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Abstract We use causal Bayesian networks for modelling experimental data on
scalar implicatures of numerals modified by the comparative quantifier ‘more than’.
The data are taken from the study of Cummins et al. (2012). They showed that
subjects infer upper bounds for the true number n when ‘more than n’ has been used.
They also showed that the difference between upper and lower bounds differs with
the roundness of n. We show how the data can be explained by a production model
of the speaker. We are interested in the architecture of such a model, and argue that
causal Bayesian networks provide a natural and promising approach.
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1 Introduction

Causal Bayesian networks (Pearl 2000) provide a natural framework for high–level
descriptions of the interaction of different (cognitive) modules involved in communi-
cation. In the simplest case, a Bayesian network is a sequence of random variables in
which the value of each variable conditionally depends on the value of the preceding
variable. For example, the speaker’s intended meaning depends on his world knowl-
edge, the signal which he produces depends on the intended meaning, the hearer’s
interpretation depends on the signal she receives, and subsequent actions she chooses
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may depend on the information gained from the signal. The state of the world, the
intended message, the signal, its interpretation, and the subsequent action can all be
seen as values of random variables which are causally dependent on each other in
a linear order. The Bayesian representation of the communication process can be
turned into a game by assuming that the random variables are independent players
which have to solve the coordination problem of successful communication. Games
of this type have been introduced under the name of error models in Benz (2012).
This model provides the background for the causal models which will be applied to
experimental data on the comparative quantifier ‘more than n’ (Cummins et al. 2012).

A key prerequisite for drawing the quantity implicature from ‘three’ to ‘not more
than three’ in e.g. ‘Nigel has three children’ is the assumption that the speaker
knows the exact number of Nigel’s children. This led to the assumption that ‘more
than n’ constructions generate no implicatures as the comparative quantifier ‘more
than’ signals that the speaker lacks sufficient knowledge for making a more precise
statement (Krifka 1999). However, experimental results from Cummins et al. (2012)
show that scalar implicatures are available from these constructions. For example, the
size of the interval defined by the estimated lower and upper bounds for the number
of people getting married is much higher in (1b) than in (1a):

(1) (a) More than 90 people got married today.
(b) More than 100 people got married today.

Cummins (2013) proposes an optimality theoretic model of the experimental find-
ings. It is a one–sided production model with free constraint ranking. The input–
output pairs are the speaker’s intended meaning and its linguistic realisation. Impli-
catures are calculated by inferring the speaker’s meaning from output. The model
has no theory of information states. We show that this, together with the ‘the winner
takes it all’ rule of optimality theory, means that it cannot fully account for ‘more
than’ implicatures with round numerals.

As did Cummins, we derive implicatures from a production model. However,
we represent it in the form of a causal Bayesian network: The first random vari-
able represents the state of the world, in example (1) the true number of people
getting married, the second variable represents the speaker’s information state, in
our example an interval in which the speaker expects the true number to lie, then
the third variable describes the possible linguistic output, and the fourth variable the
hearer’s interpretation of the output. The key step is the definition of the possible
speaker information states. We apply here the unmodified sequence rule of Jansen
and Pollmann (2001) such that an open interval (n, m) is a possible information state
if m immediately follows n in a sequence of natural numbers defined by Jansen and
Pollmann’s rule.1 Although this use of the sequence rule is not unproblematic from
a cognitive perspective, we show that the model predicts the experimental results of
Cummins et al. (2012) about implicatures from ‘more than n’ with round n.

1It defines sequences of round numbers in different scales, e.g. ‘5, 10, 15, . . . ,’ ‘10, 20, 30, . . .’ or
‘50, 100, 150, . . .’ The rule says that numbers appearing in approximation contexts like ‘between n
or m’ are always adjacent elements of such sequences, e.g. (20, 30), (50, 100), or (100, 150). See
the definition in (10) and examples in (11).
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In the experiments of Cummins, Sauerland and Solt, subjects were asked to
estimate the lower and upper bounds of the interval in which the true number of
people has to lie. As the use of a modified numeral ‘more than n’ does not allow
for an unambiguous reconstruction of the upper bound of the speaker’s information
state, the game theoreticmodel proposed in (Benz 2012) implies that the upper bound
cannot be part of the intended speaker meaning. This raises the question, how these
implicatures about upper bounds are related to scalar implicature. Based on our pro-
duction model, we argue that inferences about upper bounds are not communicated
non–natural information in the sense of Grice (1989, Chap. 14).

