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Abstract. We focus on generalizing constructions of Batch Single-
Choice Cut-And-Choose Oblivious Transfer and Multi-sender k-out-of-n
Oblivious Transfer, which are at the core of efficient secure computa-
tion constructions proposed by Lindell et al. and the IPS compiler. Our
approach consists in showing that such primitives can be based on a
much weaker and simpler primitive called Verifiable Oblivious Transfer
(VOT) with low overhead. As an intermediate step we construct Gen-
eralized Oblivious Transfer from VOT. Finally, we show that Verifiable
Oblivious Transfer can be obtained from a structure preserving oblivious
transfer protocol (SPOT) through an efficient transformation that uses
Groth-Sahai proofs and structure preserving commitments.

1 Introduction

Secure multiparty computation (MPC) allows mutually distrustful parties to
compute functions on private data that they hold, without revealing their data
to each other. Obtaining efficient multiparty computation is a highly sought after
goal of cryptography since it can be employed in a multitude of practical appli-
cations, such as auctions, electronic voting and privacy preserving data analysis.
Notably, it is known that secure two-party computation can be achieved from
the garbled circuits technique first proposed by Yao [Yao86] and that general
MPC can be obtained from a basic primitive called oblivious transfer (OT),
which was introduced in [Rab81, EGL85]. The basic one-out-of-two oblivious
transfer (OT 2

1 ) is a two-party primitive where a sender inputs two messages
m0,m1 and a receiver inputs a bit c, referred to as the choice bit. The receiver
learns mc but not m1−c and the sender learns nothing about the receiver’s
choice (i.e. c). This primitive was proven to be sufficient for achieving MPC in
[Kil88, GMW87, CvdGT95].
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Even though many approaches for constructing MPC exist, only recently
methods that can be efficiently instantiated have been proposed. Among these
methods, the IPS compiler [IPS08] stands out as an important construction,
achieving MPC without honest majority in the OT-hybrid model. In this work,
we will focus on the cut-and-choose OT based construction and the improvement
of the IPS compiler introduced by Lindell et al. [LP11, LP12, LOP11, Lin13].

In the approaches for obtaining efficient MPC presented in [LP11, Lin13], the
authors employ cut-and-choose OT, where the sender inputs s pairs of messages
and the receiver can choose to learn both messages b0, b1 from s

2 input pairs,
while he only learns one of the messages in the remaining pairs. A batch version
of this primitive is then combined with Yao’s protocol to achieve efficient MPC.
In the improvement of the IPS compiler, the authors employ Multi-sender k-out-
of-n OT, where j senders input a set of n messages out of which a receiver can
choose to receive k messages. These complex primitives are usually constructed
from specific number-theoretic and algebraic assumptions yielding little insight
to their relationship with other generic and potentially simpler primitives.

In parallel to the efforts for obtaining efficient MPC, research has been devoted
to obtaining constructions of basic primitives that can be efficiently combined be-
tween themselves in order to obtain more complex primitives and protocols. One
of the main approach taken towards this goal has been called structure preserv-
ing cryptography, which aims at constructing primitives where basically all the
public information (e.g. signatures, public keys, ciphertexts and commitments)
are solely composed of bilinear group elements. This allows for the application
of efficient Groth-Sahai non-interactive zero knowledge (NIZK) proof systems
[GS08] (GS-Proofs) and efficient composition of primitives. Until now, the main
results in this area have been structure preserving signature and commitment
schemes [AFG+10, AGHO11] and encryption [CHK+11].

Our Contributions: The central goal of this paper is to present general con-
structions of the primitives used as the main building blocks in the frameworks
of [LP11, LOP11, LP12, Lin13] in the universal composability model [Can01].
In contrast to previous works, we present general reductions from such complex
primitives to simpler variants of OT without relying on specific number theoretic
assumptions. We present three main results:

– General Constructions of Multi-sender k-out-of-n OT (MSOT) and
Batch Single Choice Cut-and-Choose OT (CACOT) from Gener-
alized OT (GOT): We show that MSOT and CACOT can be obtained
GOT [IK97] combined with proper access structures. Differently from the
original constructions of [LP11, LP12, LOP11, Lin13], our constructions are
based on a simple generic primitive, not requiring Committed OT or spe-
cific computational assumptions. These constructions can be readily used to
instantiate the MPC frameworks presented in [LP11, LP12, LOP11, Lin13].

– Generalized Oblivious Transfer Based on Verifiable Oblivious
Transfer: Verifiable Oblivious Transfer (VOT) [CC00, JS07, KSV07] is a
flavor of 1-out-of-2 OT where the sender can reveal one of his messages at
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any point during the protocol execution allowing the receiver to verify that
this message is indeed one of the original sender’s inputs. We show that
GOT can be obtained from VOT, generalizing even more the constructions
described before. Our generic construction of GOT may be of independent
interest.

