Chapter 2
Statistical Methods in QSAR/QSPR

Abstract QSAR/QSPR studies are aimed at developing correlation models using a
response of chemicals (activity/property) and chemical information data in a sta-
tistical approach. The regression- and classification-based strategies are employed
to serve the purpose of developing models for quantitative and graded response
data, respectively. In addition to the conventional methods, various machine
learning tools are also useful for QSAR/QSPR modeling analysis especially for
studies involving high-dimensional and complex chemical information data bearing
a nonlinear relationship with the response under consideration.
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2.1 Introduction

QSAR/QSPR models represent mathematical equations correlating the response of
chemicals (activity/property) with their structural and physicochemical information
in the form of numerical quantities, i.e., descriptors. Suitable statistical methods are
deployed to derive a robust mathematical correlation involving small to large
number of variables. Various regression- and classification-based methods are used
for this purpose. Regression-based approaches are employed when the response
data of chemicals are entirely numerical, i.e., quantitative, while qualitative or semi-
quantitative chemical response(s) are modeled using classification techniques. It
may be noted that the descriptors in both the cases of regression- and classification-
based methods will be explicitly quantitative values. The regression-based methods
enable the quantitative prediction of the response (activity/property), while classi-
fication methods allow categorization of the data points into several groups or
classes such as highly active and less active. In addition to the conventional
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methods, machine learning-based methods are also useful in developing QSAR/
QSPR models. It may be noted that the machine learning tools employing artificial
intelligence can also be used to solve regression- and classification-based problems.
Now, apart from the model development formalisms, various statistical tools are
also useful for feature selection from a large matrix of descriptor data. The feature
selection tools enable the use of suitable and relevant descriptors for a particular
response, thereby removing noises from the analysis. Furthermore, the descriptor
data matrix can also be subjected to various pruning methods to reduce intercor-
related and redundant chemical information. The developed QSAR models are also
subjected to several validation tests to check for the reliability of the developed
correlation models. After its development, a QSAR model is usually verified by
employing multiple statistical validation strategies giving an estimation of its pre-
dictivity and stability. According to the OECD guidelines, the development of a
QSAR model should comply with unambiguous algorithm strategies and the model
should pass various testes model fitness, robustness, and predictivity. The present
chapter gives an account of various statistical tools used for the data pretreatment,
feature selection, model development, and validation of QSAR/QSPR models.

2.2 Chemometric Tools

Chemometrics is the chemical discipline that uses statistical methods to design
optimal procedures, experiments, and objects, and to provide maximum chemical
information by analyzing chemical data.

2.2.1 Various Chemometric Tools Used in QSAR/QSPR

QSAR/QSPR is basically a statistical approach correlating the response property or

activity data with descriptors encoding chemical information. Such correlation may

be derived either in a regression-based approach (in cases where the response

property is quantitative and available in a continuous scale) or a classification-based

approach (in cases where the response property is graded or semi-quantitative).
The most commonly used regression-based approaches are as follows:

Multiple linear regression (MLR)
Partial least squares (PLS)

Some of the common classification-based approaches are as follows:

e Linear discriminant analysis (LDA)
e Cluster analysis
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Machine learning tools such as artificial neural network, support vector machine
are also very effective in developing predictive models, particularly handling with
high-dimensional and complex chemical information data showing a nonlinear
relationship with the response(s) of the chemicals. Some of the more popular and
commonly used chemometric tools will be briefly discussed in this chapter.
However, before any statistical model building method is applied, the QSAR/QSPR
data table may be required to be pretreated followed by application of a suitable
feature selection method.

2.2.2 Pretreatment of the Data Table

While preparing a QSAR table, care should be taken to ensure that the molecular
structures have been correctly drawn or imported, the biological activity (or other
response) data have been taken from an authentic source (and they have permissible
experimental errors) and the descriptor values have been computed using a vali-
dated software. The response data for a QSAR modeling set should ideally have a
normal distribution pattern. While clubbing two or more data sets, care must be
taken to ensure that all experiments performed to determine the response values
have used the same protocol. Care should also be taken to avoid duplicates in the
data set. The correct tautomeric form of the structure of the compounds should also
be considered. For computation of 3D descriptors, appropriate structure optimiza-
tion should have been carried out.

