Z be the set of pixels in the final saliency map and £ be the finite
set of labels. The labels correspond to the final saliency values (coming from
one given model) that we want to estimate at each pixel. A labeling f assigns
a label f, € L to each pixel = of image Z. The best labeling minimizes the
energy given below

=Y D) +A > Vifafy) (6)

peL (z,y)EN

where N is a 3 x 3 square neighbourhood, ) is a positive constant that controls
the trade-off between D(p) and V' (fs, fy). D(p) is the data cost and V' (fs, fy)
is the smoothness term. They are defined as

=33 @+ ulMy) — pla+u|M,))°

neL uev

V(n,m) = || plz|My) — p(y| M) |I> + || p(2z| M) — p(y| M) > (7)

The minimization of the energy FE is achieved using loopy belief propaga-
tion [14], and the number of iterations is set to 10.
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2.3 Supervised Learning Methods

In this section, the weights wy are computed by minimizing the residual r
between the actual and the predicted saliency values:

K
r(z) = p(e) = Y wip(eMy)|? (8)

k=1

where p(x) is the actual saliency deduced from the eye fixation dataset and
p(x|My,) is the saliency at location z for model M. The actual saliency map
which represents the ground truth is classically obtained by convolving the fix-
ation map (considering all visual fixations of all observers) by a 2D Gaussian
function, having a standard deviation of one degree of visual angle. More details
can be found in [15].

For a given image 7 defined over {2 C R?, and given that the number of
unknowns, i.e. K, which is much smaller than the number of locations in Z, the
optimal vector of weights W* can be computed by the least-squares method as
follows:

W* = arg min Z r(z) (9)

In this study, W* is computed by the following methods: The first one is the
classical least-squares method, noted as LS, which minimizes the residual error
between the actual and the aggregated saliency maps. One drawback is that the
weights do not sum to 1 and can be positive or negative. This makes the inter-
pretation difficult. This is the reason why three other methods have been tested.
Two methods are constraint least-squares problems. Adding constraints aims to
ease the interpretation of the computed weights. However, it is important to keep
in mind that introducing constraint will reduce the solution space. The first con-
straint is that the weights have to sum to one. The sum-to-one constraint of the
weights moves the LS problem onto the Locally Linear Embedding (LLE) [16].
Another constraint is that the weights are positive; this problem is similar to
the problem of Non-negative Matrix Factorization (NMF) [17]. Finally, we also
test a robust least-squares problem, noted as LSR. Instead of minimizing a sum
of squares of the residuals, we use a Huber-type M-estimator [18] to reduce the
influence of outliers. The algorithm simply consists in re-weighting iteratively
the residuals according to the Cauchy weighting function given that a higher
residual leads to a lower weight.

3 Performance

The performance of the aggregation functions have been evaluated on Bruce’s [7]
and Judd’s [12] eye fixation datasets. Four metrics were used: linear correla-
tion coefficient, Kullback-Leibler divergence, normalized scanpath saliency and
hit rate. The linear correlation coefficient, noted as CC, computes the linear
relationship between the ground truth saliency map and the predicted saliency
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Fig. 2. Ranking visual saliency models over two datasets. Top row: Bruce’s dataset;
Bottom row: Judd’s dataset. Four metrics are used. From left to right: correlation coeffi-
cient (CC), Kullback-Leibler divergence (KL), NSS (normalized scanpath saliency) and
HitRate. Models are ranked in the increasing order according to their performance.

map. There is a perfect linear relationship when CC = 1. The Kullback-Leibler
divergence, noted as KL, computes an overall dissimilarity between two distri-
butions. The first step is to transform the ground truth saliency map and the
predicted saliency maps into 2D distributions. The KL-divergence is positive or
null. The perfect similarity (KL = 0) is obtained when the two saliency maps
are strictly equal. The normalized scanpath saliency (NSS) proposed by [19]
involves a saliency map and a set of fixations. It aims at evaluating the saliency
values at fixation locations. The higher the NSS value, the better the predicted
saliency maps. The hit rate measure used in this study is similar to the measure
used in [12]. It involves a binarized saliency map and a set of fixations. It aims
at counting the number of fixations falling within the binarized salient areas.
By varying the binarization threshold, a hit rate curve is plotted. The hit rate
measure is simply the area under the curve. The chance level is given by 0.5,
whereas the highest similarity is given by 1. More details can be found in [15].