2 Scalar Implicature

Normally, an utterance of (2) will communicate that some but not all of the students
failed:

(2) Some of the students failed

Grice (1989, Chap. 2) distinguished between what is said (some, possibly all), i.e.
the semantic meaning of the utterance, and what is implicated (not all). Both aspects
are part of the intended speaker meaning. The implicated meaning is inferred from
the assumption that the speaker adheres to the so–called cooperative principle, and
a number of maxims. In short, they ask the speaker to be cooperative, and to say as
much (Quantity) as he knows (Quality) as long as it is relevant (Relation). In addition,
his presentation should be short, orderly, perspicuous, etc. (Manner). For Grice, an
implicature is a proposition which one can infer the speaker to believe in order to
maintain the assumption of cooperativity and adherence to the maxims. Implicatures
are, therefore, inferred after semantic meaning, hence pragmatic reasoning follows
semantic reasoning, except in cases of disambiguation and saturation of anaphors
and indexicals, which may involve pragmatic reasoning and precede semantic inter-
pretation. That implicatures are not part of semantic meaning can be seen from their
cancellability, i.e. they can be explicitly negated by the speaker as in ‘Some, in fact,
all of the students failed’.

The implicature from ‘some’ to ‘not all’ is explained by adherence to the maxim
of quantity: if the speaker had known that all failed, he would have said so (Quantity).
So, he cannot know that all failed. If it is assumed that he knows whether all failed
(Expert), then the implicature that not all failed follows.

This reasoning has been systematised by so–called neo–Griceans.2 In the previous
example, we find a scale 〈all, some〉 and a sentence frame A(x) ≡ ‘x of the students
failed’ such that A(all) semantically implies A(some) but not the other way round.
As we have seen, an utterance of the weaker A(some) implicates that ¬A(all).
This generalises as follows: given a scale 〈e1, . . . , en〉 of expressions of similar
complexity which can be filled into a sentence frame A(.) such that for i < j

2See Levinson (1983, Chap. 3) for a summary.
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A(ei ) → A(e j ) and A(e j ) �→ A(ei ), then an utterance of a weak alternative A(e j )

implicates that all stronger alternatives A(ei ), i < j , are false. In the following, we
write A(e j ) +> ¬A(ei ) if A(e j ) implicates ¬A(ei ).

According to the standard theory, numerals also define a scale 〈…, five, four, three,
two, one〉. This predicts that a use of ‘three’ will normally implicate that the same
sentence with ‘three’ replaced by ‘four’ is false:

(3) A: How many children does John have?
B: John has three children.
+> John does not have four children.

This assumes that a numeral as e.g. ‘three’ is semantically equivalent to ‘three or
more’. Hence, the sentence ‘John has three children’ is true semantically even if
John has four, five or more children. This assumption is supported by examples as
the following:

(4) (a) A: Does John have three children?
B: Yes, he has even four!

(b) All of the students solved three problems, some even five or six.

If ‘three’ would mean ‘exatly three’, then B could not answer with ‘yes’ in (4a), and
(4b) would be a contradiction.

One of the major issues of the standard theory is the question: what exactly
constitutes a scale?Not just any set of phrases 〈e1, . . . , en〉 ordered by logical strength
can form a valid scale. It is often assumed that the ei s have to be of equal complexity.
But even this condition is no guarantee for the ei s forming a scale.Modified numerals
are a case in point:

(5) (a) John has more than two children.
(b) John has more than three children.
(c) John has more than four children.

As ‘more than n+1’ implies ‘more than n’, then, assuming that 〈more than four,
more than three, more than two〉 forms a scale, an utterance of (5b) would implicate
that John does not have more than four children, and, hence, that he has exactly
four. Intuitively, the use of the modifier ‘more than’ indicates that the speaker does
not know the exact number. This was taken as evidence that comparatively modified
numerals do not form scales and, hence, do not give rise to implicatures (Krifka
1999; Fox and Hackl 2006).

3 Inferences from Comparatively Modified Numerals

Although comparativelymodified numerals do not give rise to the neo–Gricean scalar
implicature, they allow for some conversational inferences. The following examples
are taken from either Cummins (2011), Cummins et al. (2012), or Cummins (2013).
Consider:
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(6) London has more than 1000 inhabitants.

As an answer to the question ‘How many inhabitants has London?’, (6) is obviously
underinformative. It conveys the impression that London is a small city, and a naïve
addressee would clearly exclude the possibility that London has a million, let alone
10 million inhabitants. A similar effect is observable in the following example:

(7) (a) More than 80 people got married today.
(b) More than 90 people got married today.
(c) More than 100 people got married today.

The sentences give rise to different expectations about the size of the interval that
must contain the true number of people married that day. It should be larger for (7c)
than for (7b). Whereas (7c) seems to be compatible with the real number being 120,
(7b) suggests that less than 100 got married. Also (7a) seems to suggest a smaller
interval than (7c). In (8), the expected interval becomes even smaller. One would
expect that the true number is either 97, 98, or 99.

(8) More than 96 people got married today.

In addition to the inferences about the interval that must contain the true value,
comparatively modified numerals also give rise to certain ignorance implicatures.
For example, (8) conveys that the speaker does not knowwhethermore than 97 people
gotmarried that day. It has been claimed that, in general, ‘more than n’ gives rise to the
clausal implicatures ‘possibly n+1’ and ‘possibly more than n+1’ (Cummins 2013).

Central for the following discussion are the experiments by Cummins, Sauerland
and Solt (2012), who provide support for the claim that the use of ‘more than n’
invites additional inferences about the possible range of values. In their experiments,
test subjects had to answer a questionnaire on theAmazonMechanical Turk platform.
The items consisted of a short statement containing a modified numeral followed by
a question which asked subjects to estimate the true number. An example is shown
in Fig. 1.