When a large number of descriptors have been calculated, an appropriate method
to remove less important or redundant descriptors should be applied. One can omit
the descriptors with a constant value for all observations and the descriptors
showing a very low variance. Only one descriptor among those showing high
mutual intercorrelation should be retained. Descriptors showing a very low corre-
lation with the response may also be omitted in order to thin the descriptor pool. In
some cases, a suitable scaling of the descriptors may also be required.

2.2.3 Feature Selection

The selection of appropriate descriptors for model development from a pool of a
large number of descriptors is an important step in QSAR modeling. Such selection
may be done in a variety of ways, including stepwise selection (using a suitable
stepping criterion, e.g., ‘F-for-inclusion’ and ‘F-for-exclusion’ based on partial
F-statistic), all possible subset selection, genetic method, and factor analysis.
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2.2.4 Multiple Linear Regression

Multiple linear regression or MLR [1] is a commonly used method in QSAR due to
its simplicity, transparency, reproducibility, and easy interpretability. The gen-
eralized expression of an MLR equation will be like the following:

Y=ay+a xXi+a xX+a3 xX5+---+a, XX, (21)

In the above expression, Y is the response or dependent variable, X;, X5, ..., X,
are descriptors (features or independent variables) present in the model with the
corresponding regression coefficients ay, ay, ..., a, respectively, and ay is the
constant term of the model. The interpretation of contribution of individual
descriptors X;, X, ..., X, is straightforward depending on the corresponding
coefficient value and its algebraic sign. Each regression coefficient should be sig-
nificant at p < 0.05 which can be checked from a ‘¢’ test. The descriptors present in
an MLR model should not be much intercorrelated. For a statistically reliable
model, the number of observations and number of descriptors should bear a ration
of at least 5:1. A MLR model that fits well the given data will lead to a scatter plot
(observed vs. calculated) showing a minimum deviation of the points from the line
of fit (Fig. 2.1). The quality of a MLR model is determined from a number of
metrics as described below.

Fig. 2.1 A scatter plot of the 5
observed and calculated
activity for an MLR model
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1. Determination coefficient (R?)
One can define the determination coefficient (R?) in the following manner:

R2 - 1_ E (Yobs - Ycalc)2 (22)

Z (ans - m)z

In the above equation, Y, stands for the observed response value, while Y., is
the model-derived calculated response and Y, is the average of the observed
response values. For the ideal model, the sum of squared residuals being 0, the
value of R? is 1. As the value of R? deviates from 1, the fitting quality of the model
deteriorates. The square root or R” is the multiple correlation coefficient (R).
2. Adjusted R* (R2)

If one goes on increasing the number of descriptors in a model for a fixed
number of observations, R? values will always increase, but this will lead to a
decrease in the degree of freedom and low statistical reliability. Thus, a high
value of R? is not necessarily as indication of a good statistical model that fits
well the available data. To reflect the explained variance (the fraction of the data
variance explained by the model) in a better way, adjusted R* which has been
defined in the following manner:

2
R = (N-1) xR —p (2.3)
N—-1-p
In the above expression, p is the number of predictor variables used in the
model development.
3. Variance ratio (F)
To judge the overall significance of the regression coefficients, the variance ratio
(the ration of regression mean square to deviations mean square) can be defined as
follows:

Z (Yculcfy)z

R
P Sy (24)

N-p—1

The F value has two degrees of freedom: p, N — p — 1. The computed F value of
a model should be significant at p < 0.05. For overall significance of the
regression coefficients, the F value should be high.

4. Standard error of estimate (s)
For a good model, the standard error of estimate of Y should be low and this is
defined as follows:

5= 7(?;’5 - Ycali)z (25)
-

It has a degree of freedom of N — p — 1.
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Note that development of MLR models and computation of various statistical
metrics can be done by the use of an open access tool available at http://dtclab.
webs.com/software-tools and http://teqip.jdvu.ac.in/QSAR_Tools/ and also from
the site http://aptsoftware.co.in/DTCMLRWeb/index.jsp.