– Structure Preserving Oblivious Transfer (SPOT) and a Generic
Composable Constructions of Verifiable Oblivious Transfer: We
introduce SPOT, which is basically a 1-out-of-2 OT compatible with GS-
Proofs. We then build on this characteristic to provide a generic (non black-
box) construction of VOT from any SPOT protocol combined with structure
preserving extractable or equivocable commitments and Groth-Sahai NIZKs.
Differently from the VOT protocols of [CC00, JS07, KSV07], our construc-
tions are modular and independent of specific assumptions. Moreover, we
provide a concrete round optimal SPOT protocol based on a framework by
Peikert et al. [PVW08] and observe that the protocols in [CKWZ13] fit our
definitions. This notion is also of independent interest in other scenarios
besides general MPC.

1.1 Efficiency

Our constructions are as efficient as the underlying NIZK proof system, struc-
ture preserving commitment and SPOT. Hence, they can easily take advantage
of more efficient constructions of these primitives. In Table 1, we present an
estimate of the concrete complexity of our protocols when instantiated with
GS-Proofs and commitments [GS08] and our structure preserving variant of the
DDH based UC secure OT of [PVW08]. Our general constructions achieve es-
sentially the same round complexity as the previous DDH based constructions
of the same funtionalities. Our constructions incur higher communication and
computational overheads, which is expected since we do not optimize our pro-
tocols for an specific number theoretic assumptions as in previous works. We
remark that independently of their concrete efficiency, our protocols are the first
to realize MSOT and CACOT from generic primitives without relying on specific
number theoretic assumptions.

2 Preliminaries

Notations and Conventions. For any n ∈ N \ {0}, let [n] be the set {1, . . . , n}.
When D is a random variable or distribution, y

R← D denotes that y is randomly

selected from D according to its distribution. If S is a set, then x
U← S denotes

that x is uniformly selected from S. y := z denotes that y is set, defined or
substituted by z. When b is a fixed value, A(x) → b (e.g., A(x) → 1) denotes
the event that machine (or algorithm) A outputs b on input x. We say that a
function f : N → R is negligible in λ ∈ N if for every constant c ∈ N there exists
kc ∈ N such that f(λ) < λ−c for any λ > kc. Hereafter, we use f < negl(λ) to

mean that f is negligible in λ. We write X c≈ Y to denote that X and Y are
computationally indistinguishable.
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Table 1. Efficiency of our protocols compared to previous constructions based on DDH.
The column VOTs shows the number of VOTs needed in our general constructions,
“-” marks the previous protocols that do not enjoy general constructions. Exp. stands
for exponentiations and Pair. stands for bilinear pairings. n and s express the number
of inputs according to each protocol (explained in the respective sections), p is the
number of senders in MSOT and k is the number of messages transferred to the receiver.
Communication complexity is stated in terms of number of group elements exchanged.

Protocol VOTs Rounds
Computational
Complexity

Communication
Complexity

GOT Sec. 4 n 6
23n Exp.
+28 Pair.

24n+ k + 4

CACOT
Sec. 5 2ns 6

46ns Exp.
+56ns Pair.

48.5ns
+n+ 4

[LP11] - 6
11.5ns + 19n
+9s+ 5 Exp.

5ns + 11n
+5s+ 5

Modified
CACOT

Sec. 6 4ns+ s 6
92ns + 23s Exp.
112ns + 28s Pair.

16ns + 16s
+k + 4

[Lin13] - 21
10.5ns + 20.5ns
+n+ 26 Exp.

5ns + n
+11s + 15

MSOT
Sec. 7 pn 8

23pn Exp.
+28pn Pair.

24pn+ 4p+ k
p!/(p− 3)! + 4

[LOP11] - 7
4n+ 11(p− 1)n
+k(p− 1) Exp.

12pn+ 1

Bilinear Groups. Let G be a bilinear group generator that takes security parame-
ter 1λ as input and outputs a description of bilinear groupsΛ := (p,G,H,GT , e, g,
ĝ) where G, H and GT are groups of prime order p, g and ĝ are generators in G

and H, respectively, e is an efficient and non-degenerate map e : G×H → GT . If
G = H, then we call it the symmetric setting. If G �= H and there is no efficient
mapping between the groups, then we call it the asymmetric setting.

Symmetric External Decisional Diffie-Hellman Assumption. Intuitively, SXDH
is the assumption that the DDH assumption holds for both groups G and H

in a bilinear group Λ. Let GDDH1(1λ) be an algorithm that on input security

parameter λ, generates parameters Λ := (p,G,H,GT , e, g, ĝ)
R← G(1λ) (where G

is the bilinear group generator introduced in the previous paragraph.), chooses

exponents x, y, z
U← Zp, and outputs I := (Λ, gx, gy) and (x, y, z). When an

adversary is given I
R← GDDH1(1λ) and T ∈ G, it attempts to distinguish whether

T = gxy or T = gz. This is called the DDH1 problem. The advantage AdvDDH1
A (λ)

is defined as follows:

AdvDDH1
A (λ) :=

∣
∣
∣Pr

[

A(I, gxy) → 1
∣
∣
∣(I, x, y, z)

R← GDDH1(1λ);
]

− Pr
[

A(I, gz) → 1
∣
∣
∣(I, x, y, z)

R← GDDH1(1λ);
]∣
∣
∣
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Definition 1 (DDH1 Assumption).We say that the DDH1 assumption holds
if for all PPT (Probabilistic Polynomial Time) adversaries A, AdvDDH1

A (λ) <
negl(λ).