Information A newspaper reported the following.

“[Numerical expression] people attended the public meeting about the
new highway construction project.”

Question Based on reading this, how many people do you think at-
tended the meeting?

Between and people attended [range condition]
people attended [single number condition]

Fig. 1 Example item from Cummins et al. (2012, p. 146)
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Low High
n = 100 100 (40) 150 (24)

101 (28) 125 (12)
120 (8)
200 (7)
1000 (5)

n = 110 110 (46) 120 (28)
111 (31) 150 (24)
100 (9) 200 (7)

119 (6)
130 (5)
115 (5)

Low High
n = 93 93 (32) 100 (34)

94 (29) 95 (14)
90 (14) 99 (7)

150 (6)
125 (5)

Fig. 2 Experimental results from Cummins et al. (2012)

Cummins et al. considered the modifiers ‘more than’ and ‘at least’. We are only
concerned with the cases in which the numerical expression of the test item was
‘more than n’. Cummins et al. further distinguished two types of estimates: in the
single number condition, subjects were required to provide a natural number; in the
range condition, they had to provide a lower and an upper bound (between m and
n) for the true number. In the following, we only consider the results for the range
condition, which are shown in Fig. 2.

The ‘Low’ column shows the different lower bounds for ‘more than n’, followed
in brackets by the number of subjects providing the lower bound. For example, 40
subjects gave a lower bound of 100 for the ‘more than 100’ condition, and 28 subjects
the lower bound 101. The ‘High’ column shows the different upper bounds.3 The
experimental data overall support the introspective data described before. However,
they also show that lower and upper bounds tend to be round numbers. They are
always round if n is round. Even for n = 93, which is not round, the bounds are
round numbers, or clearly chosen due to their proximity to a round number (99); the
only exceptions are 93 and 94.

To sum up, there is evidence that comparatively modified numerals invite infer-
enceswhichbear some similarity to standard scalar implicature. In particular, subjects
feel entitled to make guesses about the intervals which contain the true values.

4 An Optimality Theoretic Model

In (Cummins et al. 2012), the implicature from modified numerals were explained
as a kind of weaker implicature without being too explicit about the exact status
of these weaker implicature. In a theoretical article, Chris Cummins’s proposed an
optimality theoretic model of the experimental results (Cummins 2013).

3The table provides no indication of how lower and upper bounds were paired. So, the estimated
intervals cannot be reconstructed.
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Optimality Theory (OT) was introduced to phonology in the early 1990s (Prince
and Smolensky 1993). It describes grammar as a symbolic system in which sur-
face forms are considered solutions to a constraint optimisation problem. The con-
straints are violable and hierarchically ranked according to their strength such that
the stronger constraints strictly dominate the weaker constraints. In a production
model, the linguistic surface forms are the optimal output forms for an underly-
ing input form. Cummins (2013) proposes an OT production model in which the
constraints are special instances of Gricean maxims. The output forms are the
modified numerals ‘more than n’, for example, ‘more than 50’, ‘more than 60’,
‘more than 70’, etc. The input from which these surface forms are generated are the
speaker’s information states.

In the experiments of (Cummins et al. 2012), subjects first read a text containing
themodified numeral ‘more than n’, and had then to estimate lower and upper bounds
for the true number. For the experimental item shown in Fig. 1, the text may have
said, for example, that ‘More than 100 people attended the public meeting about the
new highway construction project.’ Cummins’s OT model is a model of the author
producing the text. It tells us for which speaker information states the text is an
optimal output. The assumption is that, as the OT model is common knowledge, the
subjects can use this knowledge for inferring the underlying information state, and
thereby for inferring the lower and upper bounds.

The optimal output for an information state is calculated with the help of a tableau
as that shown in (9). The left upper corner of (9) shows the information state of
knowing that between 101 and 109 people came to the meeting. In the column under
the information state all possible outputs are listed. Cummins assumes that only
modified numerals enter the competition. The constraints are listed in the top row.4

First, there is the Quality constraint, which asks the speaker to say only what he
believes to be true. This constraint is assumed never to be violated. It is therefore
always to be ranked highest. Next come the Quantity constraint, which asks the
speaker to choose the most informative output, and the Salience constraint, which
asks the speaker to choose round numbers. It is assumed that different speakers can
come with different rankings of Quantity and Salience. Hence, from the hearer
perspective, these constraints can be arbitrarily ordered. In (9), this is indicated by
the dashed vertical line between the last two columns.