2.2.5 Partial Least Squares (PLS)

While handling a large number of intercorrelated and noisy descriptors for a limited
number of data points, PLS is a better choice over MLR. PLS, being a general-
ization of MLR [2], tries to extract the latent variables (LV), which are functions of
the original variables, accounting for as much of the underlying factor variation as
possible while modeling the responses. Before the analysis, the X- and Y-variables
are often transformed to make their distributions fairly symmetrical. The response
variables are usually logarithmically transformed and the X variables should be
scaled appropriately. The linear PLS finds a few new variables (latent variables),
which are linear combinations of the original variables. When the number of LVs is
equal to the number of variables, the PLS model becomes same as the MLR model.
A strict test of the predictive significance of each PLS component is necessary, and
then stopping addition of new components when components start to be non-
significant. Cross-validation (CV) is a practical and reliable way to test this pre-
dictive significance. A PLS equation can be expressed in the same form as in MLR;
thus contributions of individual descriptors to the response can be easily found out.

2.2.6 Linear Discriminant Analysis

LDA [3] can separate two or more classes of objects and can thus be used for
classification problems. LDA performs the same task as MLR by predicting an
outcome when the response property has graded values and molecular descriptors
are continuous variables. LDA explicitly attempts to model the difference between
the classes of data. In a two-group situation, the predicted membership is calculated
by computing a discriminant function (DF) score for each case (Fig. 2.2). Then,
cases with DF values smaller than the cutoff value are classified as belonging to one
group, while those with values larger are classified into the other group. The DF
may take the following form:

DF=c; xX|+caxXo+ 4y XXp+a (2.6)

where DF is the discriminate function, which is a linear combination (sum) of the
discriminating variables, c is the discriminant coefficient or weight for that variable,
X is respondent’s score for that variable, a is a constant, m is the number of
predictor variables. The ¢’s are unstandardized discriminant coefficients analogous
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to the beta coefficients in the regression equation. These ¢’s maximize the distance
between the means of the criterion (dependent) variable. Good predictors tend to
have large standardized coefficients. After using an existing set of data to calculate
the DF and classify cases, any new cases (test samples) can then be classified.

In a stepwise DF analysis, the model is built step-by-step. Specifically, at each
step all variables are reviewed and evaluated to determine which one will contribute
most to the discrimination between groups. That variable will then be included in
the model, and the process starts again.

2.2.7 Cluster Analysis

Unlike LDA, cluster analysis [4] requires no prior knowledge about which elements
belong to which clusters. The clusters are defined through an analysis of the data.
Cluster analysis maximizes the similarity of cases within each cluster while max-
imizing the dissimilarity between groups that are initially unknown.

The hierarchical cluster analysis finds relatively homogeneous clusters of cases
based on dissimilarities or distances among objects. The most straightforward and
generally accepted way of computing distances between objects in a multi-
dimensional space is to compute the Euclidean distances or the squared Euclidean
distance. It starts with each case as a separate cluster and then combines the clusters
sequentially, reducing the number of clusters at each step until only one cluster is
left. A hierarchical tree diagram or dendrogram (Fig. 2.3) can be generated to show
the linkage points: the clusters are linked at increasing levels of dissimilarity.
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Fig. 2.3 Example of a Cluster 1 Cluster 2 Cluster 3 Cluster 4
dendrogram

The k-means clustering is a non-hierarchical method of clustering which can be
used when the number of clusters present in the objects or cases is known. It is an
unsupervised method of centroid-based clustering. In general, the k-means method
will produce the exact k different clusters. The method defines k centroids, one for
each cluster, placed as much as possible far away from each other. The next step is
to take each point belonging to a given data set and associate it to the nearest
centroid. When no point is pending, the positions of the k centroids are recalculated.
This procedure is repeated until the centroids no longer move.

2.3 Quality Metrics

2.3.1 Importance of Metrics for Determination of Quality
of OSAR Models

Advancement in fast and economical computational resources makes it feasible to
compute a large number of descriptors using various software tools. As a conse-
quence, one cannot deny the risk of chance correlations with the increasing number
of variables included in the QSAR model as compared to the limited number of
compounds usually employed for the model development [5]. On the other hand,
employing miscellaneous optimization tools, it is feasible to get models that can fit
well the experimental data but there always remains a chance of overfitting. Fitting
of data does not corroborate a good predictability of the model as the former is a
parameter for the statistical quality of the model. This is the main reason why
validation tools must be applied on the developed QSAR model to check its pre-
dictivity for new untested molecules. A flowchart for the method of development of
a dependable QSAR model along with the various validation methods with the
metrics commonly used are demonstrated in Fig. 2.4.
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Fig. 2.4 Fundamental steps for the generation of a QSAR model and employed validation