3.1 Performance of State-of-the-Art Models

Figure 2 illustrates the performance of the 8 selected models (GBVS [3], Judd [12],
RARE2012 [13], AWS [5], Le Meur [4], Bruce [7], Hou [8] and Itti [6]) over Bruce
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Fig. 3. Performance on Bruce’s dataset of the six aggregation functions: Avg (for aver-
age), Geman (for ggeman), L1L2 (for gr,1,), Welsh (for gweisn), LBP (for Loopy Belief
Propagation) and MED (for Median operator). These functions are tested when con-
sidering the top 2, top 4 and all models. For each metric, namely CC, KL, HitRate and
NSS, the aggregation functions are ranked from the lowest to the highest performance.
The orange bar indicates the performance of the best saliency model. For instance,
GBVS model achieves the best results on Bruce’s dataset for CC, KL and NSS metrics
(Color figure online).

and Judd datasets. According to our results, we find that the top 2 models are
GBVS and RARE2012, the top 4 models are GBVS, RARE2012, Judd and AWS.
This result is consistent with the recent benchmark of Borji et al. [20].

3.2 Performance of Saliency Aggregation

The aggregation functions described in Sect. 2 are applied on the top 2 (GBVS
and RARE2012), top 4 (GBVS, RARE2012, Judd, AWS) and the 8 saliency
models. Figure 3 gives the performance of the saliency aggregation on Bruce’s
dataset. The performance of the best saliency model (out of the 8 models) for
each metric is also indicated by the orange bar. From these results, we can draw
several conclusions.

1. Except for the KL-divergence, the aggregation of saliency map outperforms
the best saliency models in all cases. For instance, in terms of HitRate, the
best aggregation function, i.e. L1L2 TOP4 (meaning that the function gr, .,
is applied on the top 4 saliency models) performs at 0.878 whereas the best
saliency model performs at 0.864 (note that this gain is statistically significant
(paired t-test, p < 0.01)). For the KL-divergence, only the LBP TOP2,
avg TOP2, L1L2 TOP2 and WELSH TOP2 aggregation function perform
better than the best saliency model, i.e. RARE2012 model;
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2. The second observation is related to the number of saliency models required
to get the good performance. It is indeed interesting to notice that the aggre-
gation functions using all saliency maps get the lowest scores. At the opposite,
the best performances are obtained when the top 2 models are used for the
CC, KL and NSS metrics. For the hit rate metric, the aggregation of the top 4
models is ranked first. However, the performances between the aggregation of
the top 2 and top 4 models are not statistically significant. Considering more
models tend to decrease the performances, the worst case occurring when all
models are considered;

3. The third observation is related to the aggregation functions. The average,
L1L2 and Welsh functions perform similarly and better than the median and
LBP functions (considering the top 4 and top 2 models). The low performance
of the LBP method can be explained by the obvious difference and the lack
of spatial coherency between saliency maps as illustrated in Fig. 1.

To conclude, a simple aggregation function, such as the average function,
operating on the top 4 or top 2 models is a good candidate to improve signifi-
cantly the performance of saliency models. For the sake of simplicity, we could
only consider GBVS and RARE2012 models and average their saliency maps.
Note that on Judd’s dataset, we get similar trends (results are not presented
here due to the page limit). The best performance is given by the average of the
top 4 and the top 2 models.

Figure4(a) presents some results of the aggregation methods for a given
image. For this example, it is difficult to see a significant difference between the
average, Welsh and L1L2 methods. This is consistent with our previous findings
(see Fig.3). However, concerning the LBP method, we notice a lack of spatial
consistency, especially when all saliency maps are taken into account.

3.3 Performance of Supervised Methods

The optimal weights for aggregating the saliency maps are learned on Bruce’s
dataset. The different methods, namely LS, LSR, LLE and NMF, are evaluated
for the top 2, top 4 and all models. Figure5 illustrates the results on Bruce’s
dataset. The orange bar indicates the performance of the best saliency model.

As expected, the performance increases when the weights are learned. This
is perfectly normal since we seek for the weights minimizing the prediction error
(error between the ground truth and the aggregated saliency maps). What-
ever the regression methods, the learning process outperforms the best saliency
model, taken alone, in most of the tested configurations. There are only 3 cases
out of 48 for which the weight optimization does not bring any improvement.
Compared to the average of the top 2 models (performances were presented in
the previous section), results are more contrasted (see the green horizontal line
in Fig. 5): only the simple least-squares method involving all models (noted as LS
ALL) performs significantly better than the average of the top 2 models (except
for the KL metric).
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Fig. 4. Results of the aggregation obtained by (a) unsupervised and (b) supervised
approaches. The original image and the human saliency map (i.e. the ground truth)
are given on the top-left corner. On the top, the predicted saliency maps, obtained with
the 8 tested saliency models, are illustrated. Results of the average, Welsh, L1L2 and
LBP functions are shown in the green box (a) when the top 2, top 4 and all models are
considered. Results of the LS, LSR, LLE and NMF learning methods are shown in the
light blue box (b). On the right hand-side of the light blue box, the weights computed
by the LS and NMF methods (considering all the maps of saliency models) are given.
As we can see, RARE2012 model gets, for this particular example, the highest weights.
Notice that for the NMF method, weights are positive (Color figure online).