The DDH2 assumption is similarly defined in terms of group H. If both DDH1
and DDH2 assumptions hold simultaneously, then we say that the symmetric
external Diffie-Hellman (SXDH) assumption holds.

Universal Composability. The Universal Composability framework was intro-
duced by Canetti in [Can01] to analyse the security of cryptographic protocols
and primitives under arbitrary composition. In this framework, protocol security
is analysed by comparing an ideal world execution and a real world execution
under the supervision of an environment Z, which is represented by a PPT ma-
chine and has access to all communication between individual parties. In the
ideal world execution, dummy parties (possibly controlled by a PPT simulator)
interact directly with the ideal functionality F , which works as a fully secure
third party that computes the desired function or primitive. In the real world
execution, several PPT parties (possibly corrupted by a real world adversary A)
interact with each other by means of a protocol π that realizes the ideal function-
ality. The real world execution is represented by the ensemble EXECπ,A,Z , while
the ideal execution is represented by the IDEALF ,S,Z . The rationale behind
this framework lies in showing that the environment Z is not able to efficiently
distinguish between EXECπ,A,Z and IDEALF ,S,Z , thus implying that the real
world protocol is as secure as the ideal functionality. It is known that a setup
assumption is needed for UC realizing oblivious transfer as well as most “in-
teresting” ideal functionalities [CF01]. In this work we consider security against
static adversaries, i.e. the adversary can only corrupt parties before the protocol
execution starts. We consider malicious adversaries that may deviate from the
protocol in any arbitrary way. See [Can01] for further details.

Definition 2. A protocol π is said to UC-realize an ideal functionality F if, for
every adversary A, there exists a simulator S such that, for every environment
Z, the following holds:

EXECπ,A,Z
c≈ IDEALF ,S,Z

We present oblivious transfer (FOT ), commitment (FCOM ), and common ref-
erence string (FD

CRS) ideal functionalities in the full version of this paper.

3 Generic Construction of Verifiable OT from Structure
Preserving OT

In this section, we introduce Structure Preserving Oblivious Transfer (SPOT)
and use it to construct verifiable oblivious transfer (VOT).
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Structure Preserving Oblivious Transfer

Basically we require all the SPOT protocol messages (i.e. the protocol tran-
script) and inputs to be composed solely of group elements and the transcript to
be generated from the inputs by pairing product equations or multi exponenti-
ation equations, which allows us to apply GS proofs to prove relations between
the parties’ inputs and the protocol transcript. Further on, our general transfor-
mation will rely on GS proofs to show that a given sender input is associated
with a specific protocol transcript.

Definition 3 (Structure Preserving Oblivious Transfer). A structure pre-
serving oblivious transfer protocol taking inputs m0,m1 from the sender and c
from the receiver defined over a bilinear group Λ := (p,G,H,GT , e, g, ĝ) must
have the following properties:

1. Each of the sender’s input messages m0,m1 consists of elements of G or H.
2. All the messages exchanged between S and R (i.e. the protocol transcript)

consist of elements of G and H.
3. The relation between the protocol inputs m0,m1, c and a given protocol tran-

script is expressed by a set of pairing product equations or multi exponenti-
ation equations.

Notice that our general transformations can be applied to any OT protocol
in a bit by bit approach, by mapping the binary representation of each ele-
ment in a given protocol to specific group elements representing 0 and 1 and
applying GS proofs individually to each of those elements. However, this trivial
approach is extremely inefficient. The number of GS proofs and group elements
exchanged between parties would grow polynomially. The first OT protocol to
fit this definition was proposed in [GH08], but it relies simultaneously on the
SXDH, the DLIN and the q-hidden LSRW assumptions. A recent result by Choi
et. al. [CKWZ13] also introduced OT protocols based on DLIN and SXDH that
match out definition of SPOT. However, these protocols already require a GS
proof themselves, introducing extra overhead in applications that combine SPOT
with GS proofs.

Obtaining SPOT from Dual-Mode Cryptosystems

The starting point for constructing SPOT is the general framework for univer-
sally composable oblivious transfer protocols proposed by Peikert et al. [PVW08]
(hanceforth called PVW). The PVW framework provides a black-box construc-
tion of UC secure OT from dual-mode cryptosystems, which were initially instan-
tiated under the DDH, QR and LWE assumptions. Essentially, this framework
relies on an information theoretical reduction from UC secure OT to dual-mode
cryptosystems in the CRS model, such that the resulting OT protocol inher-
its the characteristics of the underlying dual-mode cryptosystem. In order to
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obtain an OT protocol compatible with GS-proofs, we convert the DDH based
dual-mode cryptosystem construction of [PVW08] into a scheme secure under
the SXDH assumption (which can also be used to instantiate GS proofs). This
scheme is then plugged in the PVW framework to obtain a UC secure OT pro-
tocol. Note that, in the resulting protocol, the CRS, all protocol messages and
inputs are composed solely by group elements. Moreover, all the protocol mes-
sages are generated by pairing product equations. Therefore, we obtain a SPOT
protocol whose security follows from the PVW framework. Our SXDH dual-mode
cryptosystem is constructed as follows:

– SetupMessy(1λ) Λ := (p,G,H,GT , e, g, ĝ)
R← G(1λ), g0, g1 U← G, x0, x1

U← Zp

where x0 �= x1. Let hb := gxb

b for b ∈ {0, 1}, crs := (g0, h0, g1, h1), and
t := (x0, x1). It outputs (crs, t).

– SetupDec(1λ) Λ := (p,G,H,GT , e, g, ĝ)
R← G(1λ), g0 U← G, y

U← Z
∗
p, g1 := gy0 ,

x
U← Zp, hb := gxb for b ∈ {0, 1}, crs := (g0, h0, g1, h1), and t := y. It outputs

(crs, t).

– Gen(σ) r
U← Zp, g := grσ, h := hr

σ, pk := (g, h) ∈ G
2, sk := r. It outputs

(pk, sk).

– Enc(pk, b,m) For pk = (g, h) and message m ∈ G, reads (gb, hb) from crs =

(g0, h0, g1, h1), chooses s, t
U← Zp, and computes u = gsbh

t
b, v = gsht. It

outputs ciphertext (u, v ·m) ∈ G
2.

– Dec(sk, c) c = (c0, c1), It outputs c1/c
sk
0 .

– FindMessy(t, pk) For input t = (x0, x1) where x0 �= x1, pk = (g, h), if h �= gx0 ,
then it outputs b = 0 as a messy branch. Otherwise, we have h = gx0 �= gx1 ,
so it outputs b = 1 as a messy branch.

– TrapGen(t) For input t = y, it chooses r
U← Zp, computes pk := (gr0 , h

r
0) and

outputs (pk, sk := r, sk1 := r/y).

Theorem 1. The cryptosystem described above is a Dual-Mode Cryptosystem
according to the definition of [PVW08] under the SXDH Assumption.

The proof of this theorem and details of the PVW framework can be found
in the full version of this paper, where we also describe how to use GS-proofs to
prove relations between protocol inputs and transcripts.

Obtaining VOT

Verifiable oblivious transfer is basically a 1-out-of-2 oblivious transfer where the
sender may choose to open one of its input messages mb where b ∈ {0, 1} at
any time, in such a way that the receiver is able to verify that this message had
indeed been provided as input. This notion is formalized by the following ideal
functionality:
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Functionality FV OT

FV OT interacts with a sender S a receiver R and an adversary S.
– Upon receiving (Send, sid, ssid, x0, x1) from the S, if the pair sid, ssid

has not been used, store (sid, ssid, x0, x1) and send (Receipt, sid, ssid)
to S,R and S .

– Upon receiving (Transfer, sid, ssid, c) from R, check if a (Transfer, sid,
ssid) message has already been sent, if not, send (transferred, sid, ssid,
xc) to the receiver and (transferred, sid, ssid,) to S, otherwise ignore the
message.

– Upon receiving (Open, sid, ssid, b) from the sender, send (reveal, sid,
ssid, b, xb) to the receiver.

We will construct a general protocol πV OT that realizes FV OT from any uni-
versally composable SPOT protocol πSPOT by combining it with a structure
preserving commitment πCOM (such as the schemes in [GS08][AFG+10]) and
Groth-Sahai NIZK proofs. An interesting property of this generic protocol is
that even though it was designed for an underlying structure preserving proto-
col that realizes the 1-out-of-2 OT functionality FOT , it can be applied multiple
times to the individual transfers of an adaptive OT protocol in order to obtain
verifiable adaptive OT. In this case, the same CRS can be reused for all the in-
dividual transfers. Notice that this is the first generic construction of universally
composable VOT.

We assume that both parties are running the underlying universally compos-
able structure preserving oblivious transfer protocol SPOT and describe the
extra steps needed to obtain VOT. In the context of πCOM , we denote commit-
ment to a message m by Com(m) and the opening of such a commitment by
Open(m).

Protocol πV OT : S inputs two messages m0,m1 and R inputs a choice bit c.

– Setup: A common reference string is generated containing the following
information:

• The description of a bilinear group Λ := (p,G,H,GT , e, g, ĝ).
• The public parameters for an instance of a Groth-Sahai non-interactive
zero knowledge proof system.

• The CRS for the underlying structure preserving commitment scheme
πCOM .

• The CRS for the underlying UC structure preserving OT πSPOT .

– Commitment Phase: Before starting πSPOT , S commits to m0 and m1

by sending (sid, ssid,Com(m0),Com(m1)) to R, where m0,m1 ∈ {0, 1}n
(Notice that it is possible to efficiently map the messages into corresponding
group elements that will serve as inputs to πSPOT [GH08]).
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– πSPOT protocol Execution: S and R run πSPOT storing all the messages
exchanged during the protocol execution up to the end of πSPOT with S’s
input (m0,m1) and R’s input c or until S decides to reveal one of its mes-
sages.