methods

2.3.2 Types of Validation

2.3.2.1 The OECD Principles

The OECD principles are the best possible outline of the essential points to be
addressed while developing reliable and reproducible QSAR models [6]. The
principles were formulated by QSAR experts in a meeting held in Setibal, Portugal,
in March 2002 as the guidelines for the validation of QSAR models, in particular
for regulatory purposes. These principles were later approved by the OECD
member countries, QSAR and regulatory communities at the 37th Joint Meeting of
the Chemicals Committee and Working Party on Chemicals, Pesticides and
Biotechnology in November 2004. The five guidelines adopted by the OECD

denoting validity of QSAR model are as follows:

e Principle 1—A defined endpoint
e Principle 2—An unambiguous algorithm
e Principle 3—A defined domain of applicability
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e Principle 4—Appropriate measures of goodness-of-fit, robustness and
predictivity
e Principle 5—A mechanistic interpretation, if possible.

The present challenge in the process of development of a QSAR model is no
longer in developing a model that is statistically sound to predict the activity within
the training set, but in developing a model with the capability to accurately predict
the activity of new chemicals.

2.3.2.2 Internal Validation

Internal validation of a QSAR model is performed based on the molecules used in
the model development. It involves activity prediction of the studied molecules
followed by estimation of parameters for detecting the precision of predictions. To
judge the quality and goodness-of-fit of the model, internal validation is an ideal
technique. But, the major disadvantage of this approach is the lack of predictability
of the model when it is applied to a new data set [7].

2.3.2.3 External Validation

One cannot judge the predictability of the developed model from internal validation
for an entirely new set of compounds, as internal validation considers the chemicals
belonging to the same set of compounds used for model development. Thus for
external validation, the available data set is usually divided into training and test
sets, then subsequently a model is developed with the training set, and then the
constructed model is employed to check the external validation employing the test
set molecules which are not utilized in the model development process. The
external validation ensures the predictability and applicability of the developed
QSAR model for the prediction of untested molecules [8].

Selection of Training and Test Sets

In general, the division of the data set into training and test sets must be executed in
such a manner that points representing both training and test sets are dispersed
within the entire descriptor space occupied by the whole data set and each point of
the test set is near to at least one compound of the training set. The following
approaches are mostly employed by the QSAR practitioners for the selection of the
training and test sets [8]:

1. Random selection: The data set may be divided by a mere random selection
process.

2. Based on Y-response: This approach is based on the activity (Y-response)
sampling. The complete range of the response is divided into bins and
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compounds belonging to each bin are assigned to the training or test sets ran-
domly or in customized way.

. Based on X-response: Properties and structural similarity of the molecules are

considered for the grouping of similar compounds. After that, a predecided
fraction of compounds is assigned to the training or test set manually or in some
regular way.

Most commonly employed tools for the rational division of the data sets are:

k-Means clustering,

Kohonen’s self-organizing map selection,
statistical molecular design,
Kennard—Stone selection,

sphere exclusion, and
extrapolation-oriented test set selection.

Note that the division of a data set using some common algorithms can be easily

done by the use of an open access tool available at http://teqip.jdvu.ac.in/fQSAR_
Tools/.

Applicability Domain (AD)

1.

Concept of the AD

The AD is defined as a theoretical region in the chemical space constructed by
both the model descriptors and modeled response. The applicability domain
plays a crucial role for estimating the uncertainty in the prediction of a particular
compound based on how similar it is to the compounds employed to construct
the QSAR model. Therefore, the prediction of a modeled response using QSAR
is applicable only if the compound being predicted falls within the AD of the
model as it is unfeasible to predict the whole universe of compounds using a
single QSAR model [9].

. Types of the AD approaches

The most commonly employed techniques for estimating interpolation regions
in a multivariate space are as follows:

(a) Ranges in the descriptor space,

(b) geometrical methods,

(c) distance-based methods,

(d) probability density distribution, and
(e) range of the response variable.

The first four approaches are based on the methodology used for interpolation

space characterization in the model descriptor space. On the contrary, the last one
depends solely on response space of the training set molecules. A compound can be
identified out of the AD, if: (a) at least one descriptor is out of range for the ranges
approach and (b) the distance between the chemical and the center of the training
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data set exceeds the threshold for distance approaches. The threshold for all kinds of
distance methods is the largest distance between the training set data points and the
center of the training data set.