(9)

101–109 Quality Quantity Salience

more than 110 ∗! ∗∗
☞ more than 100

more than 90 ∗! ∗∗
more than 80 ∗!∗ ∗

4The full model also contains a constraint preferring the re-use of previously mentioned (primed)
numerals. For the special problem of implicatures from ‘more than n’ for round numerals n, this
constraint can be left out of consideration. It becomes relevant for non–round numerals, as in ‘more
than 93’. We also changed constraint naming: Cummins’s tableaux do not include (Quality), and we
call the quantity maxim by its conventional name of Quantity instead of Informativity, which
Cummins chose.
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As the speaker believes that the true number of people coming to the meeting does
not exceed 109, it would violate the Quality constraint to say that ‘More than 110
came’. This is indicated by the ∗ in the column below Quality. All other numerals
satisfy the constraint. The numerals 90 and 80 are less informative than 100. This
is indicated by the ∗ in the column below Quantity. The violation is stronger for
80 than for 90, hence, 80 receives two stars and 90 only one star. The Salience
constraint measures the roundness of the chosen numeral. In the given example, 100
is rounder than 80, and 80 is rounder than 90 and 110. The violation of Salience,
shown in the last column, grows stronger with decreasing roundness.

An output F wins over another output G, if the first constraint for which they
differ is violated more strongly by G than by F . ‘More than 100’ is the only output
which satisfies all constraints. It therefore wins the competition. The ‘!’ in other rows
marks the first violationwhichmakes the corresponding output loose the competition
with the winning form.

Cummins’s measure of roundedness is based on the corpus studies of Jansen and
Pollmann (2001). As an indicator of the degree of roundness Jansen and Pollmann
considered the frequencies of numerals in approximation contexts created by, for
example, Dutch ‘ongeveer’, German ‘etwa’, French ‘environ’, and English ‘about’.
The more frequent a numeral is in such contexts, the rounder it is assumed to be.

Cummins’s OT model makes predictions about which numerals n are optimal in
‘more than n’ contexts. He provides an explanation for why round numerals allow for
a larger range of upper bounds. He also claims that his model explains the ignorance
implicature from ‘more than n’ to the speaker believes it possible that n+1 (♦n+1).

Thewider range of upper bounds for round numerals is explained as a consequence
of the free ranking of the Quantity and Salience constraints. For example, if the
speaker knows that the true number of people attending some event lies in the open
interval (150, 200), then, assuming that 100 is rounder than 150, it follows that a
speaker ranking Salience over Quantity will prefer the less precise ‘more than
100’ over ‘more than 150’. If, in contrast, the speaker knows that the true number
lies in some interval above 100, for example in the interval (110, 120), then there is
no constraint ranking which could make the choice of ‘more than 90’ optimal. This
restricts the allowed range for the true number to (90, 100) for ‘more than 90’, and
allows a wide range for ‘more than 100’. However, if the belief interval is (150, 200)
and Salience is ranked higher than Quantity, then the model not only predicts
that ‘more than 100’ wins over ‘more than 150’, but also that ‘more than 10’ wins
over ‘more than 100’, as 10 is rounder than 100.5 Hence, the speaker should choose
‘more than 10’. The model also predicts, as there is no higher number rounder than
100, that ‘more than 100’ wins over all alternatives ‘more than n’ for numbers n
greater than 100. This is a consequence of the ‘the winner takes it all’ property of
OT models. It entails that the most salient number N , whichever it is, has no upper
bound, and all other numbers greater than N can only be used ifQuantity is ranked

5In fact, this depends on which number is considered to be roundest. For example, the frequency
graph in (Jansen and Pollmann 2001, p. 193) shows an even higher peak for 20 than for 10. However,
pure frequencies may not be the best criteria of roundness.
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over Salience. The model entails, therefore, that the ignorance implicature only
exist for numbers which are preceded by a more salient number. For the maximally
salient numbers, the implicature from ‘more than N’ to ♦N + 1 does not hold true.
If someone who believes the true number to lie in (150, 200) can utter ‘more than
100’, then the addressee cannot infer from this utterance that the speaker believes
101 to be possible.6

As themodel imposes no restrictions on the possible speaker information states, no
inferences about upper bounds can be drawn if Quantity is ranked over Salience.
For example, if all intervals (110, Lu) are admissible information states of the
speaker, then from an utterance of ‘more than 110’ no restriction on the upper limit
Lu can be inferred. It could be arbitrarily large. Cummins obviously assumes some
restrictions on possible information states, but they are not made explicit in his
model.7

We sympathisewith Cummins’s approach of explaining the observed implicatures
from a production model. However, the model has shortcomings which warrant con-
sidering alternatives. In particular, it seems necessary to have a model that explicitly
describes the set of admissible information states. Without it no inferences can be
made about upper bounds.We alsowill drop the optimality theoretic framework.8 We
prefer a representation which describes the communication process and the experi-
mental situationmore directly. Aswe aremainly interested in the general architecture
of such a representation,we consider only a limited subset of the experimental results.
For example, we leave out of consideration non–round numerals, as, for example,
93.9 The main question in the next section is how to account for the influence of
roundedness on the estimated difference between lower and upper bounds even if it
is assumed that the speaker tries to be as informative as possible, i.e. even if, in OT
terms, the speaker ranks Quantity over Salience.

5 A Causal Bayesian Network Model

Our aim is to explain the experimental data shown in Fig. 2 on ‘more than 100’. The
main effort will be to set up a model of the author producing the text appearing in the
questionnaire shown in Fig. 1, for example, the text ‘More than 100 people attended
the public meeting about the new highway construction project.’

