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Abstract. In Group Decision Making, there are situations in which the
decision makers may not be able to provide his/her opinions properly
and they could contain contradictions. To avoid it, in this contribution,
we present a new selection process to deal with inconsistent information.
As part of it, we use a method based on granular computing to increase
the consistency of the opinions given by the decision makers. To do so,
each opinion is articulated as a certain information granule instead of
a single numeric value, offering the necessary flexibility to increase the
consistency. Finally, the importance of the decision makers’ opinions in
the aggregation step is modeled by means of their consistency.

Keywords: Group decision making · Selection process · Granular com-
puting · Consistency · Aggregation

1 Introduction

Group Decision Making (GDM) is a situation where there is a set of alterna-
tives, X = {x1, x2, . . . , xn}, to solve a problem and a group of decision makers,
E = {e1, e2, . . . , em}, (m ≥ 2), characterized by their own knowledge, trying to
achieve a common solution. To do this, decision makers have to communicate
their opinions by means of a set of assessments over the set of alternatives.

Preference relations are usually assumed to model decision makers’ prefer-
ences in GDM problems [1]. According to the nature of the information expressed
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for every pair of alternatives, there exist many different representation formats
of preference relations. In this contribution, we make use of fuzzy preference
relations as they are one of the most employed because of their effectiveness as
a tool for modelling decision processes and their utility and easiness of use when
we want to aggregate decision makers’ preferences into group ones [1,2].

The main advantage of pairwise comparison is that of focusing exclusively
on two alternatives at a time, which facilitates decision makers when express-
ing their preferences. However, this way of providing preferences limits decision
makers in their global perception of the alternatives and, as a consequence, the
provided preferences could be not rational.

As consistent information, that is, information which does not imply any
kind of contradiction, is more appropriate than information containing some
contradictions, it is of great importance to provide decision makers with some
tools that allow them to increase their level of consistency. To do so, information
granularity may be used [3].

Information granularity is an important design asset offering to the deci-
sion makers some flexibility with the intent that their initial preferences can be
adjusted in order to obtain a higher level of consistency. Assuming that each
decision maker communicates his/her opinions using a fuzzy preference relation,
this flexibility is brought into the fuzzy preference relations by allowing them to
be granular rather than numeric. Therefore, the entries of the fuzzy preference
relations are not considered plain numbers but information granules (fuzzy sets,
probability density functions, rough sets, intervals, and so on).

The objective of this contribution is to present a new selection process based
on granular computing for GDM. It is composed of three steps: (1) improvement
of the consistency in the opinions given by the decision makers, (2) aggregation,
and (3) exploitation. In the first step, an allocation of information granularity, as
a key component to improve the consistency, is used. In such a way, some level
of granularity is introduced in the realization of the granular representation of
the fuzzy preference relations, supplying the required flexibility to increase the
level of consistency. Then, assuming the choice scheme proposed in [4], aggre-
gation following by exploitation, this new selection process is completed. On
the one hand, the aggregation step consists in combining the decision makers’
individual preferences into a collective one, which reflects the properties con-
tained in all the individual preferences. On the other hand, the exploitation step
transforms the global information about the alternatives into a global ranking of
them. To do this, two quantifier-guided choice degrees of alternatives may be
used: the dominance and the nondominance degree. The main advantages of
this new selection process are that it supports the improvement of consistency,
and it aggregates the decision makers’ preferences giving more importance to
the most consistent ones.

The rest of this contribution is set out as follows. Section 2 deals with how to
obtain the level of consistency in a fuzzy preference relation. Section 3 provides
a detailed description of the new selection process based on granular computing
for GDM problems. An example of its application is shown in Sect. 4, and, finally,
in Sect. 5, we point out some conclusions.
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2 Obtaining the Consistency Level in a Fuzzy
Preference Relation

In this section, we introduce both the definition of a fuzzy preference relation
and a method to obtain its level of consistency.

Definition 1. A fuzzy preference relation PR on a set of alternatives X is a
fuzzy set on the Cartesian product X×X, i.e., it is characterized by a membership
function μPR : X × X → [0, 1].