2.3.3 Validation Metrics for Regression-Based QSAR Models

2.3.3.1 Metrics for Internal Validation

The most commonly employed internal metrics are discussed below [10]:

1. Leave-one-out (LOQ) cross-validation

To determine the LOO cross-validation, the training set is primarily modified by
eliminating one compound from the set. The QSAR model is then rebuilt based
on the remaining molecules of the training set using the descriptor combination
originally selected, and the activity of the deleted compound is computed based
on the resulting QSAR equation. This cycle is repeated until all the molecules of
the training set have been deleted once, and the predicted activity data obtained
for all the training set compounds are used for the calculation of various internal
validation parameters. Finally, the model predictivity is judged using the pre-
dicted residual sum of squares (PRESS) and cross-validated R? (0% for the
model while the value of standard deviation of error of prediction (SDEP) is
calculated from PRESS.

PRESS = > (Yobs — Yprea)” (2.7)

PRE
SDEP — /T RESS (2.8)

n

2
2 Z (Yobs(lrain) - Ypred(train)) PRESS
0" =1- - —=1- — s (2.9)
Z (Yobs(train) - Ytraining) Z (Yobs(train) - Ytraining)

In Egs. (2.7)-2.9), Yops and Y,q correspond to the observed and LOO-
predicted activity values, n refers to the number of observations, Yops(rain) 1 the
observed activity, ¥preq(ain 18 the predicted activity of the training set molecules
based on the LOO technique. The threshold value of Q? is 0.5.
2. Leave-many-out (LMO) cross-validation

The basic principle of the LMO technique or leave-some-out (LSO) technique is
that a definite portion of the training set is held out and eliminated in each cycle.
For each cycle, the model is constructed based on the remaining molecules (and
using the originally selected descriptors) and then the activity of the deleted
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compounds is predicted using the developed model. After all the cycles have
been completed, the predicted activity values of the compounds are used for the
calculation of the LMO-Q?.

3. True Q?
Hawkins et al. [11] proposed the concept of ‘true Q’ parameter, calculated
based on application of the variable selection strategy at each validation cycle.
The parameter may be a better tool for assessing model predictivity, chiefly in
the case of small data sets, compared to the traditional approach of the splitting
of the data set into training and test sets.

4. The r,% metric for internal validation
An acceptable value of Q* does not inevitably indicate that the predicted activity
data lie in close propinquity to the observed ones although there may exist a
good overall correlation between the values. Thus, to obviate this problem and
to better indicate the model predictability, the r,,> metrics introduced by Roy
et al. [12] may be computed by the following equations:

(rm2 +7 2)

P2 = 5 (2.10)

2
Arm =

rl — r;f’ (2.11)

Here, r,,> = r? x (1 -/ (2= ré)) and r2, = r* x (1 —/ (= r62)>. The

parameters > and r§ are the squared correlation coefficients between the

observed and (leave-one-out) predicted values of the compounds with and

without intercept, respectively. The parameter r62 bears the same meaning but
uses the reversed axes.

The W is the average value of rm? and r,’ﬂz, and Arfn is the absolute difference
between r,,,> and r:nz. In case of internal validation of the training set, the rmz(LOO)
and Armz(LOO) parameters can be employed and it has been shown that the value of
Armz(LOO) should preferably be lower than 0.2 provided that the value of rmz(LOO)
is more than 0.5. Roy et al. [13] proposed that the calculation of the 2, metrics

should be based on the scaled values of the observed and the predicted response
data. The scaling may be done based on the following equation.

Yi - Ymin
Scaled ¥; = (obs) (2.12)
Ymax(obs) - Ymin(obs)
Here, Y; refers to the observed/predicted response for the ith (1, 2, 3, ..., n)

compound in the training/test set. Besides these, Yinaxobs) and Ymincobs) indicate
the maximum and minimum values, respectively, for the observed response in
the training set compounds.
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To make the calculation of r,z,, metrics easier, a web application known as ‘r,%,
calculator’ (http://aptsoftware.co.in/rmsquare) has been also developed.

5. True 77, (LOO)
In case of LOO-CV, r2, is calculated based on the LOO-predicted activity values
of the training set and the parameter is referred to as e (Loo), While the true e
ooy value is obtained from the model developed from the undivided data set
after the application of variable selection strategy at each cycle of validation
[14]. The ‘true 72, ooy metric may reflect characteristics of external validation
without loss of chemical information.