In Fig. 3, a model of the experimental situation which starts with a reported (imag-
inary) event and concludes with the test subject’s answer is shown. Each node in this

6This reveals a (minor) inconsistency in Cummins’s argumentation (2013), as he claims that the
ignorance implicature always holds true.
7Excluding examples with anaphoric uses, Cummins always considers information states (n, m) for
which n and m are adjacent round numbers. Making this aspect explicit would presumably reveal
the same application of Jansen and Pollmann’s sequence rule as in our own model.
8Itmay also be debated that anOTmodelwith free constraint ranking is still in the spirit of optimality
theory.
9For these numerals, Cummins has also to apply a different model with an additional constraint.
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N (n, m) ‘more than n’ 〈lb, ub〉
World Knowledge Utterance Estimate

forced estimate in experiment

Fig. 3 A model of the Cummins, Sauerland, and Solt experiment (2012)

sequence corresponds to a random variable in a causal Bayesian network. The val-
ues of the first variable named World are natural numbers N , those of the third
variable named Utterance are sentences containing ‘more than n’ for some natural
number n, and the values of the last variable named Estimate are pairs 〈lb, ub〉 of
lower and upper bounds for the true number N . In order to complete this model, it
has to be known which values the variable named Knowledge can take, and it has
to be known what the conditional probabilities of the various values are.

We will identify the knowledge states with open intervals (n, m) using Jansen and
Pollmann’s unmodified sequence rule (Jansen andPollmann2001). It is obviously not
possible to determine the conditional probabilities. Fortunately, this is not necessary
as we will see once we know how to define implicature. We address this issue next.

5.1 Implicature in Bayesian Networks

In a Bayesian network, the different random variables carry information about each
other. For our purposes, we can assume that communication is describable by a linear
sequence of random variables (Xi , Pi )

n
i=1 with conditional probabilities Pi (xi |xi−1)

defined for xi ∈ Xi and xi−1 ∈ Xi−1.With the product probability P(x1, . . . , xn) =
P1(x1) × · · · × Pn(xn|xn−1), we can define the probability that the i th variable has
a value in some set X given that the j th variable has a value in Y as follows10:

Pi | j (X |Y ) := P(π−1
i (X) ∩ π−1

j (Y ))

P(π−1
j (Y ))

with πk(x1, . . . , xn) = xk . (1)

In a linear Bayesian network describing communication, one variable will describe
the utterances the speaker produces. Let us assume it is the j th variable, and that the
utterance is F . Then we can say that the utterance of F implicates that some other
variable Xi has a value in X iff Pi | j (X |F) = 1.

It follows that, in order to determine implicature, it is only necessary to know
which values xi of a variable Xi are consistent with an utterance of F . Hence, it
suffices to know for which xi Pi | j (xi |F) > 0.

10Whenever a probability appears in the denominator, we implicitly assume that it is greater than
zero. If X or Y is a singleton set, for example Y = {y}, the brackets around y are omitted in argument
positions of probability distributions.
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This definition is justified by Grice’s contention (1989, p. 86) that ‘what is im-
plicated is what it [sic!] is required that one assume a speaker to think in order to
preserve the assumption that he is observing the Cooperative Principle (and per-
haps some conversational maxims as well), …’ The most obvious interpretation is
that what is implicated by an utterance of F is the information that is carried by F
about values of variables representing the speaker’s beliefs.11

5.2 Knowledge States and the Sequence Rule

All estimated lower and upper bounds shown in Fig. 2 are round numbers, or differ
only by a value of one froma roundnumber.Aswehave seen, the speaker’s preference
for round numbers is also a key element of Cummins’s OT model. In the Bayesian
network in Fig. 3, the (imaginary) speaker’s first task is to estimate the true number
of people taking part in some event. We assume with Cummins’s that this estimate
is some interval. More specifically, we assume that it is an open interval (n, m) with
at least two elements defined by two round numbers n and m. To further restrict
the admissible pairs of numbers n, m, we make use of the corpus study by Jansen
and Pollmann (2001) who found that pairs of numbers n, m in the approximative
construction ‘about n or m’ follow the following rule:

(10) Sequence rule:12 For context ‘about n or m’, the numbers n, m follow each
other directly in a sequence:

Lk,l = {i (k × 10l) ∈ N | i ∈ N} with k = 1, 2, 1/2, 1/4, and l ≥ 0. (2)

The following list in (11) shows all sequences which are relevant to us.

(11)

L1,0 = 1, 2, 3, 4, 5, . . .
L2,0 = 2, 4, 6, 8, 10, . . .
L1/2,1 = 5, 10, 15, 20, . . .
L1,1 = 10, 20, 30, 40, 50,
. . .

L2,1 = 20, 40, 60, 80, . . .
L1/4,2 = 25, 50, 75, . . .
L1/2,2 = 50, 100, 150, 200, . . .
L1,2 = 100, 200, 300, 400, 500,
. . .