– Reveal Phase: If S decides to reveal one of its messagesmb where b ∈ {0, 1}
at any point of the protocol execution it sends a decommitment to mb and a
GS-proof ψ that the messages exchanged up to that point of the execution
contain a valid transfer of message mb, sending (sid, ssid, b,Open(mb), ψ) to
R.

– Verification Phase: After receiving the decommitment and the GS-proof,
R verifies ψ and the decommitment validity. If both are valid, it accepts the
revealed bit, otherwise it detects that S is cheating. If the protocol πSPOT

did not reach its end yet, S and R continue by executing the next steps,
otherwise they halt.

Theorem 2. For every universally composable structure preserving oblivious
transfer protocol πSPOT and every universally composable structure preserv-
ing commitment scheme πCom, Protocol πV OT securely realizes the functionality
FV OT in the FCRS hybrid model under the assumption that Groth-Sahai proof
systems are Zero Knowledge Proofs of Knowledge.

Before proceeding to the security proof we show that the protocol works cor-
rectly. First of all, notice that since πSPOT is a structure preserving oblivious
transfer protocol it is possible to prove statements about the sender’s input
messages and the protocol transcript using Groth-Sahai NIZK proof systems.
Correctness of Protocol πV OT in the case that no Reveal phase happens follows
from the correctness of protocol πSPOT . The correctness of the Reveal phase
follows from the commitment scheme’s security and the GS-proof completeness
and soundness. When S opens the commitment, R is able to check whether the
revealed message is indeed one of the messages that S used as input in the be-
ginning of the protocol and by verifying the GS-proof, R is able to check that
the input message mb is contained in the messages exchanged by both parties
meaning that this message is indeed used in the protocol execution. The full
proof is presented in the full version of this paper.

4 Generalized Oblivious Transfer

Generalized Oblivious Transfer is an interesting application of Verifiable Oblivi-
ous Transfer. An interesting way of describing an OT is by describing the groups
of messages that the receiver can get as sets in a collection. In the case of a sim-
ple OT, he can learn the values indexed by one of the sets in the collection
{{1}, {2}}. The k-out-of-n OT is an OT with a collection that contains all the
sets of index of k or less elements. This mindset allows us to present a very gen-
eral form of oblivious transfer. There is an important link between generalized
oblivious transfer and general access structures. The notation FGOT (I) denotes
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the instance of generalized oblivious transfer associated with the enclosed1 col-
lection I.
Definition 4. We define the following basic facts about enclosed collections:

– Let I = {1, 2, ..., n} be a set of indices. A collection A ⊆ P(I) is monotone
if the fact that B ∈ A and B ⊆ C implies that C ∈ A.

– An access structure is a monotone collection A of non-empty sets of I.
A set S is authorized if S ∈ A and a set S′ is minimal if there exists no
strict subset S′′ of S′ such that S′′ ∈ A.

– The complement of a collection C is defined as C∗ = {B ⊆ I | ∃ C ∈
C, B = I − C}.

– We define Closure(C) = {C ⊆ C′ | C′ ∈ C}.
– A collection C is enclosed if C = Closure(C).
– An element C ∈ C is maximal if there exists no C′ ∈ C such that C ⊆ C′

and C �= C′.

Theorem 3. For every enclosed collection C, there exists a unique access struc-
ture A such that C∗ = A

See [SSR08] for a full proof.

Definition 5. A secret sharing scheme is a triplet of randomized algorithms
(Share, Reconstruct, Check) over a message space M with an access structure
A. ShareA(s) always output shares (s1, . . . , sn) such that:
(1) for all A ∈ A, ReconstructA({(i, si) | i ∈ A}) = s,
(2) for any A′ �∈ A, {(i, si) | i ∈ A′} gives no information about s.
CheckA(s1, . . . , sn) = 1 if and only if for all A ∈ A, ReconstructA({(i, si) | i ∈
A}) = s.

Definition 6. We say that shares (s1, . . . , sn) are consistent if CheckA(s1,
. . . , sn) = 1.

Functionality FGOT (I)
FGOT (I) interacts with a sender S, a receiver R and an adversary S and is
parametrized by an enclosed collection I.
– Upon receiving (Send, sid, ssid,m1, . . . ,mn) from the S, if the pair

sid, ssid has not already been used, store (sid, ssid,m1, . . . ,mn) and
send (receipt, sid, ssid) to S and R.

– Upon receiving (Choice, sid, ssid, I) where I is a set of indices, if no
(Choice, sid, ssid) message was previously sent and I is in I, then for
each i ∈ I, send (Reveal, sid, ssid, i,mi) to R and (Reveal, sid, ssid) to
the adversary S.