6. Metrics for chance correlation: Y-randomization
Y-randomization is performed in order to ensure the robustness of the developed
QSAR model. In the Y-randomization test, validation is performed by permuting
the response values (Y) with respect to the X matrix which has been kept
unaltered. This method is generally performed in two different ways: (a) process
randomization and (b) model randomization performed at varying confidence
levels. The deviation in the values of the squared mean correlation coefficient of
the randomized model (R?) from the squared correlation coefficient of the non-
random model (R?) is reflected in the value of "Rg parameter computed from the

following equation [15]:
cp2 __
Rp_Rx\/RZ—Rf (2.13)

The threshold value of CR12, is 0.5. For a QSAR model having the corresponding
value above the stated limit, it might be considered that the model is not
obtained by chance only.

2.3.3.2 Metrics for External Validation

1. Predictive R (R}%red or Q(zm)
The Rlz)red reflects the degree of correlation between the observed and predicted
activity data of the test set.

2
Yo s(test) — Y red(tes
f)red —1— Z( bs test) pred(t t)) (2.14)

v 2
Z (Yobs(lesl) - Ytraining)

Here, Yopsiesty aNd Ypreq(iesy) are the observed and predicted activity data for the
test set compounds, while thinmg indicates the mean observed activity of the

training set molecules. Thus, models with values of R?

pred @bOVe the stipulated

value of 0.5 are considered to be well predictive.
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2. Golbraikh and Tropsha’s criteria
Golbraikh and Tropsha [16] proposed a set of parameters for determining the
external predictability of QSAR model. According to Golbraikh and Tropsha,
models are considered satisfactory, if all of the following conditions are satisfied:

(a) Qtzraining >0.5.

) R > 06
© =7 01 and 085<k<115 or
p
r_ r/2
5> <01 and 085 <K< LIS

@ |3 —r0’|<0.3.

The meaning of the 7 and 3 terms is already discussed in the ‘r2, metric for

internal validation’ section.

3. The r,z,,(test) metric for external validation
In order to verify the propinquity between the observed and predicted data, the
parameter rf,mst), similar to er(Loo) used in internal validation, has been
developed by Roy et al. [12]. The value of rﬁz(test) is calculated using the squared
correlation coefficients between the observed and predicted activity of the test
set compounds. For the acceptable prediction, the value of ArZ, (testy Should

preferably be lower than 0.2 provided that the value of rm(ztesl) is more than 0.5.

More interestingly, Roy and coworkers established that this tool can be extended
to the entire data set employing the LOO-predicted activity for the training set
and predicted activity for the test set compounds. These parameters have been

referred to as rm% and Arﬁ, (overaly Which reflect the predictive ability of the

overall)
model for the entire data set.

4. RMSEP
External predictive ability of a QSAR model may further be determined by root
mean square error in prediction (rmsep) given by Eq. (2.15).

2
RMSEP — \/Z (yobs(test) ypred(lest)) (2 15)
Hext
Here, n.,, refers to the number of test set compounds.
2
5. Q(m)
Q(zn) is based on prediction of test set compounds (Q(ZFZ)) proposed by

Schiitirmann et al. [17] as given by Eq. (2.16).

2
Q?Fz) —1— Z (Yobs(test) - Ypred(test)) (2 16)
— 2 M
Z (Yobs(test) - Ylest)
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Here, Y,y refers to the mean observed data of the test set compounds.
A threshold value 0.5 is defined for this parameter.

6. 0

(F3)

The Q(zm)metric with a threshold value of 0.5, for validation of a QSAR model

has been proposed by Consonni et al. [18]. This parameter is defined as follows:

[Z (Yobs(tesl) - Ypred(tesl)>2:| /next
|:Z (Yobs(train) - Ytrain)2:| /ntr

(2.17)

where n, refers to the number of compounds in the training set. However,
although the value of Q(zm measures the model predictability, it is sensitive to

training set data selection and tends to penalize models fitted to a very
homogeneous data set even if predictions are close to the truth.

7. Concordance correlation coefficient (CCC)
The CCC parameter can be calculated in order to check the model reliability by
the following equation [19]:

2 27:1 (xobs(test) - xobs(test)) <ypred(test) - ypred(lest))
Pe =

n 2 n 2
25:1 (xobs(test) - xobs(test)) + Zi:l (ypred(tesl) - ypred(lesl)) + n(xobs(lesl) - ypred(test))
(2.18)

In the above equation, Xops(esty ANd Ypredcesyy correspond to the observed and
predicted values of the test compounds, n is the number of chemicals, and
Xobs(iest) AN Ypred(iest) correspond to the averages of the observed and predicted
values, respectively, for the test compounds. The ideal value of CCC should be
equal to 1.

