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1 Introduction

Fisher [1] described the linear discriminant function (LDF), and founded the dis-
criminant theory. Following this, the quadratic discriminant function (QDF) and multi-
class discrimination using Mahalanobis distance were proposed. These functions are
based on the variance-covariance matrices, and are easily implemented in the statistical
software packages. They can be used in many applications. However, real data rarely
satisfy Fisher’s assumptions. Therefore, it is well known that logistic regression is
better than LDF and QDF, because it does not assume a specific theoretical distribution,
such as a normal distribution. In addition to this, the discriminant rule is very simple:
If y;*f(x;) > 0, x; is classified to classl/class2 correctly. If y;*f(x;) < 0, x; is misclas-
sified. There are four serious problems hidden in this simplistic scenario [22].

(1) Problem 1

We cannot properly discriminate between cases where x; lies on the discriminant hype-
plane (f(x;) = 0). This unresolved problem has been ignored until now. The proposed
Revised IP-OLDF is able to treat this problem appropriately. Indeed, except for
Revised IP-OLDF, no functions can correctly count the number of misclassifications
(NM). These functions should count the number of cases where f(x;) = 0, and display
this alongside the NM in the output.

(2) Problem 2

Fisher’s LDF and QDF cannot recognize linear separable data (where the Minimum
NM (MNM) = 0). This fact was first found when IP-OLDF was applied to Swiss bank
note data [3]. In this paper, the determination of pass/fail in exams is used because it is
trivially linear-separable and we can obtain it easily. We show that, in many cases, the
NMs of LDF and QDF are not zero. Next, 100 re-samples of these data are generated,
and the mean error rates are obtained by 100-fold cross validation. The mean error rates

© Springer International Publishing Switzerland 2015
E. Pinson et al. (Eds.): ICORES 2014, CCIS 509, pp. 15-30, 2015.
DOI: 10.1007/978-3-319-17509-6_2



16 S. Shinmura

of LDF are 6.23 % higher than that of Revised IP-OLDF in the validation samples of
Table 7.

(3) Problem 3

If the variance-covariance matrix is singular, Fisher’s LDF and QDF cannot be cal-
culated because the inverse matrices do not exist. The LDF and QDF of JMP [9] are
solved by the generalized inverse matrix technique. In addition to this, RDA [4] is used
if QDF causes serious trouble with dirty data. However, RDA and QDF do not work
properly for the special case in which the values of features belonging to one class are
constant. If users can choose proper options for a modified RDF developed for this
special case, it works better than QDF and LDF in Table 5.

(4) Problem 4

Some statisticians misunderstand that the discriminant analysis is the inferential sta-
tistical method as same as the regression analysis, because it is derived from Fisher’s
assumption. But there are no standard error (SE) of the discriminant coefficients or
error rate, and variable selection methods such as stepwise methods and statistics such
as Cp and AIC. In this paper, we propose “k-fold cross validation for small samples”
and new variable selection method, the minimum mean error rates of which is chosen
as the best model. In future works (Futurel), generalization ability and 95 % confi-
dence intervals of all LDFs are proposed.

In this research, two Optimal LDFs (OLDFs) based on the MNM criterion are
proposed. The above three problems are solved by IP-OLDF and Revised IP-OLDF
completely. IP-OLDF [13-15] reveals the following properties.

Fact (1) Relation between LDFs and NMs. IP-OLDF is defined on the data and
discriminant coefficient spaces. Cases of Xx; correspond to linear hyper-planes
(Hy(b) = y;* (;b + 1) = 0) in the p-dimensional discriminant coefficient space that
divide the space into two half-planes: the plus half-plane (H;(b) > 0) and minus half-
plane (H;(b) < 0). Therefore, the coefficient space is divided into a finite convex
polyhedron by Hj(b). Interior point b; of the convex polyhedron corresponds to the
discriminant function fj(x) = tbjx + 1 on the data space that discriminates some cases
properly and misclassifies others. This means that each interior point b; has a unique
NM. The “Optimal Convex Polyhedron (OCP)” is defined as that with the MNM.
Revised IP-OLDF [16] can find the interior point of OCP directly, and solves the
unresolved problem (Problem 1) because there are no cases on the discriminant hyper-
plane (f(x;) = 0). If b; is on a vertex or edge of the convex polyhedron, however, the
unresolved problem cannot be avoided because there are some cases on f(x;) = 0.

Fact (2) Monotonous decrease of MNM (MNM,, 2 MNM,.)). Let MNM,, be the
MNM of p features (independent variables). Let MNM ;1) be the MNM of the (p + 1)
features formed by adding one feature to the original p features. MNM decreases
monotonously (MNM,, 2 MNM,.)), because OCP in the p-dimensional coefficient
space is a subset of the (p + 1)-dimensional coefficient space [18]. If MNM,, = 0, all
MNMs including p features are zero. Swiss bank note data consists of genuine and
counterfeit bills with six features. IP-OLDF finds that this data is linear-separable
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according to two features (X4, X6). Therefore, 16 models including these two features
have MNMs = 0. Nevertheless, Fisher’s LDF and QDF cannot recognize that this data
is linear-separable, presenting a serious problem. In this paper, we show that Revised
IP-OLDF can resolve the above three problems, and is superior to Fisher’s LDF,
logistic regression, and Soft-margin SVM (S-SVM) [28] under 100-fold cross vali-
dation [20, 21] of the pass/fail determinations of exams [19] and their re-sampled data.