1 See definition 1.
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4.1 Protocol

In this section, we will present a protocol that implements FGOT in the FV OT ,
FCOM − hybrid model with the aid of secret sharing. The protocol is inspired
by [SSR08] but is secure against a stronger adversary. The fact that every en-
closed collection is the complement of an access structure will be key to this
construction. The protocol requires n instances of FV OT . The selection of the
secret sharing scheme is dictated by the security parameter. Namely, for secu-
rity parameter s, we require that the message space of the secret sharing scheme
must have cardinality greater or equal to 2s. The size of the elements transferred
in the FV OT is the maximum between the length of the messages and the size
of the shares which depends on the underlying access structure. Let I be the
enclosed collection that defines the subsets of messages that are accessible to the
receiver.

Protocol: πGOT (I) (The sender has input (m1, . . . ,mn) and the receiver has
input I ∈ I.)

1. The sender selects k1, ..., kn
U← {0, 1}l (one-time pads)

2. Let A = I∗, the sender selects s
U← M and (s1, ..., sn) = ShareA(s).

3. The sender selects a set of n unused ssids, denote these ids as (ssid1, . . . , ssidn)
and sends (Ids, sid, ssid, ssid1, . . . , ssidn) to the receiver. For each i ∈ [n],
the sender sends (send, ki, si, sid, ssidi) to FV OT .

4. The receiver awaits (Ids, sid, ssid, ssid1, . . . , ssidn) from the sender. He aborts
if any of the ssid are not unused. Let I ∈ I be the set of messages that the
receiver wishes to receive. He sets bi = 0 when i ∈ I otherwise he sets bi = 1.
For each i ∈ [n], the receiver sends (Transfer, bi, sid, ssidi) to FV OT and
records the result.

5. The receiver executes the recover algorithm with the shares he received and
obtains S. If the reconstruction failed, he chooses an arbitrary value for S
instead. The receiver sends (commit, sid, ssid, S) to FCOM .

6. The sender awaits (committed, sid, ssid) from FCOM . Then, for each i ∈ [n],
the sender sends (open, 1, sid, ssidi) to FV OT .

7. The receiver awaits for each i ∈ [n], the message (reveal, 1, si, sid, ssidi) from
FV OT . The receiver aborts if CheckA(s1, ..., sn) �= 1.

8. The receiver sends (open, sid, ssid) to FCOM . The sender on receipt of
(reveal, sid, ssid, S) verifies that S = s and if not, he aborts the protocol.

9. The sender sends zi = mi ⊕ ki to the receiver. ({mi | i ∈ [n]} is the set of
messages)

10. The receiver for each i ∈ I, outputs (i,mi) where mi = zi ⊕ ki.

Theorem 4. πGOT securely realizes FGOT in the FV OT , FCOM hybrid model.

The proof of this theorem is presented in the full version of this paper.
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4.2 Insecurity of Previously Published GOT Protocols

The GOT protocol presented in this article improves on the one from [SSR08]
and [Tas11] significantly. We believe that their protocols are secure against semi-
honest adversaries but unfortunately, a malicious sender can easily break the
privacy of both schemes.

The protocol of [SSR08] works as follows: first the dealer generates shares for
a randomly chosen secret, then the sender and receiver execute n instances of
oblivious transfer where the receiver can learn either a share or a key chosen
uniformly at random. The receiver then reconstructs the secret and sends it
back to the sender. On receipt of a value, the sender checks that it is indeed the
secret that he generated shares for. The sender can thus use the keys to encrypt
messages and he is guaranteed that the receiver cannot learn a set of messages
that is not within the enclosed collection.

However, it is possible for a malicious sender to determine if a specific message
was chosen by the receiver. We will now proceed to demonstrate an attack on
[SSR08]. An adversary wishes to learn if a receiver learns the message mc. He
selects a secret s and executes the share algorithm resulting in shares {si}. He
replaces sc by s′c and executes the GOT protocol with those shares. As a result,
if the receiver chooses to learn mc, he will reconstruct s correctly otherwise he
will reconstruct an s′ �= s. The attack breaks the privacy of the receiver. The
same idea can be applied to attack the protocol from [Tas11].

5 Batch Single-Choice Cut-and-Choose OT

The Batch Single-Choice Cut-and-Choose OT (FCACOT ) is an an instantiation
of FGOT for a specific enclosed collection. The procedure was introduced in
[LP11] and it was used to implement constant round secure function evaluation.

Definition 7 makes formal the enclose collection used FCACOT . Informally, the
data that will be transferred has a three dimensional structure; a table of pairs.
Each row is composed of s pairs and each column is composed of n pairs. The
receiver can learn two categories of element of the table. First he can learn exactly
all the pairs for a subset of half the columns. In addition to that, independently
for each line, he can either learn the first element of every pair or the second
element of every pair.

Definition 7. Let Ti,j,k, where i ∈ [n], j ∈ [s] and k ∈ {0, 1}. Let A(J, σ) where
J ⊆ [s], σ ∈ {0, 1}n be the following subset of T : for all i and for all j if j ∈ J
both Ti,j,0 and Ti,j,1 are in the set otherwise only Ti,j,σ(i) belongs to the set.
Let C′ =

⋃

|J|=s/2,σ A(J, σ) then we define C =Closure(C′). Furthermore any
maximal element of C can be uniquely specified by some J and σ as defined
previously.