The rm%mk) metric

In order to assess the closeness between the order of the predicted activity and that

of the observed activity, the ri(mk) parameter was developed. The rfn( metric is

computed based on the correlation of the ranks generated for the observed and the
predicted response data. An ideal ranking where the observed and the predicted
response data perfectly match with each other yields zero difference between the
two values for each molecule, and the r;(mm metric attains a value of unity.

rank)

rn21(rank) = r(zrank) X (1 - r(2rank) - r(z)(mnk)) (219)
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2.3.4 Validation Metrics Employed in Classification-Based
OSAR

Validation metrics can assess the performance of the classification-based models in
terms of accurate qualitative prediction of the dependent variable. Commonly
applied metrics for classification-based QSAR models are illustrated below [20]:

2.3.4.1 Parameters for Goodness-of-Fit and Quality Determination

1. Wilks lambda (A) statistics
The Wilks lambda is a metric for the testing of significance of a discriminant
model function and determined as the ratio of within group sum of squares and
total sum of squares, i.e., within-category to total dispersion.

Wilks /1 — Within group sum of squares (2.20)
Total sum of squares

The Wilks lambda value spans from 0 to 1, where 0 corresponds to good level
of discrimination and 1 refers to no discrimination.

2. Canonical index (R,)
The quantification of the strength of the relationship between the dependent and
independent variables is articulated as a canonical correlation coefficient.

R = . (2.21)

Here, /; is referred as eigen value of the matrix.

3. Chi-square (%)
The quality of classification-based model is also judged using the chi-square (y%)
statistic.

t - )2
7= ZL F{?’) (2.22)
i=1 !

where f; is observed response, F; is predicted response, and ¢ is the number of
observations.

4. Squared Mahalanobis distance
The square of Mahalanobis distance is calculated for the determination of
probability of a compound to be classified in a definite group in the discriminant
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space for LDA. In a multivariate normal distribution with covariance matrix X,
the Mahalanobis distance between any two data points x; and x; can be defined
as follows:

imahalanobis (Xiyx]‘) = \/(X,‘ - )CJ')TZ -1 (Xi — X/) (223)

where x; and x; are two random data points, T is transpose of a matrix, and !
is inverse of the covariance matrix.

2.3.4.2 Metrics for Model Performance Parameters

1.

Sensitivity, Specificity, and Accuracy

The compounds classified employing the classification-based QSAR model can
be divided into four categories based on a comparison between the predicted and
observed response:

(a) True positives (TP): the active compounds which have been correctly
predicted as actives,

(b) False negatives (FN): this class includes the active compounds which have
been erroneously classified as inactives,

(c) False positives (FP): this class comprises the inactive compounds wrongly
classified as actives,

(d) True negatives (TN): this class accounts for the inactive compounds which
have been accurately predicted as inactives.

Based on the two-by-two confusion matrix, the following metrics can be

computed to evaluate the classifier model performance and -classification

capability.

TP
Sensitivity = Recall = —— 2.24
ensitivity ecall = 7o TEN (2.24)
TN
ificity = —— 2.2
Specificity N £ FP (2.25)
TP + TN
Accuracy = s (2.26)
TP + FP + TN + FN

. F-measure and Precision

The F-measure refers to the harmonic mean of recall and precision, where recall
refers to the accuracy of real prediction and precision defines the accuracy of a
predicted class.
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2(Recall) (Precision)

F-meas = 2.27
freasure Recall + Precision ( )
TP
Precision = ————— = fp rate (2.28)
TP + FP

3. G-means
Combining sensitivity and specificity into a single parameter via the geometric
mean (G-means) allows for a straightforward way to assess the model’s ability
to perfectly classify active and inactive samples using the formula:

G-means = /Sensitivity x Specificity (2.29)

4. Cohen’s «
Cohen’s kappa (k) can be employed to determine the agreement between
classification (predicted) models and known classifications. It can be defined as
follows:

P
Cohen’s k = a

o) (2.30)
Py(a) = (TP +TN) (231)
' (TP +FP +FN + TN) '
Po(e) = {(TP+FP) x (TP +FN)} + {(TN + FP) x (TN + FN)} (232)

(TP + FN + FP 4+ TN)?