2 Discriminant Functions

2.1 Statistical Discriminant Functions

Fisher defined LDF to maximize the variance ratio (between/within classes) in Eq. (1).
This can be solved by non-linear programming (NLP).

MIN ='b(m; — m;)'(m; — my)b/'b =b; (1)

If we accept Fisher’s assumption, the same LDF is obtained in Eq. (2). This equation
defines LDF explicitly, whereas Eq. (1) defines LDF implicitly. Therefore, statistical
software packages adopt this equation. Some statisticians misunderstand that dis-
criminant analysis is the same as regression analysis. Discriminant analysis is inde-
pendent of inferential statistics, because there are no SEs of the discriminant
coefficients and error rates (Problem 4). Therefore, the leave-one-out (LOO) method [6]
was proposed to choose the proper discriminant model.

Fisher's LDF : f(x) ="{x — (m; + m;)/2} 27! (m; — m,) (2)

Most real data does not satisfy Fisher’s assumption. When the variance-covariance
matrices of two classes are not the same (X, # X,), the QDF defined in Eq. (3) can be
used. The Mahalanobis distance (Eq. (4)) is used for the discrimination of multi-
classes, and the Mahalanobis-Taguchi [25] method is applied in quality control.

QDF: f(x) ="x(Z;' = Z)x/24+ ('my 7' —'mp 5 )x + ¢ (3)
D = SQRT (‘(x—m)Z ' (x —m)) (4)

These functions are applied in many areas, but cannot be calculated if some features
remain constant. There are three cases. First, some features that belong in both classes
are the same constant. Second, some features that belong in both classes are different
but constant. Third, some feature that belongs to one class is constant. Most statistical
software packages exclude all features in these three cases. On the other hand, JMP
enhances QDF using the generalized inverse matrix technique. This means that QDF
can treat the first and second cases correctly, but cannot handle the third case properly.

Recently, the logistic regression in Eq. (5) has been used instead of LDF and QDF
for two reasons. First, it is well known that the error rate of logistic regression is often
less than those of LDF and QDF, because it is derived from real data instead of some
normal distribution that is liberated from reality. Let ‘P’ be the probability of belonging
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to a group of diseases. If the value of some feature is increasing/decreasing, ‘P’
increases from zero (normal group) to one (group of diseases). This representation is
very useful in medical diagnosis, as well as for ratings in real estate and bonds. On the
contrary, Fisher’s LDF assumes that cases near to the average of the diseases are
representative cases of the diseases group. Medical doctors never permit this claim.

Log(P/(1 —P)) = f(x) (5)

2.2 Before and After SVM

Stam [24] summarized Lp-norm discriminant methods until 1997, and answers the
question of “Why have statisticians rarely used Lp-norm methods?” He gives four
reasons: Communication, promotion and terminology; Software availability; Relative
accuracy of Lp-norm classification methods: Ad hoc studies; and the Accuracy of Lp-
norm classification methods: decision theoretic justification. While each of these reasons
is true, they are not important. The most important reason is that there is no comparison
between these methods with statistical discriminant functions, because discriminant
analysis was established by Fisher before mathematical programming (MP) approaches.
There are two types of MP applications. The first is modeling by MP, such as for
portfolio selection [26], and the second is catch-up modeling, such as for the regression
and discriminant analysis. Therefore, the latter type should be compared with preceding
results. No statisticians use Lp-norm methods, because there is no research indicating
that Lp-norm methods are superior to statistical methods. Liitschwager and Wang [7]
defined a model based on the MNM criterion. There are several mistakes, but the most
important one is the restriction on the discriminant coefficients. Only one discriminant
coefficient should be fixed to —1/1. There is no need to fix the other (k — 1) coefficients in
the range [—1, 1].

Vapnik proposed three different SVM models. The hard-margin SVM (H-SVM)
indicates the discrimination of linear separable data. H-SVM is defined to maximize the
distance of the “Support Vector (SV)” in order to obtain “good generalization” by NLP,
which is similar to “not overestimating the validation data in statistics.” H-SVM is
redefined to minimize (1/“distance of SV”) in Eq. (6). This is solved by quadratic
programming (QP), which can only be used for linear separable data. This may be why
investigation of linear separable data has been ignored. We statisticians misunderstand
that discrimination of linear separable data is very easy. In statistics, there was no
technical term for linear separable data. However, the condition “MNM = 0” is the
same as being linear-separable. Note that “NM = 0” does not imply the data is linear-
separable. It is unfortunate that there has been no research into linear separability.

MIN = ||b||>/2; y;* ('xib+ bg)>1; b:p — discriminant coefficients.
y, =1/ —1forx; € classl/class2. x; : p — features(independent variables).

