Chapter 2
Discretization and Formulation of Solution
Approaches

Abstract Discretization principles as a foundation for numerical approaches and
PDE solution methodologies are described, for space and time, from a bird’s-eye
view. Two PDE solution methodologies, based on the strong or the weak form, in
mesh-based and meshless methods, are introduced briefly.

Keywords Strong form + Weak form + Discretization of time

2.1 Background

In the previous section, we showed how to formulate a simple physical model for
heat transfer (see Eq.(1.4)). The formulated diffusion PDE depends on spatial and
temporal variables. Now, we model a more general problem as:

Zu(x) = g(x), X € 2, (2.1)
with boundary conditions:
PBu(x) = h(x), xel, 2.2)

where u is a continuous unknown solution, X is a vector of continuous independent
variables, .Z and 4 are differential operators, g and & are known functions, 2 is the
problem domain, and I is its boundary.

We continue by describing the functions in terms with which we will express the
numerical solutions of the PDEs:

e The basis functions p; are the members of the basis, a set of functions that spans
the space of the employed interpolating or approximating functions. The typical
basis functions are monomials, Gaussian, splines, etc.

e The shape functions ¢; are linear combination of the basis functions that can
reconstruct arbitrary field u# through an interpolation or approximation. The func-
tion can also be interpreted as a nodal approximation function of value 1 in node
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x; and 0 in all the other nodes from the global domain £2. The shape functions are
fully determined by the distribution of nodes and definition of basis functions. A
smooth, hat-shaped weight function w; can be applied to control the amount of
nodals’ impacts.

e The nodal trial function i; of a node x; is a parameterized function that approxi-
mates or interpolates the field u on the local support domain £2g;.

e The trial function 1 of the unknown solution u is a parameterized function that
approximates or interpolates the field u on the global domain 2.

To summarize, from suitable basis functions and nodal positions, we can cre-
ate shape functions that are used to construct the trial functions. The next chapter
describes in more details how this is done. Please note, that we will differentiate
between # and u only where the difference must be stressed, otherwise u will be
used for the approximate solution.

In most numerical methods for solving PDEs, the general strategy is to represent
continuous unknown field u, e.g., temperature, pressure, stress, velocity, etc., with
discrete values in a set of discretization points of independent variables, e.g., spatial
coordinates, time, or others. The spatial discretization strategy relies on a distribution
of N discretization points through the problem domain §2 for which a solution is
sought. We will term the discretization points as nodes:

x; € 2, for iefl,....N}, 2.3)

in order to distinguish them from any other points in the domain, e.g., evaluation
points for the calculation of numerical integrals, evaluation points for visualization,
etc. The independent variables x and the approximate solution # are discretized using
the set of nodes x; and the corresponding nodal parameters i (x;) = u;. The solution
in the nodes can encompass more variables, e.g., temperature, velocities, pressure,
displacements, etc., in such cases the vector notation u(x;) will be used.

The conceptual difference between mesh-based and meshless methods is in the
way the discretization nodes are treated. In mesh-based methods, they are organized
in a mesh before the solution procedure, using a priori knowledge about the neigh-
boring nodes of x; and the relations between them. In meshless methods, no a priori
knowledge about the nodal topology is required. To determine the support domains,
simple algorithms like Nearest Neighbors Search (NNS) can be used, either during
the simulation (SPH) or in a preprocess phase (DAM, LRBFCM).

In mesh-based methods, the discretization nodes can be organized in a mesh of
polygons, traditionally called elements. The mesh is usually determined by a list
of elements with the corresponding ordered nodes. Note that for regular meshes
with an isomorphic neighborhood of nodes (for example, the FDM), the list can
be generated explicitly, i.e., the neighboring nodes are determined by an explicit
function. Unfortunately, in many real cases with nonregular geometries in £2, such
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an approach is not appropriate. More sophisticated methods (for example, the FEM)
are based on the formation of polygons that can cover a generally shaped §2 and
adaptively maintain the discretization densities.