We can now formally define the Batch Single-Choice Cut-and-Choose OT.

Definition 8. FCACOT = FGOT (C).
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Theorem 5. Any FCACOT can be implemented with 2ns calls to FV OT where
the elements transferred by FV OT are the maximum between twice the size of the
secret and the value of the messages transferred.

The proof of this theorem is presented in the full version of this paper.

6 Modified Cut-and-Choose from [Lin13]

The Cut-and-Choose OT from [Lin13] is very similar to the one in [LP11] but
there are two important differences. First, the set of indices in J is no longer size
restricted (instead of size s/2). In addition, for each j �∈ J , the receiver receives
a special string vj which will allow the receiver to prove that j �∈ J . Although,
we could still use the protocol for generalized oblivious transfer defined above,
the complement access structure is very complicated. Instead, we will present a
hybrid of the protocols from [Tas11] and [SSR08] to realize this functionality.

The protocol follow the same basic structure as the previous protocol: (1)
sharing of a secret, (2) verifiable oblivious transfer, (3) commitment, (4) proof
of share validity and finally (5) the message encryption and transmission. Note
that the input selection for each row i is still denoted as σi.

Construction

Essentially, by reconstructing the secret which has been shared with the secret
sharing scheme below, the prover will be able to prove two statements. First, it
will show that, for each column, the receiver either didn’t learn the verification
string or one element from each pair. Second, it demonstrates that for each row,
the receiver either learned the first element of all pairs, or the second element
of all pairs. The first statement which can be thought of as a proof of ignorance
reflects the approach of [SSR08], while the second one, which can be thought as
a proof of knowledge, reflects the approach of [Tas11]. The protocol that follows
is thus a hybrid of [Tas11] and [SSR08]. Since the protocol is very similar to
the GOT protocol, we will only describe how shares are constructed and what
is transferred by the verifiable oblivious transfer.

Sharing

This part describes how a sender will generate shares of a secret. The reconstruct
procedure of this secret sharing naturally follows from its description. This secret
will then be used as in the previous protocols to ensure that the receiver does
not learn keys for a set of indices which is not within the enclosed collection. The
sharing will first split the secret into two shares, sc and sr. The receiver will be
able to extract sc only if for each column, he either did not learn the verification
string, or he did not learn one element from each pair. The purpose of sr is
to ensure that for each row, for all pairs within that row he learned the first
element, or he learned for all pairs the second element. The notation k-n is used
as shorthand for {S ⊂ {1, . . . , n} | |S| ≤ k}. In particular, the notation Sharek-n
denotes the sharing of a secret using a k-out-of-n secret sharing.
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(sc, sr) = share2-2(s)

(sr1, . . . , srn) = sharen-n(sr)

(sri10, . . . , srin0) = shares-s(sri)

(sri11, . . . , srin1) = shares-s(sri)

(sc1, . . . , scs) = shares-s(sc)

(sc1j , . . . , scnj) = sharen-n(scj)

(sc0ij0, sc
1
ij0) = share2-2(scij)

(sc0ij1, sc
1
ij1) = share2-2(scij)

Sender’s Input to VOT

This part describes which messages will be sent by the sender to FV OT . We will
use vidj , kidi,j,k, sridi,j,k indexed by variable i, j, k to denote distinct ssids.

(Send, sid, vidj , vj , scj)

(Send, sid, kidi,j,k, kijk , sc
0
ijk)

(Send, sid, sridi,j,k, srijk, sc
1
ijk)

Receiver’s Input to VOT

These are the messages that the receiver will send to FV OT . We also add next to
them a description of the values learned by the receiver. Note that these values
allow the sender to reconstruct both sc and sr as well as get the keys for a set
of indices within the enclosed collection.

For each j ∈ J , the receiver sends (Transfer, sid, vidj , 1) to FV OT , he learns
{scj | j ∈ J}.
For each j �∈ J , the receiver sends (Transfer, sid, vidj , 0) to FV OT , he learns
{vj | j �∈ J}.
For each j ∈ J, i ∈ [n], k ∈ {0, 1}, the receiver sends to FV OT

(Transfer, sid, kidi,j,k, 0), he learns {(kijk) | j ∈ J, i ∈ [n], k ∈ {0, 1}}.
(Transfer, sid, sridi,j,k, 0), he learns {(srijk) | j ∈ J, i ∈ [n], k ∈ {0, 1}}.