A fuzzy preference relation PR may be represented by the n × n matrix PR =
(prij), being prij = μPR(xi, xj) (∀i, j ∈ {1, . . . , n}) interpreted as the preference
degree or intensity of the alternative xi over xj : prij = 0.5 indicates indifference
between xi and xj (xi ∼ xj), prij = 1 indicates that xi is absolutely preferred
to xj , and prij > 0.5 indicates that xi is preferred to xj (xi � xj). Based on this
interpretation we have that prii = 0.5 ∀i ∈ {1, . . . , n} (xi ∼ xi). Since prii’s (as
well as the corresponding elements on the main diagonal in some other matrices)
do not matter, we will write them as ‘–’ instead of 0.5 [5].

The previous Definition 1 dealing with a fuzzy preference relation does not
imply any kind of consistency property and, thus, the preference values of the
pairwise comparisons can be contradictory. Obviously, because of an inconsistent
source of information is not as useful as a consistent one, it is quite important to
be able to measure the consistency of the information provided by the decision
makers. To do so, different properties to be satisfied with the fuzzy preference
relations have been proposed in the literature [6,7].

In this contribution, we make use of the additive transitivity property which
facilitates the verification of consistency in the case of fuzzy preference relations.
As it was shown in [7], additive transitivity for fuzzy preference relations may
be seen as the parallel concept of Saaty’s consistency property for multiplicative
preference relations [8]. The mathematical formulation of the additive transitiv-
ity was given by [1]:

(prij − 0.5) + (prjk − 0.5) = (prik − 0.5),∀i, j, k ∈ {1, . . . , n}. (1)

Additive transitivity implies additive reciprocity. Indeed, because prii = 0.5
∀i, if we make k = i in (1), then we have: prij + prji = 1, ∀i, j ∈ {1, . . . , n}.

Equation (1) can be rewritten as follows:

prik = prij + prjk − 0.5,∀i, j, k ∈ {1, . . . , n}. (2)

A fuzzy preference relation is considered to be “additively consistent” when
for every three options encountered in the problem, say xi, xj , xk ∈ X, their
associated preference degrees, prij , prjk, prik, fulfil (2).

Given a fuzzy preference relation, (2) can be used to calculate an estimated
value of a preference degree using other preference degrees. In fact, the following
estimated value of prik (i �= k) can be calculated in three different ways using
an intermediate alternative xj [5]:
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– From prik = prij + prjk − 0.5, we obtain the estimated value (eprik)j1:

(eprik)j1 = prij + prjk − 0.5. (3)

– From prjk = prji + prik − 0.5, we obtain the estimated value (eprik)j2:

(eprik)j2 = prjk − prji + 0.5. (4)

– From prij = prik + prkj − 0.5, we obtain the estimated value (eprik)j3:

(eprik)j3 = prij − prkj + 0.5. (5)

Then, the estimated value, eprik, of a preference degree, prik, is calculated
according to the following expression:

eprik =

n∑

j=1
j �=i,k

(
(eprik)j1 + (eprik)j2 + (eprik)j3

)

3(n − 2)
. (6)

When information provided is completely consistent then (eprik)jl = prik

∀j, l. However, because decision makers are not always fully consistent, the
assessment made by a decision maker may not verify (2) and some of the esti-
mated preference degree values (eprik)jl may not belong to the unit interval
[0, 1]. We note, on a basis of (3)–(5), that the maximum value of any of the
preference degrees (eprik)jl (l ∈ {1, 2, 3}) is 1.5 while the minimum one is −0.5.
In such a way, the error, εprik, between a preference degree and its estimated
one in [0, 1] is computed as follows [5]:

εprik =
2
3

· |eprik − prik|. (7)

This error can be used to define the consistency degree cdik associated to the
preference degree prik as follows:

cdik = 1 − εprik. (8)

When cdik = 1, then εprik = 0 and there is no inconsistency at all. The lower
the value of cdik, the higher the value of εprik and the more inconsistent is prik

with respect to the rest of information.
Finally, the consistency degrees associated with individual alternatives and

the overall fuzzy preference relation are defined as follows:

– The consistency degree, cdi ∈ [0, 1], associated to a particular alternative xi

of a fuzzy preference relation is defined as:

cdi =

∑n
k=1;i�=k (cdik + cdki)

2(n − 1)
. (9)

– The consistency degree, cd ∈ [0, 1], of a fuzzy preference relation is defined as:

cd =
∑n

i=1 cdi

n
. (10)