Alternatively, the unknown variables in the solution can be approximated with a
set of unconnected nodes. Instead of a mesh, we need an appropriate algorithm for
the selection of the nodes that influence the approximation. The collection of selected
nodes is known as the support domain 25 C 2. The selection of the strategy might
have a major impact on the solution quality and the execution performance of the
method. It is intuitively clear that with a denser discretization, higher accuracy in
the approximate solution can be achieved, i.e., the approximate solution converges to
the accurate solution of the PDE as the distances between Xx; limit to zero. This is true
for a linear case if the solution methodology is consistent—the local truncation error
goes to zero with denser discretization nodes, and stable—the approximate solution
remains bounded for the analyzed set of independent variables in the global problem
domain £2.

We can distinguish between the two basic formulations of the PDE solution
approaches:

e The strong formulation relies on the use of approximated derivatives in the PDE
and the determination of one equation for each node x; that satisfies the PDE.

e The weak formulation, on the other hand, tries to reach an optimal criterion for the
accuracy of the approximated solution over the entire domain §2, not in the nodes
only.

Generally, a numerical solution of a PDE is based on the spatial discretization of the
simulated global domain £2, including its boundary I", which converts the PDE (2.1)
with boundary conditions (2.2) into a system of algebraic equations:

Ku =f, (2.4)

with u the vector of the unknown solutions in nodes, K the global system matrix,
where elements of row i in columns j represent the relation of the node x; to the
nodes x;, and f the vector of the discretized right-hand side (rhs) of the PDE (2.1)
and its boundary conditions (2.2). The matrix K and the vector f are traditionally
named the stiffness matrix and the load vector, respectively. The names originate
from the field of mechanics [64].

In the local numerical methods, the solution values in the nodes depend only on
the nearest neighboring nodes, which can be defined either by a predefined mesh of
elements (the mesh-based approach) or by searching for a relatively small number
of nearest nodes that belong to the support domain. In both cases, the equations of
the final system can be obtained either by an approximation of the nodal derivatives
from .Z and Z and the satisfaction of the PDE for all the nodes (strong form) or
by a global minimization of the differences between the approximate and the exact
solutions over the entire domain 2 (weak form). Here, the Boundary Conditions
(BC) are expressed by a general differential operator %, however, commonly they
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are prescribed as Dirichlet or essential BC by Eq. (2.5) or as Neumann or natural BC
by Eq. (2.6) on the corresponding boundaries I" = I, U I';:

u(x) = u(x), (x) € Iy, (2.5)
8”;(") —3I®). el (2.6)
n

where #(x) and g(x) are the prescribed boundary functions and # is the normal to
the boundary. A weighted combination of both the above boundary conditions is
referred to as Robin BC

au(x) + b% =7(x), (X)el}, 2.7)

where a and b are scalars or, in more general cases, functions defined on [.. Term
7(x) is a prescribed boundary function.
If a PDE is time dependent, a separate initial condition must be prescribed explic-
itly by:
u(x, t) = ugp, t =ty, (2.8)

where u( is the known initial condition at 7g. The goal is to calculate the numerical
solution u(x,t) for any time ¢ > #y. A common solution approach is to first apply the
spatial discretization, to formulate an intermediate system of Ordinary Differential
Equations (ODEs), which the subsequent temporal discretization transforms into
a system of algebraic equations. Temporal discretization can be implemented by
explicit or implicit numerical methods. The explicit method computes the next time
step from the current state. Therefore, only a matrix vector multiplication is necessary
for the evaluation of the approximate solution in each time step. On the other hand,
the implicit methods seek the next time step solution by satisfying the PDE at hand.
Consequently, a global system must be solved with a different rhs in each time step.