Real data are rarely linear-separable. Therefore, S-SVM has been defined in Eq. (7).
S-SVM permits certain cases that are not discriminated by SV (y;*('x;b + bg) < 1).
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The second objective is to minimize the summation of distances of misclassified cases
(Ze;) from SV. These two objects are combined by defining some “penalty c.” The
Markowitz portfolio model to minimize risk and maximize return is the same as S-SVM.
However, the return is incorporated as a constraint, and the objective function minimizes
risk. The decision maker chooses a solution on the efficient frontier. On the contrary,
S-SVM does not have a rule to determine c properly; nevertheless, it can be solved by an
optimization solver. (Kernel-SVM is omitted from the research.)

MIN = ||b|[*/2 + c* Zei; y; * (‘'xib+bg) > 1 —e;; (7)

c: penalty c to combine two objectives. e;: non-negative value.

2.3 IP-OLDF and Revised IP-OLDF

Shinmura and Miyake [12] developed the heuristic algorithm of OLDF based on the MNM
criterion. This solves the five features (5-features) model of Cephalo Pelvic Disproportion
(CDP) data that consisted of two groups having 19 features. SAS was introduced into
Japan in 1978, and three technical reports about the generalized inverse matrix, the sweep
operator [5], and SAS regression applications [8] are related to this research. LINDO was
introduced to Japan in 1983. Several regression models are formulated by MP [10], e.g.,
least-squares problems can be solved by QP, and LAV (Least Absolute Value) regression
is solved by LP. Without a survey of previous research, the formulation of [IP-OLDF can be
defined as in Eq. (8). This notation is defined on p-dimensional coefficient space, because
the constant is fixed to 1. In pattern recognition, the constant is a free variable. In this case,
the model is defined on (p + 1)-coefficient space, and we cannot elicit the same deep
knowledge as with IP-OLDF. This difference is very important. IP-OLDF is defined on
both p-dimensional data and coefficient spaces. We can understand the relation between
the NM and LDF clearly. The linear equation Hi(b) = y;* (x;p + 1) = 0 divides
p-dimensional space into plus and minus half-planes (H;(b) > 0, Hij(b) < 0). If b; is in the
plus half-plane, fi(x) = yi*(tbjx + 1) discriminates x; correctly, because fij(x;) = y;*
(tbjxi + 1=y *('xibj + 1) > 0. On the contrary, if b; is included in the minus half-plane,
fj(x) cannot discriminate x; correctly, because fi(x;) = yi*(tbjxi +1)=y; *(txibj +1)<0. The
n linear equations Hi(b) divide the coefficient space into a finite number of convex
polyhedrons. Each interior point of a convex polyhedron has a unique NM that is equal to
the number of minus half-planes. We define the OCP as that for which NM is equal to
MNM. If x; is classified correctly, e; = 0 and H;(b) = 0 in Eq. (8). If there are p cases on f(x;)
=0, we can obtain the exact MNM. However, if there are over (p+1) cases on f(x;)=0, this
causes the unresolved problem. If x; is misclassified, ¢; = 1 and H;(b) = —10000. This
means that IP-OLDF chooses the discriminant hyper-plane H;(b) = O for correctly clas-
sified cases, and Hij(b) = —10000 for misclassified cases according to a 0/1 decision
variable. if [P-OLDF chooses a vertex having p cases, it chooses the OCP correctly. If it
chooses a vertex having over (p+1) cases, it may not choose the OCP. In addition to this
defect, IP-OLDF must be solved for the three cases where the constant is equal to 1, 0, —1,
because we cannot determine the sign of y; in advance. Combinations of y; = 1/—1 forx; €
class1/class2 are decided by the data, not the analyst.
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MIN = Ze;; Hij(b)> — Mx ¢; M :10,000 (Big M constant). (8)

The Revised IP-OLDF in Eq. (9) can find the true MNM, because it can directly find
the interior point of the OCP. This means there are no cases where y;*(x;b + by) = 0.
If x; is discriminated correctly, e; = 0 and y;*('x;b + bg) = 1. If x; is misclassified, e; = 1
and y;*('x;b + bg) = —9999. It is expected that all misclassified cases will be extracted
to alternative SVs, such as y;*('x;b + bg) = —9999. Therefore, the discriminant scores of
misclassified cases become large and negative, and there are no cases where y;*
('x;b + bg) = 0. This means that b is interior point of OCP defined by IP-OLDF.

MIN = Ze;;  y, * (b + bg) >1—M=xe; bg: free decision variable.  (9)

If e; is a non-negative real variable, we utilize Revised LP-OLDF, which is an L1-
norm LDF. Its elapsed runtime is faster than that of Revised IP-OLDF. If we choose a
large positive number as the penalty ¢ of S-SVM, the result is almost the same as that
given by Revised LP-OLDF, because the role of the first term of the objective value in
Eq. (7) is ignored. Revised IPLP-OLDF is a combined model of Revised LP-OLDF and
Revised IP-OLDF. In the first step, Revised LP-OLDF is applied for all cases, and e; is
fixed to O for cases that are discriminated correctly by Revised LP-OLDF. In the second
step, Revised IP-OLDF is applied for misclassified cases in the first step. Therefore,
Revised IPLP-OLDF can obtain an estimate of MNM faster than Revised IP-OLDF
[17, 23], but it is unknown to be free from the unresolved problem.