When the fuzzy preference relation is given by a decision maker eh, the
consistency degree of the fuzzy preference relation is represented as cdh.
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3 A Selection Process Based on Granular Computing

In this section, we present the new selection process based on granular computing
for GDM problems. It consists of three steps: (1) improvement of the consistency,
(2) aggregation, and (3) exploitation. An allocation of information granularity,
as a key component to increase the level of consistency in the fuzzy preference
relations, is used in the first step. The aggregation phase defines a collective
fuzzy preference relation indicating the global preference between every pair of
alternatives, while the exploitation step transforms the global information about
the alternatives into a global ranking of them.

3.1 Improvement of the Consistency

The improvement of consistency when the decision makers communicate their
opinions by means of fuzzy preference relations becomes a very important aspect
in order to avoid misleading solutions. As we have already aforementioned, the
improvement of consistency calls for some flexibility exhibited by the decision
makers with respect their initial opinions.

These changes of preferences are articulated through modifications of the
entries of the fuzzy preference relations. That is, if the pairwise comparisons of
the fuzzy preference relations are not managed as single numeric values, which
are inflexible, but rather as information granules, it will bring the indispensable
factor of flexibility.

The notation G(PR) is here used to accentuate that we are interested in
granular fuzzy preference relations. G(.) represents the specific granular formal-
ism which is used, say intervals, probability density functions, fuzzy sets, rough
sets, and alike. In particular, in this contribution, the granularity of informa-
tion is articulated through intervals. Therefore, G(PR) = P(PR), where P(.)
denotes a family of intervals. The length of such intervals (entries of the fuzzy
preference relations) is sought as a level of granularity α, which is treated as
synonymous of the level of flexibility, facilitating the improvement of the con-
sistency. The higher level of granularity is allowed to the decision maker, the
higher the feasibility of arriving at a higher level of consistency.

This flexibility given by the level of granularity may be used to optimize a
certain objective function in order to increase the level of consistency. In the
interval-valued granular model of fuzzy preference relations, it is supposed that
each decision maker feels equally comfortable when selecting any fuzzy prefer-
ence relation whose values are placed within the bounds fixed by the level of
granularity α. In such a way, the improvement of the consistency is effectuated
at the level of individual decision makers using the following optimization index:

Q =
1
m

m∑

h=1

cdh. (11)

Therefore, the overall optimization problem reads as follows:

MaxPR1,PR2,...,PRm∈P (PR)Q. (12)
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The aforementioned maximization is conducted for all acceptable interval-
valued fuzzy preference relations because of the introduced level of granularity
α. This fact is underlined by including a granular form of the fuzzy preference
relations allowed in the problem, that is, PR1, PR2, . . ., PRm, are elements of
the family of interval-valued fuzzy preference relations, namely, P(PR).

In this contribution, the optimization of the fuzzy preference relations, com-
ing from the space of interval-valued fuzzy preference relations, is carried out by
means of the Particle Swarm Optimization (PSO) framework [9]. PSO is here
used because it is especially attractive given its less significant computing over-
head in comparison with other techniques of global optimization [10]. However,
other optimization mechanisms could be used as well.

The PSO is well documented in the existing literature with numerous mod-
ifications and augmentations. Refer to the generic flow of computing in which
velocities and positions of the particles are updated. What is important in this
setting is a formation of the particle. In our framework, each particle represents
a vector whose entries are located in the unit interval. When it comes to the
representation of the solutions, the particle is composed of “m ·n(n−1)” entries
positioned in the [0, 1] interval which corresponds to the search space.

Assuming a given level of granularity α (located in the unit interval) and
starting with the initial fuzzy preference relation PR, provided by the decision
maker, let us consider an entry prij of PR. The interval of admissible values of
this entry of P(PR) implied by the level of granularity α is equal to:

[a, b] = [max(0, prij − α/2),min(1, prij + α/2)]. (13)

Considering that the entry of interest of the particle is x, an entry prij is
transformed linearly according to the expression z = a + (b − a)x. For instance,
suppose that prij is equal to 0.3, the admissible level of granularity α is equal
to 0.1, and the corresponding entry of the particle is x = 0.7. According to it,
the corresponding interval of the granular fuzzy preference relation calculated
as given by (13) becomes equal to [a, b] = [0.25, 0.35]. Therefore, z = 0.32, and
the modified value of prij becomes equal to 0.32.