Here, P,(a) is the relative observed agreement between the predicted
classification of the model and the known classification, and P,(e) is the
hypothetical probability of chance agreement. Cohen’s kappa analysis returns
values between —1 (no agreement) and 1 (complete agreement).

5. Matthews correlation coefficient (MCC)
The MCC is regarded as a balanced measure which can be employed even if the
classes are of diverse sizes. The MCC is simply a correlation coefficient between
the observed and predicted binary classifications, and it returns a value between
—1 and +1. A coefficient of +1 signifies a perfect prediction, O an average
random prediction, and —1 an inverse prediction. The MCC can be computed
directly from the confusion matrix using the formula:
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TP x TN — FP x FN
MCC = . . (2.33)
/(TP + FP)(TP + FN)(TN + FP)(TN + FN)

The meaning of TP, TN, FP, and FN are already discussed.

2.3.5 Parameters for Receiver Operating Characteristics
(ROC) Analysis

1. ROC curve
The ROC curve is a visual illustration of the success and error observed in a
classification model. The curve is plotted taking true positive rate (tp) on the y-
axis and false-positive rate (fp) on the x-axis, and the characteristics of the curve
provides easier recognition of the precision of prediction [21].

Positives (active molecules) correctly classified .
tp rate ~ - = Sensitivity
Total postives

(2.34)

Negatives (inactive compounds) incorrectly classified

Total negatives
= 1 — specificity (2.33)

fp rate =

The ROC curve signifies the number of objects the classifier identifies correctly
as well as the number wrongly identified by the classifier.
2. ROCED and ROCFIT

Two metrics based on distances in a ROC curve for the selection of classifi-
cation models with an correct balance in both training and test sets, namely the
ROC graph Euclidean distance (ROCED) and the ROC graph Euclidean dis-
tance corrected with fitness function (FIT(A)) or Wilks A (ROCFIT), are also
used [22]. The Euclidean distance between the perfect and a real classifier (d;)
expressed as a function of their respective values of sensitivity and specificity is

4 = \/ (Sep — Ser)z—i-(Spp - Spr)2 (2.36)

where Se,, and Se, are the respective sensitivity values of the perfect and the real
classifier, while Sp, and Sp, represent the specificity values of the perfect and
real classifier, respectively. Since the sensitivity and specificity for a perfect
classifier takes values of 1, the Euclidean distance can be expressed as
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dy = \/(1 — Se,)?+(1 — Sp,)? (2.37)
ROCED = (|d; — dy| + 1) X (dy + o) % (dr + 1) (2.38)

where d; and d, are representation of the distances in a ROC graph for the
training and test sets, respectively. ROCED takes values between O (perfect
classifier) and 4.5 (random classifier).

A new parameter ROCFIT has also been introduced. ROCFIT is defined as
follows:

ROCED
ROCFIT = oS (2.39)

2.3.5.1 Metrics for Pharmacological Distribution Diagram (PDD)

The PDD is a frequency distribution plot of a dependent variable where expectancy
values of the variable are plotted in the y-axis against numeric intervals of the
variable in the x-axis [23]. This graph visually signifies the overlapping regions of
the categories, e.g., positives and negatives. For a classification case comprising
two classes such as actives and inactives (or positives and negatives), two terms
named ‘active expectancy’ and ‘inactive expectancy’ may be defined as below
where the denominator is added with a numerical value of 100 to avoid division by
zZero:

.. Percentage of actives
Activity expectancy = E, =

2.40
(Percentage of inactives + 100) (240)

Percentage of inactives

Inactivity expectancy = E; = (2.41)

(Percentage of actives + 100)

where ‘a’ and ‘i’ are the number of occurrences of active and inactive compounds at
a specific range.

2.4 Conclusion

The QSAR/QSPR modeling technique involves the use of a significant number of
statistical tools and hence requires a good knowledge of chemometrics. The
developed QSAR model can furnish linear as well as nonlinear relationship
between the response and chemical attributes through regression-based as well as
classification-based analyses. Since, quantitative mathematical relationships are
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established, validation of the models using a suitable statistical algorithm becomes
essential to confirm the stability and predictivity of the models. The judgment for
the choice of method depends upon a multitude of factors including the response to
be modeled, the nature of the training set data, the type of descriptors used and also
its numbers, and even the objective of the analysis.
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