The PDE (2.1) and corresponding BCs can be written in an alternative way as a
function of independent variables and their derivatives:

FX, u(X), ux (X), 4 x,(X), ..., U xx,(X),...) =0, (2.9)

where the partial derivatives, for example a derivative on x1, and a mixed derivative
on x| and x», are expressed by the part of subscripts following the comma:

Au(x) . (X)_a2u(x)
ax1 ’ s X1X2 -

Uy (X) = (2.10)

9x10x2

More details, explanations, and derivations of the above-mentioned approaches
are given in the following sections.
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2.2 Strong Form

An intuitive approach for the solution of the PDE (2.1) is based on its original, strong
form. The methodology is, in general, simple and straightforward. First, the domain
§2 is discretized with nodes x;. Then, a numerical approximation of the derivatives
appearing in the PDE (2.9) is expressed as a function of x. For each node, including
the boundary nodes, the unknown solution and its derivatives in the PDE are replaced
by their numerical approximations:

r(X) = F(X, 0(X), @, (X), & 5, (X), « oy Uxyx0(X)y 0. 0). (2.11)

The obtained function r(x) is the residual of the PDE (2.9), since it reflects the
inaccuracy or the error in the solution. Forcing the residual to be zero in each node,
we obtain a system of the kind Ku = f (2.4). The resulting global system (2.4) is
linear when F is linear. Moreover, when only a few neighboring nodes influence the
solution at each node, the system becomes sparse, and the method is considered a
local strong form method. There are many approaches for the approximation of the
derivatives, based on the Taylor series or on an analytical derivation of the interpolated
or approximated solutions with nodal trial functions. Note that differentiation is, by
its nature, an ill-conditioned problem and therefore the accuracy, in particular of
higher order derivatives, might be quite poor. The order of the accuracy can be
increased, besides by increasing the number of discretization nodes and also by
incorporating more neighboring nodes, which results in more complex processing
and more nonzero elements in the final system.

A mesh-based representative of the strong form approach is the well-known FDM,
where the Taylor expansion is used to approximate the derivatives in the nodes. The
meshless variants of the strong form approaches are, for example, the DAM and
the LRBFCM, which could also be understood as a generalization of the FDM. It
has been proved long ago in the Lax Richtmyer equivalence theorem [65] that the
FDM-based numerical solutions of well-posed PDEs converge to the true solutions.
An important characteristic of the strong form approach is that the solution values
between the nodes are not known; also the derivatives exist only in the discretization
nodes.

2.3 Weak Form

An alternative technique for the numerical solution of the PDE (2.1) is based on its
integral, weak form, which requires weaker consistency of the unknown solution.
The weak form can be obtained by variation methods [18] or by the weighted residual
method [52]. We will use the former, since it is often used in the meshless context.
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Replacing the unknown solution u# with its approximation # in Egs. (2.1) and (2.2)
enables an alternative formulation of the residuals:

r(x) = Zi(x) —g(x) and  F(x) = Bi(x) — h(x). (2.12)

The weighted residual method forces the residuals (2.12) to be orthogonal to each
of the given sets of test functions ¥. Such an approach leads to a weak form of
Eq. (2.1), expressed as:

/ r(xX)¥(x) d$2 +/ FXOW(x)dI =0, (2.13)
2 r

Test functions ¥ and ¥ can, in principle, be any nonzero functions that lead to a
convenient formulation, although the choice affects the implementation methodology
and its efficiency, and to some extent also the accuracy of the solution [66]. The test
functions must be sufficiently smooth to enable the calculation of the integrals in
(2.13).

The principle of orthogonality is schematically illustrated for a 2D case in Fig. 2.1.
The true solution u of a PDE does not usually lie in the subspace spanned by the
basis or shape functions ¢, because it cannot be exactly reconstructed by them. The
approximate solution @, which is approximated by ¢, will be optimal in some sense
if the residual r = u — 1 is orthogonal to the spanned subspace span (¢) (see the
bold, dotted vector r in Fig.2.1). The principle of orthogonality is formally applied
in Eq.(2.13).

By inserting (2.12) into (2.13), first term of Eq. (2.13) for £2 becomes:

/.i”ﬁ(x)lll(x)dﬂ—/ gx)¥(x)ds2 =0 (2.14)
2 2

span (¢ )

Fig.2.1 Theapproximate solution is optimal when the residual  (x) is the “shortest,” which happens
when it is orthogonal to the plane span (¢)
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For the sake of simplicity, let us consider for a moment only the first term of Eq. (2.14).
After applying the divergence rule we obtain:

/.,gﬂ(”ﬁ(x)-lr(x)d{z :/ .,s,ﬂ(f—”ﬁ(x)n,xq/(x)dr—/ 2 Vi)W, (x)ds2,
2 r 2
(2.15)

where the maximal degree of derivatives in u is denoted by a superscript of the
differential operator and n y is the derivative of the boundary normal. Note that the
required order of the derivatives of # is reduced by one, but the required order of
the derivatives of ¥ is increased by one. In an analogous way, the same is valid for
consecutive applications of the divergence rule. Such a transfer of the differentiation
from the unknown solution to the test functions enables a reduction of the required
highest derivatives in the weak form, which can be considered as an advantage of
the weak form methodology, in spite of its complex formulation.