3 The Unresolved Problem (Problem 1)

3.1 Perception Gap of This Problem

About the unresolved problem, there are several understandings. Most researchers treat
the cases x; on f(x;) = 0 in class1. There is no explanation of why it makes sense. Some
statisticians explain that it is decided stochastically, because the statistics is a sturdy of
probability. This explanation seems theoretically at first glance, but it is nonsense by
two reasons. Statistical software adopt the former decision rule because many papers
and researchers adopt this rule. In the medical diagnosis, medical doctors strive to
judge the patients near by the discriminant hyper-plane. If they know second expla-
nation, they are deeply disappointed in the discriminant analysis. Until now, all LDFs
such as Fisher’s LDF, logistic regression, H-SVM and S-SVM cannot treat this
problem properly. IP-OLDF reveals that only interior points of convex polyhedron can
resolve this problem. It can find the vertex of true OCP if data is general position and it
stop the optimization choosing p cases on the discriminant hyper-plane. But, it may not
find the true MNM if data is not general position and it choose over (p + 1) cases on the
discriminant hyper-plane. Revised IP-OLDF can find the interior point of the OCP
directly. We cannot judge whether other LDFs choose the interior point, edge or vertex
of the convex polyhedron. This is confirmed by checking the number of cases x; that
satisfy |f(x;)| < 107¢ if we consider | fixp)| < 1079 is zero. If this number is zero, this
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function chooses the interior point of the convex polyhedron. If this number ‘m’ isn’t
zero, this LDF chooses the vertex or edge of the convex polyhedron, and true NM has a
possibility of increase up to ‘m’

3.2 The Student Data

The student data' is proper for us to discuss about the unresolved problem. Fifteen
students (y; = ‘F’) fail the exam and twenty five students (y; = ‘P’) pass the exam in
Table 1. X1 is sturdy hours/day and X2 is expenditure (10,000 yen)/month. X3 is
drinking days/week, X4 is sex and X5 is smoking/non-smoking. In the case that IP-
OLDF discriminates two classes by (X1, X2), the discriminant hyper-plane of IP-
OLDF is X2 = 5. Eight students (X2 > 5) are discriminated to the fail group correctly,
four students are on X2 =5 and three student (X2 < 5) are misclassified into the pass
group. On the other hands, twenty one students (X2 < 5) are classified into the pass
group correctly and four students are on X2 = 5. Nevertheless [P-OLDF cannot dis-
criminate eight students on X2 = 5, it returns MNM = 3. Revised IP-OLDF can find
three discriminant hyper-plane: X2 = 0.006¥X1 + 4.984, X2 = 0.25*X1 + 3.65,
X2 =0.99%X1 + 212. And, true MNM = 5. S-SVM (SVM4, ¢ = 10%) is X2 = X1 + I,
and NM = 6. There is a student having the value of (4, 5) on the discriminant hyper-
plane. Therefore, we had better estimated NM = 7. This data is tiny and toy data, but it
is useful for the evaluation of the discriminant functions and it is easy for us to
understand by scatter plots with two features.

Table 1. The student data.

Vi F |F |F |F |F |F F F |F|F F |F|F F|P|P|P P |P
X131 (3|3 (2|1 [4|3|5|2|3|2|3|3|5|6|9 |4 (3|2
X2(10(8 |7 |7 |6 |66 |6 |5|5|5|5 |3 |2|2|5|5|5 |5 |4
yi [P |P |P|P |P|P P |P P |P|P P|P|P P|P|P|P PP
X1|5 |12/4 |10|7 |5 |7 |3 |7 |7 |7 |6 |3 |6 |6 |8 |5|10/9 |5
X214 |4 |4 |4 |44 |3|3|3 |3 |3 |3 |3 |3 |3 |3 |3 |2 (2|2

4 The Discrimination of Linear Separable Data (Problem 2)

4.1 The Importance of This Problem

The purpose of discriminant analysis is to discriminate two classes or objects properly.
For this purpose, the discrimination of linear separable data is very important, because
we can evaluate the result very clearly. If some LDFs cannot discriminate linear
separable data properly, these LDFs should not be used. It is very strange that there is

! This data was used for the description of three statistical books using SAS, SPSS and JMP. It is
download from (http://sun.econ.seikei.ac.jp/ ~ shinmura/). Click Tab of “Data Archive” and double
click “aoyama.xls”.
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no research about the discrimination of the linear separable data. H-SVM implies us
this discrimination very clearly. But it can be applied only for linear separable data.
This may be the reasons why there is no good research about linear separable data until
now. Some statistician believes that LDF based on MNM criterion is foolish method,
because it over fits for the training samples and its generalization ability may be wrong
for the validation samples without examination by real data.

IP-OLDF finds Swiss bank note data is linear separable by two features (X4, X6)
and MNMs of 16 models including (X4, X6) are zero. Until now, nobody realize this
fact. And, we think it is difficult for us to find linear separable data from real data. But,
we can easily obtain two kinds of good research data. First, the pass/fail determination
by scores. This is explained in 4.2. Second, every real data is changed to linear
separable data by enlarging the distance between the mean of the two classes. The
Swiss bank note data consisted of two kinds of bills: 100 genuine and 100 counterfeit
bills. There were six features: X1 was the length of the bill (mm); X2 and X3 were the
width of the left and right edges (mm), respectively; X4 and X5 were the bottom and
top margin widths (mm), respectively; X6 was length of the image diagonal (mm).
A total of 63 (= 2°—1) models were investigated. According to Shinmura [18], of the 63
total models, 16 of them including two features (X4, X6) have MNMs of zero; thus,
they are linearly separable. The 47 models that remain are not linearly separable. This
data is adequate whether or not LDFs can discriminate linearly separable data correctly.