Finally, it is important to note that the overall particle is composed of the
individual segments, where each of them is concerned with the optimization of
the parameters of the fuzzy preference relations. Hence, the fitness function, f ,
associated with the particle is defined as f = Q, being Q the optimization index
presented previously. The higher the value of f , the better the particle is.

3.2 Aggregation

Once the consistency of the fuzzy preference relations has been increased, a col-
lective fuzzy preference relation PRc = (prc

ij) must be obtained by aggregating
all of the m individual fuzzy preference relations {PR1, . . . , PRm}. Here, each
value prc

ij ∈ [0, 1] will represent the preference of the alternative xi over the
alternative xj according to the majority of the most consistent decision makers.
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A logical assumption in the resolution process of a GDM problem is that
of associating more importance to the decision makers who provide the most
consistent opinions. Approaches for the inclusion of these values of importance in
the aggregation process involve the transformation of the preference values under
the importance degree by means of a transformation function to generate a new
value [11,12]. In this contribution, we apply an alternative approach consisting
of using consistency levels as the order inducing values of the Induced Ordered
Weighted Averaging (IOWA) operator [13] to be applied in the aggregation step
of the selection process.

Definition 2. An IOWA operator of dimension n is a function ΦW : (R ×
R)n → R, to which a set of weights or weighting vector is associated, W =
(w1, . . . , wn), with wi ∈ [0, 1],

∑
i wi = 1, and it is defined to aggregate the set

of second arguments of a list of n two-tuples {〈u1, p1〉, . . . , 〈un, pn〉} according to
the following expression:

ΦW (〈u1, p1〉, . . . , 〈un, pn〉) =
n∑

i=1

wi · pσ(i), (14)

being σ a permutation of {1, . . . , n} such that uσ(i) ≥ uσ(i+1), ∀i = 1, . . . , n − 1,
i.e., 〈uσ(i), pσ(i)〉 is the two-tuple with uσ(i) the i-th highest value in the set
{u1, . . . , un}.
In the above definition, the reordering of the set of values to be aggregated,
{p1, . . . , pn}, is induced by the reordering of the set of values {u1, . . . , un} asso-
ciated with them, which is based upon their magnitude. Due to this use of the
set of values {u1, . . . , un}, Yager and Filev called them the values of an order
inducing variable and {p1, . . . , pn} the values of the argument variable [13].

An essential question in the definition of the IOWA operator is how to obtain
the associated weighting vector. To do so, the approaches proposed to calculate
the weighting vector of an Ordered Weighted Averaging (OWA) operator can be
applied [14].

Definition 3. An OWA operator of dimension n is a function φW : Rn → R,
which has a set of weights or weighting vector associated with it, W = (w1, . . . ,
wn), with wi ∈ [0, 1],

∑
i wi = 1, and it is defined to aggregate a list of n values

{p1, . . . , pn} according to the following expression:

φW (p1, . . . , pn) =
n∑

i=1

wi · pσ(i), (15)

being σ : {1, . . . , n} → {1, . . . , n} a permutation such that pσ(i) ≥ pσ(i+1), ∀i =
1, . . . , n − 1, i.e., pσ(i) is the i-th highest value in the set {p1, . . . , pn}.
In the process of quantifier-guided aggregation, given a collection of n criteria
represented as fuzzy subsets of the alternatives X, the OWA operator is used
to implement the concept of fuzzy majority in the aggregation phase by means
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of a fuzzy linguistic quantifier [15], indicating the proportion of satisfied criteria
“necessary for a good solution” [16]. This implementation is done by using the
quantifier to calculate the OWA weights. According to it, in the case of a regular
increasing monotone (RIM) quantifier Q, the procedure to evaluate the overall
satisfaction of Q criteria (or decision makers) by the alternative xj is carried out
calculating the IOWA weights as follows:

wi = Q(i/n) − Q((i − 1)/n), i = 1, . . . , n. (16)

When a fuzzy linguistic quantifier Q is used to compute the weights of the
above aggregation operators, then it is symbolized by ΦQ and φQ, respectively.