As soon as a constraint is added, such as the sum-to-one constraint of the
weights (LLE) or the positivity of the weights (NMF), performance tends to
decrease. This observation is valid when we consider the top 2, top 4 and all
models. Figure 4(b) presents some results of the supervised aggregation methods
for a given image.

Similar results have been observed on Judd’s dataset. The best learning func-
tion is the simple least-squares method involving all saliency maps; for instance,
in terms of HitRate, it achieves 0.91, whereas the average of the top 2 models
and the best model (Judd in this case) achieves 0.88. Figure 6 presents the results
on Judd’s dataset.

The learning results presented so far in Figs.5 and 6 have to be considered
as the upper-bound on the performance we can achieve by using a learning
method. Obviously, in practice, we do not know the ground truth represented
by the human saliency map, which is exactly what we want to predict.

To overcome this problem, we learn the weights for all pictures of Bruce’s and
Judd’s datasets. The method chosen is the simple least-squares method which



Saliency Aggregation: Does Unity Make Strength? 27

EmCC == GBVS == AVG_TOP2 EmKL == RARE2012 == AVG_TOP2

p4
p4
p2
p2
p4
p4
pd
p4
p4
p2
p2
p2

LSR_ALL
LLE_To,
NMF_Toj
NMF_Toj
NMF_ALL
LLE_ALL
LS_Toj
LS_Toj
LS_ALL
LLE_To,
LLE_ALL
LS_ALL
LS_Toj
LSR_Toj
LLE_Top2
LSR_ALL
NMF_ALL
NMF_Toj
LS_Toj
LSR_Toy
NMF_Toj

EmNSS <= GBVS «= AVG_TOP2 EmHitRate <= GBVS <= AVG_TOP2

p4
p4
P2
p2
P4
p2
p4
p2
P4
P2
p4
pa
p2

N o
= o

LSR _Toj
LLE_To
LSR _Tof

LSR_ALL
LLE_To

NMF_Topa

NMF_To
NMF_ALL

1S_Toy
LLE_ALL
LS_Toy
LS_ALL
LLE_To
LLE_To
LSR _Tof
LLE_ALL
LSR _Tof
LS_Toy
LS_To,
NMF_ALL
LSR_ALL
NMF_To
NMF_To
LS_ALL

Fig. 5. The performance for the four methods (LS, LSR, LLE and NMF) in terms of
(a) CC, (b) KL, (c¢) NSS and (d) HitRate on Bruce’s dataset. We combine all saliency
maps coming from the top 4 models (GBVS, RARE2012, Judd, AWS) and maps coming
from the top 2 models (GBVS and RARE2012). Methods are ranked from the lowest
to the highest performance.

is applied on the 8 saliency maps. This strategy is called LS ALL, in previous
paragraphs. As illustrated by Figs. 5 and 6, this method provides the best results.
Once all the weights have been computed (8 weights per image), we com-
pute the aggregated saliency map of an input image by using the pre-computed
weights corresponding to the nearest neighbor image of the input image. In other
words, we assume that the discrepancy between weights of two similar images is
not significant. Figure 7(a) presents the synoptic of the proposed method.
Given an input image, the first thing to do is to retrieve its nearest image from
the dataset. This problem can be efficiently handled by using the VLAD (Vec-
tor of Locally Aggregated Descriptors) method introduced by Jégou et al. [21].
VLAD is an image descriptor which has been designed to be very low dimen-
sional: only 16 bytes are required per image. The computation of VLAD descrip-
tor is based on the vector quantizing a locally invariant descriptor such as SIFT.
From the weights of the most similar image, the aggregated saliency map is
computed. We call this method WMSI, for Weight of Most Similar Image.
Figure 6 presents the results of the WMSI method (see the rightmost red
column). Whatever the metrics, the WMSI method gets the lowest performance
compared to the best saliency model, taken alone, the average of the two best
saliency maps and, as expected, the learning method LS ALL. These results
suggest that the initial assumption does not hold, i.e. similar images do not
have the same distribution of weights. However, it is necessary to tone down
this conclusion. Figure 8 illustrates this point. Two pairs of images ((a)—(b) and



28 O. Le Meur and Z. Liu

Judd’s Dataset [14]