Table 2 shows four results. Upper right (B) is original bank data. Upper left (A) is
data expanded to 1.25 times the average distance. Lower left (C) and right (D) are data
that are reduced to 0.75 and 0.5 times the average distance. Fisher’s LDF is independent
of the inferential statistics. But, if we treat y; = 1/—1 as object value and data is analyzed
by the regression analysis, obtained regression coefficients are proportional to the dis-
criminant coefficients of Fisher’s LDF by the plug-in rule. The stepwise methods can be
used formally. ‘p’ is the number of features by the forward stepwise method. ‘Var.” is the
selected features. From p = 1 to p = 6, X6, X4, X5, X3, X2 and X1 are selected in this
order by the forward stepwise method. In the regression analysis, Mallow’s Cp statistics
and AIC are used as variable selection. Usually, the model with minimum of |Cp —
(p + 1)| and AIC are recommended. By this rule, Cp statistics choose the same full
model. On the other hand, AIC chooses 4-features model (X3, X4, X5, X6) in data ‘A’.
AIC chooses 5-features model (X2, X3, X4, X5, X6) in other three data.

This table tells us two important facts. We can easily obtained the linear separable
data from the real data. The same result as the bank data are observed by the student
data, iris data and CPD data those are not linear-separable. Second fact is as follows:
“Cp and AIC” choose almost same models, nevertheless 1-feature (X6) model is linear
separable in ‘A’. And, 2-features (X4, X6) model is linear separable in ‘B’. The models
selected by “Cp and AIC” are independent from the linear-separablility. Some statis-
ticians don’t permit this result by the plug-in rule. On the contrary, they consider
Fisher’s LDF is the inferential statistics, because it is derived by the Fisher’s
assumption. This confusion is new problem and is future work (Future2).
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4.2 Pass/Fail Determination

The pass/fail determination of exam scores makes good research data, because it can be
obtained easily, and we can find a trivial discriminant function. My theoretical research
starts from 1997 and ends in 2009 [18]. My applied research began in 2010. I nego-
tiated with the National Center for University Entrance Examinations (NCUEE), and
borrowed research data consisting of 105 exams in 14 subjects over three years.
I finished analyzing the data at the end of 2010, and obtained 630 error rates for
Fisher’s LDF, QDF, and Revised IP-OLDF. However, NCUEE had requested me not
to present the results on March 2011. Therefore, I explain new research results using
my statistical exam results. The reason for the special case of QDF and RDA (Problem
3) is resolved at the end of 2012. The course consists of one 90 min lecture per week
for 15 weeks. In 2011, the course only ran for 11 weeks because of power shortages in
Tokyo caused by the Fukushima nuclear accident. Approximately 130 students, mainly
freshmen, attended the lectures. Midterm and final exams consisted of 100 questions
with 10 choices. Two kinds of pass/fail determinations were discriminated by 100 item
scores, and four testlet scores as features. If the pass mark is 50 points, we can easily
obtain a trivial discriminant function (f = T1 + T2 + T3 + T4-50). If f = 0 or f < 0, the
student passes or fails the exam, respectively. In this case, students on the discriminant
hyper-plane pass the exam, because their score is exactly 50. This indicates that there is
no unresolved problem because the discriminant rule is decided by features.

Table 2. Swiss bank data [18].

A: The distance *1.25 B: Original Bank Data
Var. p Cp| AIC | MNM | LDF Cp| AIC | MNM | LDF
1-6 6 7.0 | -863 0 0 7.0 | -779 0 0
2-6 5 53| -865 0 0 53| -781 0 0
3-6 4 10.5 | -896 0 0 103 | -776 0 0
4-6 3 109 | -859 0 0 10.7 | -775 0 0
4,6 2| 1188 | -779 0 0| 107.0 | -699 0 3
6 1] 3139 | -679 0 112920 | -604 2 2

C: The distance * 0.75 D: The distance * 0.5
Var. p Cp| AIC | MNM | LDF Cp| AIC | MNM | LDF
1-6 6 7.0 | -676 1 2 7.0 | -543 5 12
2-6 5 53| -678 1 2 53| -545 6 12
3-6 4 9.8 | -673 1 1 8.9 | -541 7 13
4-6 3 10.1 | -673 1 2 8.8 | -541 8 14
4,6 2|1 979 | -601 4 6| 787 | -482 16 19
6 1| 253.8 | -517 6 8| 1844 | -417 53 56

4.3 Discrimination by Four Testlets

Table 3 shows the discrimination of four testlet scores as features for 10 % (from third
column to seventh column) and 90 % (after eighth column) levels of the midterm
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exams. The results of 50 % level are omitted. ‘p’ denotes the number of features selected
by the forward stepwise method. In 2010, T4, T2, T1, and T3 are entered in the model
selected by the forward stepwise method. The MNM of Revised IP-OLDF and NM of
logistic regression are zero in the full model, which means the data is linear-separable in
four features. NMs of LDF and QDF are 9 and 2. This means LDF and QDF cannot
recognize linear separability. In 2011, Revised IP-OLDF and logistic regression can
recognize that the 3-features model (T2, T4, T1) is linear-separable. In 2012, the
2-features model (T4, T2) is linear-separable. T4 and T2 contain easy questions, and T1
and T3 consist of difficult questions for fail group students. This suggests the possibility
that pass/fail determination using Revised IP-OLDF can elicit the quality of the test
problems and understanding of students in the near future (Future3).