11This definition deviates from common usage in so far as it includes literal meaning in implicated
meaning, whereas what is implicated is generally understood to be the meaning that is commu-
nicated but not literally expressed. For simplicity, we use this inclusive definition, which can be
easily modified to bring it more in line with common usage. We may mention that Grice’s original
characterisation of conversational implicatures also does not exclude literal meaning (Grice 1989,
p. 30f).
12This is the unmodified sequence rule. Jannsen and Pollmann (2001) see no justification for the
inclusion of k = 1/4. However, we can ignore this modification for our purposes. For k = 1/4,
l must be greater than 1 to make sure that all elements of L1/4,l are natural.
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Let us write (n, m) � Lk,l if n and m are consecutive numbers in sequence Lk,l . We
assume that (n, m) is a possible information state if n andm are consecutive numbers
in some sequence Lk,l . In addition, we assume that the speaker’s estimate is correct,
i.e. that the true number N is an element of (n, m). Translated into conditional
probabilities P((n, m)|N ), this means:

P((n, m)|N ) > 0 iff ∃k∃l > 0 : (n, m) � Lk,l ∧ N ∈ (n, m). (3)

As mentioned before, it suffices for implicature calculation to know when
probabilities are greater zero. In order to rule out intervals with one or zero ele-
ments, we assume that l > 0.

5.3 Speaker’s Strategy and Experimental Data

The last parameter to be fixed for the model in Fig. 3 is the probability with which
the speaker chooses ‘more than n’ given that his knowledge state is (n′, m′). In
game theoretic terminology, this conditional probability can be called the speaker’s
strategy. We make the assumption that the speaker can only produce Fn = ‘more
than n’ if n′ = n:

S(Fn|(n′, m′)) > 0 iff n = n′. (4)

The situations represented by condition (4) correspond to those situations in which
Quantity is ranked higher than Salience in Cummins’s optimality theoreticmodel.
As we have seen, for these cases, the optimality theoretic model cannot make pre-
dictions about upper bounds. In Sect. 5.4, we will shortly discuss cases in which the
speaker could have beenmore informative; for example, cases inwhich he could have
been more informative because he knew that exactly 93 people came to an event, but
nevertheless chose the less informative lower bound ‘more than 90’.

This completes the set-up of our model. The probabilities with which the test
subjects choose their estimates and the nature of the estimates are provided by the
experimental data.

The table in (12) lists the belief intervals which have probability greater zero given
that the speaker uttered Fn for the numbers n = 80, 90, 100. To each interval, the
sequence to which the interval belongs is added. More precisely, if F is the name
of the random variable representing utterances, and Θ the random variable for the
speaker’s belief, then the intervals (n, m) listed in table (12) are those for which
PΘ|F ((n′, m′)|Fn) > 0.
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(12) Fn belief intervals

‘more than 80’ L1/2,1 (80, 85) L1,1 (80, 90)
L2,1 (80, 100)

‘more than 90’ L1/2,1 (90, 95) L1,1 (90, 100)

‘more than 100’ L1/2,1 (100, 105) L1,1 (100, 110)
L2,1 (100, 120) L1/4,2 (100, 125)
L1/2,2 (100, 150) L1,2 (100, 200)

Given our definition of implicature, this table says that an utterance of ‘more than
80’ implicates that the speaker believes that the true number is an element of (80, 85),
(80, 90), or (80, 100). Likewise, an utterance of ‘more than 100’ implicates that the
speaker estimates the true number to lie in one of the intervals with lower bound
100 and upper bounds 105, 110, 120, 125, 150, and 200. Accordingly, following
from the assumption that the speaker’s beliefs are true, an utterance of ‘more than
100’ implicates that the true number lies in the interval (100, 200), and an utterance
of ‘more than 80’ that it lies in the interval (80, 100). The model accounts for the
different ranges of estimated intervalswithout having to rank the preference for round
numbers over the preference for information. Equation (4) entails that the speaker
chooses the most informative version of ‘more than n’. The model also accounts for
the ignorance implicature ‘more than n’ implicating possibly n + 1.

It is difficult to say how test subjects construed the task in the questionnaire. They
were not explicitly asked for implicatures, only for estimated lower and upper limits
of the true number N . It is plausible to assume that they provided probable and safe
limits within which the speaker’s belief intervals lie. The experimental results for
‘more than 100’ are repeated in (13). We find a good match between the predicted
set of possible upper bounds and elicited upper bounds. The only predicted upper
bounds which cannot be found in the experimental data are 105 and 110, and the
only upper bound not predicted is 1000.