Equation (2.14) must be valid for all internal nodes, therefore it leads to a system
of linear equations:

/,,sf(’—”ﬁ(x)n,xq/i(x)dr—/ z"—lm(x)w,-,x(x)dsz—/ gX)W;(x)dR =0,
r 2 2
(2.16)

with ¥; being test functions of discretization nodes. Equation (2.16) is a foundation
for further procedures of different weak form methods. The procedure for boundary
nodes is analogous but often much simpler because of simpler differential operator.

The selection of the test functions ¥; provide different methods. For example,
if the test functions are the residual r itself, we obtain f o rz(x)d.Q = 0, which
is the least square method. If the test functions are the Dirac delta function §, we
get the collocation method, because §(x — x;) = 0 in all x # x; from 2. Here,
f o '(x)8d 2 = 0 s fulfilled through r(x;) = 0 in nodes, which is the foundation of
the collocation methods. Finally, the well-known FEM is obtained if the interpolating
shape functions ¢; are also taken for the test functions.

Forcing the residual to be orthogonal on the entire domain, by applying the rule for
each node over its subdomain or element, we obtain a global equation system of the
kind Ku = f (2.4). The nonzero elements of K and f are determined by a numerical
evaluation of the integrals in Eq.(2.14), which usually represents the main part of
the computational complexity in weak form methods. For each discretization node,
all the contributions from the neighboring nodes are assembled in the global system
matrix, which is sparse again, but can be either symmetric or not, depending on the
selected test functions. The unknown parameters u; of the approximate solution are
obtained by a system solver that can be tailored to specific types of system matrices.
Now, the approximate solution @; can be reconstructed at any point from £2.

A mesh-based representative of the weak form approach is the well-known FEM,
based on the element wise interpolation with monomial-based shape functions.
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The meshless variant of the weak form approach is MLPGI1, which uses weight
functions of MLS approximation as the test functions. Typical representatives of both
strong and weak methods will be analyzed in more detail in subsequent chapters.

2.4 Discretization of Time

In many practical cases, physical phenomena are evolving in time and therefore the
modeling PDEs are time dependent, e.g. in a simulation of the cooling processes after
surgery [67, 68], in the analysis of solidification [69], in vibration analysis [70, 71],
etc. In all the enumerated cases, the evolution of the solution in time plays a crucial
role and thus the time becomes an important independent variable. The common
solution methodologies for time-dependent problems are based on time stepping and
the integration of the PDE over time. There are several approaches to tackle temporal
stepping, implemented either in explicit or implicit schemes. In the explicit methods,
the solution in the next time step is calculated as the prediction from past time steps
and, therefore, only a matrix vector multiplication is necessary. On the other hand,
in the implicit methods, the solution in the next time step is defined in terms of the
past steps as well as next time step, a yet unknown value; therefore, the solution of
a linear system of equations is required. The explicit methods are simpler; however,
they are unstable with larger time steps, while the implicit methods require a more
sophisticated solution approach and are more stable.

For example, the Verlet [72] or very similar leapfrog methods and other symplectic
[73] time integration methods are commonly used in particle methods like SPH and
molecular dynamics. Most of these methods achieve the second order of accuracy
in time and can be implemented in the explicit or implicit forms. The multistep
methods can provide even higher accuracy on account of the need to store data from
several previous time steps. This excessive data storage can be avoided by using
the time instances between two consecutive time steps, like in the Runge Kutta
methods [74]. There are also higher order multivalue methods that are based on
polynomial interpolation [75]. They have more freedom in the selection of time steps
and can easily achieve a higher accuracy and stability. Although the sophisticated
time discretization gains benefits in terms of the accuracy and stability, it loses much
with respect to computational time and in the implementation effort.