Table 3. NMs of four discriminant functions by forward stepwise in midterm exams at the 10 %
(from 3rd column to 7th column) and 90 % levels (after 8th column).

p Var. MNM Logi. LDF QDF Var. MNM Logi. LDF QDF
2010 1 T4 6 9 11 11 T3 10 37 24 24
2 T2 2 6 11 9 T4 5 10 20 11
3 T1 1 3 8 5 T1 0 0 20 10
4 T3 0 0 9 2 T2 0 0 20 11
2011 1 T2 9 17 15 15 T3 6 7 14 14
2 |14 4 9 11 9 T4 1 1 14 6
3 T1 0 0 9 10 T1 0 0 13 5
4 T3 0 0 9 11 T2 0 0 14 9
2012 1 T4 4 8 14 12 T3 8 30 12 12
2 T2 0 0 11 9 T1 5 12 9
3 T1 0 0 12 8 T4 3 10 3
4 T3 0 0 12 1 T2 0 11 3
Table 4. Summary of error rates of Fisher’s LDF and QDF.
10 % 50 % 90 %
LDF QDF LDF QDF LDF QDF
Midterm 10 7.5 1.7 2.5 5.0 16.7 9.2
11 7.0 8.5 2.2 2.3 10.5 6.7
12 9.9 0.8 49 4.8 13.6 7.1
Final 10 4.2 1.7 33 4.2 33 10.8
11 11.9 29 29 3.6 3.6 8.6
12 8.7 2.3 2.3 2.3 13.0 4.5

Table 4 shows a summary of the 18 error rates derived from the NMs of Fisher’s
LDF and QDF for the linear separable model. Ranges of the 18 error rates of LDF and
QDF are [2.2 %, 16.7 %] and [0.8 %, 10.8 %], respectively. Error rates of QDF are lower
than those of LDF. At the 10 % level, the six error rates of LDF and QDF lie in the
ranges [4.2 %, 11.9 %] and [0.8 %, 8.5 %], respectively. Clearly, the range at the 50 %
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level is less than for the 10 % and 90 % levels. Miyake and Shinmura [27] followed
Fisher’s assumption, and surveyed the relation between population and sample error
rates. One of their results suggests that the sample error rates of balanced sample sizes
such as 50 % level are close to the population error rates. The above results may confirm
this. These results suggest a serious drawback of LDF and QDF based on the variance-
covariance matrices. We can no longer trust the error rates of LDF and QDF. Until now,
this fact has not been discussed, because there is little research using linear separable
data. From this point on, we had best evaluate discriminant functions using linear
separable data, because the results are very clear. In genome discrimination, researchers
try to estimate the variance-covariance matrices using small sample sizes and large
numbers of features. These efforts may be meaningless and lead to incorrect results.

5 Problem 3 (Discrimination of 44 Japanese Cars)

The special cases found in NCUEE exams are confirmed by my exams, also. It is
resolved in Nov., 2012. It needs three years because I never doubt the algorithm of QDF
and surveyed by the multivariate approach. I checked all features by t-test of two classes,
before I abandon the survey. The special case above is more easily explained by the
discrimination of 44 Japanese cars.” Let us consider the discrimination of 29 regular cars
and 15 small cars. Small cars have a special Japanese specification. They are sold as
second cars or to women, because they are cost efficient. The emission rate and capacity
of small cars are restricted. The emission rate of small and regular cars ranges from
[0.657, 0.658] and [0.996, 3.456], respectively. The capacity (number of seats) of small
and regular cars are 4 and [5, 8], respectively.

Table 5. Discrimination of Japanese small and regular cars.

p | Var t LDF |QDF' |MNM? |[r=y=08 |05 |02 |01
1 Emission 11.37 2 0 0 2 1 1 0
2 | Price 542 |1 0 0 4 1 0 0
3 | Capacity 893 |1 29 0 3 1 0 0
4 |CO, 427 |1 29 0 4 1 0 0
5 | Fuel -4.00 |0 29 0 5 1 0 0
6 | Sales -0.82 |0 29 0 5 1 0 0

'If we add small noise to the constant (capacity of small cars), “NMs = 29” are changed to zero.
MNM and NMs of logistic regression are zero.