(13) Low High
n = 100 100 (40) 150 (24)

101 (28) 125 (12)
120 (8)
200 (7)
1000 (5)

A plausible reason for the missing 105 and 110 is that the resulting intervals would
be too small. As test subjects had no information about speakers, the belief intervals
(100, 105) and (100, 110)would have been too unlikely to be the only speaker types.
On the other side, the estimated upper bound of 1000 may be the result of a special
safety strategy of test subjects.13

13In the cognitive literature it is also argued that the distances on themental number line are rescaled
according to some logarithmic rule (Dehaene 2011). This may have an effect on choosing upper
bounds which is not accounted for in our model but may explain why some people estimate the true
number to lie between ‘100 and 1000.’
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5.4 Extensions of the Basic Model

In the basic model we only considered the case in which the assumed speaker of the
test sentence believes that the true number N can lie anywhere in an open interval
(n, m). When he produces an utterance with ‘more than’, then he always chooses n
as the lower bound. This was encoded in Eq. (4). In this section, we consider other
strategies which may lead to utterances containing ‘more than n’. The reasoning is
admittedly even more speculative than in the previous sections. The aim is to show
that the constraints over possible estimates for the interval containing the true number
N that may be produced by the test subjects remain valid also when considering other
speaker strategies which might have produced the test sentences. A second aim is
to show how the sequence rule might be used to capture a variety of other reasons
leading to utterances with numerals modified by ‘more than’.

We first consider the following possibility: If the speaker says that ‘More than 90
people attended the public meeting about the new highway construction project’, it is
conceivable that he knows that exactly 93 people attended but chose the round number
90 as lower bound for ‘more than n’. In Cummins’smodel one has to assume here that
Salience outranksQuantity. If the speaker knows that exactly N people attended,
the dominance of Salience overQuantitymeans that the speaker must choose the
roundest number n smaller or equal to N . However, as we have seen, the restriction
to the roundest number smaller than N seems to be too strong a requirement. We
will now show how a prediction about possible lower bounds n can be derived from
the sequence rule. It can be assumed that the different sequences Lk,l resulting from
different choices of numbers k = 1, 2, 1/2, 1/4 and l ∈ N represent different levels of
precision with which the speaker wants to describe the true situation. In the following
model, it is assumed that the speaker, who knows that exactly N people attended,
first chooses a level of precision Lk,l with which he wants to describe the situation,
and then the largest number n in Lk,l which is smaller than N as a lower bound
for ‘more than n’. The following constraint, which modifies the conditions stated
in Eqs. (3) and (4), captures this idea. It says that Fn = ‘more than n’ is a possible
utterance if there is an interval (n, m) of adjacent numbers in some sequence Lkl

which contains N :

S(Fn|N ) > 0 iff ∃k∃l > 0 ∃m > n : (n, m) � Lk,l ∧ N ∈ (n, m). (5)

For N = 93, this rule predicts that the speaker can produce the following sentences:

(14) (a) More than 90 people attended. ((n, m) = (90, 95), (90, 100))
(b) More than 80 people attended. ((n, m) = (80, 100))
(c) More than 75 people attended. ((n, m) = (75, 100))
(d) More than 50 people attended. ((n, m) = (50, 100))

These are all possibilities. Numbers like n = 20 or n = 10 are ruled out because
there is no sequence Lk,l for which there exist intervals (20, m) or (10, m) that would
contain 93 as an element. What is important with respect to the experimental data of
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Cummins et al. (2012) is that the strategy defined in (5) does not introduce expected
intervals (n, m) different from the intervals introduced by the basic rule in (4): If the
addressee hears that e.g. ‘more than 80 people attended’, then she can infer that the
true number is an element of (80, 100). So, even when the addressee does not know
whether the speaker’s information state is an interval or an exact number, she should
arrive at the same estimates.

Let us consider one further scenario. It is conceivable that the speaker counted
the people attending the meeting and stopped counting at, say, 91. He may be certain
that at least twomore attended, and, maybe, up to a hundred. When asked, howmany
were there, he may well answer ‘more than 90’. Also for such a scenario we can
derive a plausible model from Jansen and Pollmann’s sequence rule. In our example,
the speaker knows that at least 93 attended. So let N be any number, not necessarily
round, for which the speaker verified by counting that at least N attended. Then
the following strategy produces plausible ‘more than n’ utterances with round lower
bounds n:

S(Fn|(N , m)) > 0 iff ∃k∃l > 0 : (n, m) � Lk,l ∧ N ∈ (n, m). (6)

The predicted intervals for N = 93 are the same as in (14). This also means that the
hearer, when confronted with a ‘more than n’ message, has no reason to change her
estimates for the interval containing the true number.

As mentioned before, the modifications presented in this section are increas-
ingly speculative. However, they demonstrate how the model can be extended to
cover more scenarios in which the speaker can produce a comparatively modified
numeral. In terms of linguistic depth, the achievements may seem modest. Even
with the extensions presented, the model does not account for vague interpreta-
tions of unmodified numerals, as, for example, in ‘A hundred people came to the
talk’, which can mean that about 100 people came. It also does not account for an
utterance of ‘more than 93’. For these examples, the model has to take into account
additional parameters, e.g. previouslymentionednumerals, and contextually required
precision. This leads to nontrivial extensions, which we leave to future research.

Before we end this section, we provide an overview of how roundness can influ-
ence the experimental results in the setting of Cummins et al. (2012). In our basic
model, roundness entered the definition of conditional probabilities of belief inter-
vals. However, roundness can also influence the choice of utterances and the interval
estimation by the test subject. These possibilities are shown in Fig. 4.