For each j �∈ J, i ∈ [n], the receiver sends to FV OT

(Transfer, sid, kidi,j,σi , 0), he learns {(kijσi ) | j �∈ J, i ∈ [n]}.
(Transfer, sid, sridi,j,σi , 0), he learns {(srijσi ) | j �∈ J, i ∈ [n]}.
(Transfer, sid, kidi,j,1−σi , 1), he learns {sc0ij(1−σi)

| j �∈ J, i ∈ [n]}
(Transfer, sid, sridi,j,1−σi , 1), he learns {sc1ij(1−σi)

| j �∈ J, i ∈ [n]}

Share Reconstruction and Commitment

In this phase, the receiver reconstructs a secret using the reconstruction
algorithm for the secret sharing described in 6. He then commits to that value.
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Proof of Share Validity

The sender sends the messages described below to FV OT . This allows the receiver
to check that the shares are consistent relative to the secret sharing defined in 6.
If the shares are not consistent, the receiver aborts.

– for each j ∈ J ,
(Reveal, sid, vidj , 1), the receiver learns scj .

– for each i ∈ [n], j ∈ J, k ∈ {0, 1}
(Reveal, sid, kidi,j,k, 1), the receiver learns sc0i,j,k.
(Reveal, sid, sridi,j,k, 0), the receiver learns sri,j,k.
(Reveal, sid, sridi,j,k, 1) the receiver learns sc1i,j,k.

Message Encryption and Transmission

For each i ∈ [n], j ∈ [s], k ∈ {0, 1}, the sender encrypts the message mijk using
kijk resulting in zi,j,k. He then sends zi,j,k to the receiver. For each i ∈ [n], j �∈ J ,
the receiver can decrypt mi,j,σi since he knows ki,k,σi . For each i ∈ [m], j ∈ J ,
the receiver can decrypt mi,j,0,mi,j,1 since he knows ki,j,0 and ki,j,1

7 Multi-sender k-Out-of-n OT

The Multi-sender k-out-of-n OT functionality was defined in [LOP11] where it
was used to optimize the IPS compiler. The functionality involves p senders and
one receiver. It is essentially many k-out-of-n OT executed in parallel with the
same choice made by the receiver in each execution. This OT primitive can be
implemented using ideas similar to the ones we presented to implement GOT in
conjunction with the appropriate use of linear secret sharing.

The protocol is divided in four phases. In the first phases, the senders will
construct/distribute the shares of a special secret sharing with value S. They
must commit to this information. In the VOT phase, each sender will transfer
a key for each message along with the associated share. The receiver will read
the key associated with the messages he wishes to learn and otherwise he will
obtain a share. The next phase is a verification phase, the receiver will commit
to S which he could only obtain if he was requesting the same k messages from
each sender. The senders will open all their commitment so that the shares are
validated by the receiver. If the verification phase succeeds, the receiver opens S
which proved he only read a legal set of key. In the last phase, the senders will
transmit all the messages encrypted with the appropriate key.

The following functionality and protocol involves p senders with n messages
of length r each and one receiver. We denote the shares of a a-out-of-b linear
secret sharing as {B}a-b.

Functionality FMSOT

FMSOT interacts with senders P1, . . . , Pp and receiver Pr
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– Inputs: For j = 1, . . . , p, upon receiving message (Send, sid, ssid,
x1j , . . . , xnj) from a sender Pj , record all xij .

– Outputs: Upon receiving message (Transfer, sid, ssid, I ⊂ [n]), check if
|I| = k, if not abort. Send to receiver Pr, for each j = 1, . . . , p and i ∈ I,
the message (Receipt, sid, ssid, i, j, xij).

Protocol: (πMSOT )

– Preparation

1. Each sender a selects a random secret Sa and broadcasts a non-interactive
commitment to Sa. We define S =

∑

a Sa.
2. Each sender a reshares Sa to obtain {Sab}(n−k)-n.
3. Each sender a reshares each Sab to obtain {Sabc}p-p.
4. For each j, b and c, sender j sends share Sjbc to sender c.

5. Each sender c computes for each b, S′
bc =

∑

a

sabc.

We have that S′′
b = {S′

bc}p-p and
∑

S′′
b = S.

– VOT’s

1. Each sender j selects uniformly at random a set of n keys kij of length
r (one-time pads). He also selects n unused ids denoted by ssidij and
sends them to the receiver.

2. Each sender j, for each i ∈ [n] sends FV OT the message
(Send, sid, ssidij , kij , S

′
ij).

3. Let I ∈ I be the set of messages that the receiver wishes to receive, he
sets bi = 0 if i ∈ I otherwise he sets bi = 1. For each i, for each sender,
the receiver sends FV OT the message (Transfer, sid, ssidij , bi) and records
the result.

– Verification

1. Receiver computes S′′
b = {S′

bc}p-p then S =
∑

S′′
b and broadcasts a non-

interactive commitment to S. The receiver commits to a random S if he
cannot reconstruct S.

2. Each sender j, for each i, player j sends (open, sid, ssidij , 1) to FV OT ,
thus revealing his shares to the receiver.

3. Receiver verifies that the shares are consistent with a legal preparation
phase and aborts otherwise.

4. Receiver reveals S and if the secret is invalid, the senders abort the
protocol.

– Transfer

1. Each sender sends mij ⊕ kij to the receiver who can now calculate mij

for all i ∈ I.

Theorem 6. πMSOT securely realizes FMSOT .

The proof of this theorem is presented in the full version of this paper.
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