Table 5 shows the forward stepwise result. At first, “emission” enters the model
because the t-value is high. The MNM and NMs of QDF are zero. LDF cannot
recognize linear separability. Next, ‘price’ enters the 2-features model, although the
t-value of ‘price’ is less than that of ‘capacity’. In the third step, QDF misclassifies all

2 This data is open to the paper about DEA (Table 1 in Page 4. http://repository.seikei.ac. jp/dspace/
handle/10928/402).
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29 regular cars as small cars after “capacity” is included in the 3-features model. This is
because the capacity of small cars is fixed to four persons. It is very important that only
QDF and RDA are adversely affected by this special case. LDF and the t-test are not
affected, because these are computed from the pooled variance of two classes. Modified
RDA offers two options such as A and y. Four trials show that A =y = 0.1 is better than
others. JMP division is expected to show the guideline of two options.

6 K-fold Cross Validation (Problem 4)

Usually, the LOO method is used for model selection of the discriminant analysis. In
this research, “k-fold cross validation for small sample sizes” is proposed, as it is more
powerful than the LOO method. In near future, these results will reveal generalization
abilities and the 95 % ClIs of Revised IP-OLDF, Revised IPLP-OLDF, Revised
LP-OLDF, H-SVM, S-SVM (c = 10%, 1), logistic regression and Fisher’s LDF.

6.1 Hundred-Fold Cross Validation

In the regression analysis, we benefit from inferential statistics, because the SE of
regression coefficients, and model selection statistics such as Cp, AIC and BIC, are known
a priori. On the other hand, there is no SE of discriminant coefficients and model selection
statistics in the discriminant analysis. Therefore, users of the discriminant analysis and
SVMs often use the LOO method. Let the sample size be n. One case is used for validation,
and the other (n — 1) cases are used as training samples. We evaluate n sets of training and
validation samples. If we have a large sample size, we can use k-fold cross validation. The
sample is divided into k subsamples. We can evaluate k combinations of the training and
validation samples. On the other hand, bootstrap or re-sampling methods can be used with
small sample sizes. In this research, large sample sets are generated by re-sampling, and
100-fold cross validation is proposed using these re-sampled data. In this research, “100-
fold cross validation for small sample sizes” is applied as follows: (1) We copy 100 times
the data from midterm exams in 2012 using JMP. (2) We add a uniform random number as
a new variable, sort the data in ascending order, and divide into 100 subsets. (3) We
evaluate eight functions such as Revised IP-OLDF, Revised LP-OLDF, Revised IPLP-
OLDF, H-SVM, S-SVM (c = 10* and 1), Fisher’s LDF and logistic regression by 100-fold
cross validation using these 100 subsets.

Revised IP-OLDF and S-SVM are analyzed by LINGO [11], developed with the
support of LINDO Systems Inc. Logistic regression and LDF are analyzed by JMP,
developed with the support of the JMP division of SAS Japan. There is merit in using
100-fold cross validation because we can easily calculate the 95 % Cls of the dis-
criminant coefficients and NMs (or error rates). The LOO method can be used for
model selection, but cannot obtain the 95 % ClIs. These differences are quite important
for analysis of small samples.
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6.2 LOO and K-Fold Cross Validation

Table 6 shows the results of the LOO method and NMs in the original data. ‘Var.” shows
the suffix of four testlet scores named ‘T’. Only 11 models were showed, because four
1-feature models were omitted from the table. The MNM of the 2-features model
(T2, T4) in No. 6 is zero, as are those of the 4-features model (T1-T4) in No. 1, and the
two 3-features models of (T1, T2, T4) in No. 2 and (T2, T3, T4) in No. 3. The NMs of
logistic regression and SVM4 (c = 104) are zero in these four models, but NMs of SVM1
(c=1) are 2 and 3 in No. 2 and No. 6, respectively. It is often observed that S-SVM
cannot recognize linear separability when the penalty ¢ has a small value. The LOO
method recommends models in No. 3 and No. 6 because these NMs are minimum.

Table 6. LOO and NMs in original test data.

No Var. LOO LDF Logi MNM SVM4 SVM1
1 1-4 14 12 0 0 0 0
2 1,24 13 12 0 0 0 2
3 2,34 11 11 0 0 0 0
4 1,34 15 15 2 2 3 3
5 1,23 16 16 6 4 6 6
6 2,4 11 11 0 0 0 3
7 1.4 16 16 6 3 6 6
8 34 14 13 3 3 4 4
9 1,2 18 17 12 7 7 7

10 2,3 16 11 11 6 11 11

11 1,3 22 21 15 7 10 10

Table 7 shows the results given by Revised IP-OLDF (RIP), SVM4, LDF, and
logistic regression (Logi.). The results of SVM1, Revised LP-OLDF and Revised
IPLP-OLDF are omitted. First column shows the same No. in Table 6. After four linear
separable models, the ranges of seven models are showed. ‘MEAN1’ column denotes
the mean error rate in the training sample. Revised IP-OLDF and logistic regression can
recognize linear separability for four models. For SVM4, only model No.1 has an NM
of zero. The mean error rates of all Fisher’s LDF are over 9.48 %. ‘MEAN2’ column
denotes the mean error rate in the validation sample. Only two models (No.2 and No. 6)
of Revised IP-OLDF have NMs of zero and are selected as the best models. The NMs
of other functions are greater than zero, and those of LDF are over 9.91 %.