Suppose that the PDE from Eq.(2.1) depends, besides on space variables, also
on time. If we implement just a spatial discretization, as described in the previous
sections, and leave the time variable untouched, a global system of Ordinary Dif-
ferential Equations (ODEs), with unknown nodal parameters that depend on time,
can be constructed. Such a semidiscrete system can be solved by well-developed
methodologies for the solution of ODEs. Alternatively, the times could be treated as
the other independent variables, which leads to fully discrete methods. However, in
most practical implementations, the time is discretized separately. One of the prac-
tical reasons for this is the fact that “space” is usually bounded, but “time” remains
open into the future.
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If ODEs comprise time derivatives up to the order of k, denoted with u ,«, they
can be written in an explicit form as:

u = f(l,bt,u’t,u’tz,...,u’tk—l). 2.17)

The system can be transformed into an equivalent system of ODEs of first order
by introduction of k new unknowns uy = u, uy =u; , ..., U = U jp-1:

w, =[uis,uzs, oo k1, k] = luz, us, oo uk, @ ur,ug, . up)] = g, w).

(2.18)

Now, the discretization of time is applied, which transforms the system of ODEs into
a system of algebraic equations for each time step.

A general approach in the solution of a single time-dependent ODE u ; = g(t, u)
is to start from the initial time 7 with a given initial value u( and to follow the solution
trajectory determined by the ODE. The initial slope of the solution components is
determined from the ODE itself, by inserting the initial time and the initial value:
uf), = g(t, u’). Using the initial slope, the solution value u'! at the next time step
1| = ty + At can be predicted and then the slope at #; is calculated from the ODE
as: u}t =g(1, ul), and so on for all further time steps.

The simplest method based on this strategy is the explicit Euler’s method, which
estimates the solution u**! at time tr+1 = tx + At by:

uF ! = o 4 Arg(t, ub). (2.19)

Euler’s method can be derived from the Taylor series, by using just the first two
terms. The predicted solution value depends only on a single previous solution value
[75]. Unfortunately, explicit methods have a limited stability region that restricts the
length of A¢, which consequently prolongs the computing time to obtain the solution.

The stability region can be increased by using a more sophisticated, implicit
approach, that is used, for example, in the backward Euler’s method:

k+

ot = ok + Arg(ny g, uF . (2.20)

Now, the solution values in the next time step u**! are obtained with the evaluation of
ginu**!, which is still not known. If g is nonlinear an iterative solution methods must
be used. It can be shown [75] that the backward Euler’s method is unconditionally
stable. Both Euler methods are first-order accurate O (At).

By averaging the explicit and implicit Euler methods:

u = Ar(g (g, ub) + g, w2, (2.21)

a trapezoid method is defined, which is implicit, unconditionally stable and second-
order accurate O (At?). Alternatively, by defining the solution uk2 and its first
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L k+1 . . . . .
derivative u, % in the midpoint t;4| = #; + At/2, with the interpolation of the

current and next solution values, the well-known Crank—Nicolson time discretization
scheme is obtained [76]:

k+1 k k+1
u +u +1 u -
k+l - T’ u,t+2 - T (2.22)

[S]

u

Return now to our initial time-dependent PDE (2.1) and suppose that it has already
been discretized in space. The derived expressions for u and u ; are used as discretized
values of the unknown solution in the global ODE system:

Cu, (1) + Ku(r) — f = 0. (2.23)

Besides the stiffness matrix K and the load vector f, the matrix C, traditionally termed
the damping matrix, collects the terms related to the time derivatives.

For example, if the Crank—Nicolson method is used, the expressions from
Eq.(2.22) are inserted into the ODE (2.23), which finally results in a global sys-
tem of linear algebraic equations of the form:

AuFt! = Buk 4 Afkts (2.24)
where, for internal nodes:
A =2C+ AtK, B=2C - AtK. (2.25)

There are many numerical approaches for the solution of ODEs with unconditional
stability and higher accuracy. In choosing the time step, we would like to minimize
the calculation complexity with longer time steps and therefore fewer iteration steps
towards the final solution.