N (n, m) F (lb, ub)
World Knowledge Utterance Estimate

R

Fig. 4 Influence of roundness R on probabilities
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If roundness determines the formation of belief intervals, then the (imaginary)
speaker of the ‘more than n’ sentence is restricted to belief states (n, m) with round
neighbours in a Jansen and Pollmann sequence, as assumed in our basic model. If
roundness enters the choice of utterance, then the speaker may produce ‘more than
100’ although he knows that there are more than 110. This is the case we have
considered in this section. There is also the possibility that roundness enters the
choice of the test subject’s estimate of the interval containing the true number. This
case we have not considered so far. For example, the test subject may estimate that
the true number is between 103 and 150, but when asked for lower and upper bounds,
she may respond between 100 and 150, simply because (100, 150) is a particularly
salient interval. However, to disentangle how roundness exactly influences which
module in Fig. 4 needs further experimental investigations.

6 Implicature in Which Sense?

In this section we consider the question what type of implicature are inferences from
‘more than n’ to upper bounds for the true n. Krifka (1999) maintained that ‘more
than n’ does not generate implicatures. Cummins et al. (2012) considered ‘more than
n’ implicature to be weak implicatures compared to standard scalar implicatures.
Cummins (2013) explained them as inferences about the speaker’s beliefs which are
inferred from an optimality theoretic production model. In this model, there seems
to be no principled difference between implicature from ‘more than n’ and those
from unmodified numerals, for example, from ‘John has three children’ to John has
exactly three children.

We quoted before a passage from Grice which says that an implicature is what
is required that one assume a speaker to think in order to preserve the assumption
that he is following the conversational maxims. This suggests that an implicature is
an inference about some belief of the speaker. However, in (Grice 1989, Chap. 14),
Grice defined communicated meaning as meaning that the speaker intended to com-
municate. Thismakes an implicature an inference about intentions, and not just about
some belief he happens to entertain. Accordingly, we can distinguish between two
types of implicature:

(15) (a) (Grice–B): A belief of the speaker. (Logic of Conversation, Grice 1989,
Chap. 2)

(b) (Grice–I): The part of the intendedmeaningwhich is not literally expressed.
(Meaning, Grice 1989, Chap. 14)

These implicature can be distinguished in a causal model if distinct nodes for beliefs
and intentions are introduced, as shown in Fig. 5.

The standard examples of scalar implicature in (16) are clearly part of what has
been communicated. Hence, they constitute Grice–I implicature.
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Fig. 5 Grice–B and Grice–I
implicature W Θ L F

World Knowledge Message Utterance

Grice–I

Grice–B

(16) (a) Some of the students failed the exam. +> not all failed.
(b) John has three children. +> He has not more than three.

However, the implicatures about upper bounds in (7), repeated here as (17), are
normally not part of what the speaker intended to communicate. In this sense they
are weaker implicature as Cummins et al. (2012) maintained.

(17) (a) More than 80 people got married today. +> between 80 and 100
(b) More than 90 people got married today. +> between 90 and 100
(c) More than 100 people got married today. +> between 100 and 200

This becomes also apparent from the causal model we considered in the previous
section. Implicature from ‘more than n’ were there considered inferences about the
speaker’s knowledge.

This also reconciles Krifka’s (1999) view that ‘more than n’ does not generate
implicature with the experimental results of (Cummins et al. 2012), if one assumes
that Krifka’s claim relates to Grice–I implicature, and not to Grice–B implicature.

7 Conclusion

The main aim of this paper was to show the usefulness of causal networks for
analysing the experimental setting in experiments of the type performed byCummins
et al. (2012). Causal networks provide a high level description of communication by
showing the causal dependencies between different modules in language production
and interpretation. They are a very natural framework to use. We have seen how to
explicate the notion of implicature in these networks as inferences from one special
variable representing utterances to properties of other variables. This provided us
with a general definition, and we could show that, in spite of its abstractness, it helps
to make fine distinctions within the group of quantity implicature.

We have seen that the model provides a good match for upper bounds of ‘more
than 100’. It explains why differences between lower and upper bounds are larger
for round numbers. It also shows that this pattern is consistent with the assumption
that the speaker tries to be as informative as possible. Hence, the data are consistent
with the ignorance implicature from ‘more than n’ to ‘it is possible that n+1’. The
model also predicts that ‘more than n’ can only be used with round numbers.
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We have argued that pragmatic inferences from, for example, ‘more than 100’
to ‘less than 200’ are not Grice-I implicatures, hence, that they are not part of the
speaker’s intended message. This makes them different from implicatures triggered
by unmodified numerals, as, for example, by ‘John has three children’ implicating
that ‘John has exactly three children’. In this sense, we agree with (Krifka 1999; Fox
and Hackl 2006) that comparatively modified numerals do not give rise to standard
scalar implicatures. The experimental results of (Cummins et al. 2012) seem to be
the consequence of general inferences about the speaker’s probable knowledge state.
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