We can conclude that Fisher’s LDF is the worst of these four LDFs. Some statis-
ticians believe that NMs of Revised IP-OLDF is less suitable for validation samples,
because it over fits for the training samples. On the other hand, Fisher’s LDF does not
lead to overestimation, because it assumes a normal distribution. These results show that
the presumption of ‘overestimation’ is wrong. We may conclude that real data does not
obey Fisher’s assumption. To build a theory based on an incorrect assumption will lead
to incorrect results [2]. ‘Diff.’ is the difference between MEAN2 and MEAN1. We think
the small absolute value of ‘Diff.” implies there is no overestimation. In this sense,
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Fisher’s LDF is better than the other functions, because all values are less than 0.9.
However, only high values of the training samples lead to small values of ‘Diff.’

‘Diff1’ denotes the value of (MEANI1 of seven LDFs - MEANI1 of Revised IP-
OLDF) in the training samples, and ‘Diff2’ is the value of (MEAN?2 of seven LDFs -
MEAN?2 of Revised IP-OLDF) in the validation samples. All values of ‘Diff1 and Diff2’
of SVM4, Fisher’s LDF and logistic regression are greater than zero. The maximum
values of ‘Diffl’ given by SVM4, LDF and logistic regression are 2.33, 11.34 and
3.13 %, respectively. And the maximum values of ‘Diff2’ given by these functions were
1.7, 10.55 and 1.62 %, respectively. It is concluded that Fisher’s LDF was not as good as
Revised IP-OLDF, S-SVM, and logistic regression by 100-fold cross validation.
Therefore, we had better chosen the model of Revised IP-OLDF with minimum value of
M2 as the best model. Two models such as (T1, T2, T4) and (T2, T4) are zero. In this
case, we had better chosen 2-features model (T2, T4), because of the principle of
parsimony or Occam’s razor. The values of ‘MEAN2’ of Revised IP-OLDF, SVM4,
Fisher’s LDF and logistic regression are 0 %, 1.7 %, 9.91 % and 0.91 %, respectively.
This implies that the mean error rates of Fisher’s LDF is 9.91 % higher than the best
model of Revised IP-OLDF in the validation sample.

Table 7. Comparison of four functions.

RIP MEANI MEAN2 Diff.

1 0 0.07 0.07

2 0 0 0

3 0 0.03 0.03

6 0 0 0

457-11  |[0.79,4.94] [0.03,7.21] [0.03,2.39]

SVM4 MEANI MEAN2 Diff. Diff1 Diff2

1 0 0.81 0.81 0 0.74

2 0.73 1.62 0.90 0.73 1.62

3 0.13 0.96 0.83 0.13 0.93

6 0.77 1.70 0.93 0.77 1.70
45,7-11 |[1.65,6.85] [3.12,8.02] [0.66,1.65] | [0.78,2.33] [0.59,1.36]
LDF MEANI MEAN2 Diff. Diff1 Diff2

1 9.64 10.54 0.90 9.64 10.47

2 9.89 10.55 0.66 9.89 10.55

3 9.48 10.09 0.61 9.48 10.06

6 9.54 9.91 0.37 9.54 9.91
45,7-11  |[10.81,1628] |[11.03,16.48] |[0.16,0.6] (7.97,11.34] | [6.23,9.61]
Logi MEANI MEAN2 Diff. Diff1 Diff2

1 0 0.77 0.77 0 0.70

2 0 1.09 1.09 0 1.09

3 0 0.85 0.85 0 0.82

6 0 0.91 0.91 0 0.91
457-11 |[1.59,7.65] [2.83,8.04] [0.35,1.34] |[0.8,3.13] [0.39,1.62]
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In 2014, these results are recalculated using LINGO Ver.14. The elapsed runtimes
of Revised IP-OLDF and SVM4 are 3 min 54 s and 2 min 22 s, respectively. The
elapsed runtimes of LDF and logistic regression by JMP are 24 min and 21 min,
respectively. Reversals of CPU time have occurred for this time.

7 Conclusions

In this research, we have discussed three problems of discriminant analysis. Problem 1
is solved by Revised IP-OLDF, which looks for the interior points of the OCP directly.
Problem 2 is theoretically solved by Revised IP-OLDF and H-SVM, but H-SVM can
only be applied to linear separable data. Error rates of Fisher’s LDF and QDF are very
high for linear separable data. This means that these functions should not be used for
important discrimination tasks, such as medical diagnosis and genome discrimination.
Problem 3 only concerns QDF. This problem was resolved by a t-test after three years
of investigation, and can be solved by adding a small noise term to variables. Now,
JMP offers a modified RDA, and if we can choose proper parameters, it may be better
than LDF and QDF.

However, these conclusions are confirmed by the training samples. In many
researches, statistical users have small sample sizes, and cannot evaluate the validation
samples. Therefore, “k-fold cross validation for small samples” is proposed. This
method confirms the same above conclusion by the validation samples. Many dis-
criminant functions are developed using various criteria after Warmack and Gonzalez
[29]. The mission of discrimination should be based on the MNM criterion. Statisticians
have tried to develop functions based on the MNM criterion, but this can now be
achieved by Revised IP-OLDF using MIP. It is widely believed that Revised IP-OLDF
leads to overestimations, but Fisher’s LDF is worse for validation samples. Comparison
of eight LDFs are examined for future work (Future4) by 100-fold cross validation.
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