From the user’s point of view, a tolerable error estimation maxerr is needed for
the proper selection of the time step. In the case of Euler’s methods, the local error
in the time step k is approximately (Ar?/ 2)ukt2, which limits the time step size by:

At < /2maxerr/||u{;2 Il (2.26)

where ukt2 can be estimated from previous known solution values by:
k k—1
ut, —u;
b, ~ oL L (2.27)
N At

The final selection of the solution approach, i.e., explicit or implicit, is conditioned
by the stability, accuracy, execution time of the solution program, and above all,
by the ease of implementation. The explicit methods are simple to implement and
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computationally effective; their asymptotic complexity of the calculation, in each
time step, is O(bN), for N equations with b nonzero elements in each equation.
However, explicit stepping suffers from stability issues. It is clear that the calculation
of the solution cannot progress with the time steps faster than the physical phenomena
that are modeled by the PDE. For example, if we are modeling a convective wave,
we have to take care that the local information does not reach out of the support
domain within a time step. The condition is also known as the Courant Friedrichs
Lewy condition (CFL). For example, the CFL for the 1D wave equation solved by
the FDM can be written as

VXE <c, (2.28)

where vy is the local velocity and c is a criterion, which for explicit solvers is typically
equal to 1. Similarly, the stability of the 1D diffusion equation solved by the FDM is:

At

where D is the diffusion coefficient and c is a criterion, which for explicit solvers is
equal to 0.5. Equations (2.28) and (2.29) can also be derived formally [77].

On the other hand, the implicit methods provide a stable time stepping, but require
additional computation. In general, we have to solve a global system of equations
in order to advance to the next time step. While the system of equations is usu-
ally sparse, banded, and even symmetric, such an approach could still be beneficial,
particularly since advanced iterative solvers, e.g., the Biconjugate Gradient STABi-
lized (BiCGSTAB) method, are quite efficient, especially with a good preconditioner.
Since the solutions from two consecutive steps are in general similar, the precondi-
tioner can essentially be the solution from the previous time step. Consequently, the
system can often be solved in a single iteration step with a calculation complexity
of O(b>N) for N equations. The complexity is still considerably higher than in the
case of the explicit methods; however, the desired solution can be reached with a
significantly smaller number of time steps. Still, the longer time steps have to be
paid for by a more complex solution of the global system, i.e., more iterations in the
sparse solver.

2.5 Summary of Solution Methodology

Let us summarize the constitutive algorithms that are needed for the implementa-
tion of the PDE solution methodology. After the discretization of the independent
variables, a global system of algebraic equations or ODEs is obtained. If the PDE
is time dependent, the solution is built step by step as it develops over time. The
list of necessary constitutive steps of the solution methodology is given below, sepa-
rately for strong and weak formulations, either with the mesh-based or the meshless
approaches.
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Strong mesh-based forms:

mesh construction,

approximation of derivatives in nodes,

construction of the global system,

solution of the global system in the implicit methods,
matrix vector multiplication in the explicit methods.

Strong meshless forms:

placing of discretization nodes,

determination of the support domain,

approximation of derivatives in nodes,

construction of the global system,

solution of the global system in the implicit methods,
matrix vector multiplication in the explicit methods.

Weak mesh-based forms:

e mesh construction and determination of elements,

interpolation or approximation of the trial function by nodal shape functions over
each element,

for each element integrate the weak form,

construction of the global system,

solution of the global system in the implicit methods,

matrix vector multiplication in the explicit methods.

Weak meshless forms:

placing of discretization nodes,

determination of the nodal support domain for the construction of shape functions,
interpolation or the approximation of the trial function,

for each node, the integration of integrals in the weak form,

construction of the global system,

solution of the global system in the implicit methods,

matrix vector multiplication in the explicit methods,

reconstruction of the approximate solution from the fictitious parameters if the
Kronecker delta property is not satisfied.

The listed supporting algorithms, i.e., domain discretization, determination of

the support domain, interpolation and approximation, numerical integration, and the
solution of a liner system, are described in Chap. 3.
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