KL NSS HitRate

0,90

'1' HLd Ny © P LG N> O
K $ KX Y & K v &
o ¢ S el © RPOICY RS
> >
Bruce’s Dataset [7]
0,25 0,90
NSS HitRate

0,85

0,80

Fig. 6. Performance of LS and WMSI methods on Bruce’s and Judd’s dataset. To ease
the comparison, the performance of the best saliency model and the performance of the
best aggregated method (average of the top 2 models) are displayed. The color code is
the same as Fig. 5: orange for the best saliency model, green for the best aggregation
method (avg Top2) and blue for the learning method (LS ALL). The red bar, called
WMSI (Weight of Most Similar Image), indicates the performance of the aggregation
method when the weights of the most similar image in the dataset are used (Color
figure online).

(¢)—(d)) are given: the image (b) is the most similar image to the image (a). The
VLAD score is equal to 0.22. The second pair of images (¢)—(d), for which image
(d) is the image which is the most similar to image (c) presents a low VLAD
score, i.e. 0.06.

In the first case, when the VLAD score is high, the two sets (optimal versus
weights of the similar image) of weights are strongly correlated r = 0.94. The
difference between the method LS ALL (which represents the upper-bound of
performance) and the WMSI method is limited: —0.012 and —0.015 for the
metrics CC and HitRate, respectively. For this case, the WMSI method provides
better results than GBVS and avg TOP2 methods.

The loss of performance is much more significant when the similarity score
is low. For image (c) and (d) in Fig.8, the gap between LS ALL and WMSI
becomes much more significant: —0.237 and —0.144 for the metrics CC and
HitRate, respectively. The two sets of weights are here not well correlated,
r = —0.42, and are negatively correlated. To go one step further on this point,
Fig.7(b) plots the relationship between performance loss and VLAD score on
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Fig. 7. (a) From a dataset composed of a number of still color images for which the
vector of weights W* is known, we compute the aggregated saliency map for any input
image. The first step is to compute the 8 saliency maps according to the 8 saliency
models. We search into the dataset the image which is the most similar to the input
image. This search is performed by using the VLAD method. The result of this search
query is a set of optimal weights. They are used to combine the 8 saliency maps. (b)
Loss of performance for the metric CC in function of VLAD score on Bruce’s dataset.
We ranked these images in the decreasing order according to the similarity score VLAD.
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Fig. 8. Weights differences: (a) to (d) represent four images extracted from Bruce’s
dataset. (b) is the nearest neighbors of (a) and (d) is the nearest neighbors of (¢) accord-
ing to the VLAD score. (e) and (f) are the weights for the pair of images (a) and (b) and
the pair of images (c) and (d), respectively.

Bruce’s dataset. The Y-axis displays the loss of performance when considering
the CC metric. To display the trend line, we smooth the raw data with a sliding
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average window using the two past and two next values. We observe that the loss
of performance in terms of CC metric is correlated to the similarity score VLAD
(the correlation coefficient is r = —0.41). The more similar the two images, the
less important is the loss.

These results suggest that a supervised method might improve the quality of
saliency map, provided that we succeed in finding an image similar to the input
one. However, regarding the trade-off quality of prediction versus complexity, our
study suggests that the simple average of the two best saliency maps is already
a good candidate.

4 Conclusion

In this paper, we investigate whether the aggregation of saliency maps can
improve the quality of eye fixation prediction or not. Simple aggregation methods
are tested as well as the supervised learning methods. Our experiments, requiring
the computation of more than 100,000 saliency maps, show that saliency aggre-
gation can consistently improve the performance in predicting where observers
look within a scene. Among the 6 tested unsupervised methods, the best method
is the simple average of the saliency maps from the top 2 best models. Consider-
ing more saliency maps do not allow to further improve the performance. Con-
cerning the supervised learning approaches, they do not succeed in improving
the performance on average. This is mainly due to the image matching: if the
similarity score between the input image and its most similar image is low, the
trained weights for combining the predicted saliency maps are not appropriate.
However, when the similarity score is high, we provide evidence that the loss is
limited, compared to the upper bound for which the weights are estimated by
minimizing the prediction error.

For critical applications for which the relevance and robustness of the saliency
map are fundamental such as video surveillance [22], object detection [23], clin-
ical diagnostic [24], implementation of traffic sign [25], the conclusion of this
study is interesting; the robustness of the prediction can be indeed enhanced
by either averaging the saliency maps of the top 2 models or by considering a
dedicated training dataset.

Future works will deal with the improvement of the learning methods as well
as other retrieval methods, given a query image. In this context, it will be also
required to define and build a very large database of eye tracking data.
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