Definition 2 allows the construction of many different IOWA operators. Here,
we use an IOWA operator in which the ordering of the preference values to be
aggregated is induced by ordering the decision makers from the most to the least
consistent one. Therefore, the collective fuzzy preference relation is obtained as:

prc
ij = ΦQ(〈cd1, pr1ij〉, . . . , 〈cdm, prm

ij 〉), (17)

where Q is the fuzzy linguistic quantifier used to implement the fuzzy majority
concept and, using (16), to compute the weighting vector of the IOWA operator.

3.3 Exploitation

At this point, in order to select the alternative(s) “best” acceptable for the
majority (Q) of the most consistent decision makers, two quantifier-guided choice
degrees of alternatives can be employed [17]: a dominance degree (QGDD), and
a nondominance degree (QGNDD).

– QGDDi: This quantifier-guided dominance degree evaluates the dominance
that the alternative xi has over all the others in a fuzzy majority sense. It is
computed as follows:

QGDDi = φQ(prc
i1, prc

i2, . . . , prc
i(i−1), prc

i(i+1), . . . , prc
in). (18)

– QGNDDi: This quantifier-guided nondominance degree gives the degree in
which the alternative xi is not dominated by a fuzzy majority of the remaining
alternatives. It is calculated as follows:

QGNDDi = φQ(1−ps
1i, 1−ps

2i, . . . , 1−ps
(i−1)i, 1−ps

(i+1)i, . . . , 1−ps
ni), (19)

where ps
ji = max{prc

ji − prc
ij , 0} represents the degree in which xi is strictly

dominated by xj .

The application of the above choice degrees of alternatives over X may
be carried out according to two different policies: (1) sequential policy, and
(2) conjunctive policy [5]. On the one hand, in the sequential policy, one of the
choice degrees is selected and applied to X according to the preference of the
decision makers, obtaining a selection set of alternatives. If there is more than
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one alternative in this selection set, then, the other choice degree is applied to
select the alternative of this set with the best second choice degree. One the
other hand, in the conjunctive policy, both choice degrees are applied to X,
obtaining two selection sets of alternatives. The final selection set of alternatives
is obtained as the intersection of these two selection sets of alternatives. The lat-
ter conjunction selection process is more restrictive than the former sequential
selection process because it is possible to obtain an empty selection set.

4 Illustrative Example

In this section, we present an illustrative example which helps quantifying the
performance of the selection process proposed in this contribution.

Let us suppose that the supermarket manager wants to buy 500 bottles
of Spanish wine from among four possible brands of wine: {x1 = Marqués de
Cáceres, x2 = Los Molinos, x3 = Somontano, x4 = René Barbier}. The man-
ager decide to inquire four decision makers, E = {e1, e2, e3, e4}, about their
opinions on what Spanish wine should be bought. The decision makers provide
the following fuzzy preference relations:

PR1 =

⎛

⎜⎜⎝

− 0.60 0.30 0.50
0.10 − 0.70 0.70
0.80 0.10 − 0.10
0.10 0.40 0.60 −

⎞

⎟⎟⎠ PR2 =

⎛

⎜⎜⎝

− 0.20 0.50 0.10
0.40 − 0.20 0.80
0.50 0.40 − 0.90
0.90 0.10 0.40 −

⎞

⎟⎟⎠

PR3 =

⎛

⎜⎜⎝

− 0.20 0.20 0.70
0.30 − 0.60 0.90
0.10 0.40 − 0.30
0.10 0.40 0.70 −

⎞

⎟⎟⎠ PR4 =

⎛

⎜⎜⎝

− 0.70 0.10 0.50
0.50 − 0.50 0.30
0.90 0.70 − 0.40
0.30 0.70 0.70 −

⎞

⎟⎟⎠

Once the decision makers have expressed their opinions, the selection process
is applied in order to rank the Spanish wines from best to worst.

4.1 First Step: Improvement of the Consistency

Proceeding with the details of the optimization environment, in this contribution,
a generic version of the PSO is used. The parameters in the update equation for
the velocity of the particle were set as c1 = c2 = 2, as these values are usually
encountered in the existing literature. The size of the swarm consists of 100
particles, and the algorithm was run for 200 generations (or iterations). These
values were selected as a result of intensive experimentation.

Considering a given level of granularity α, Table 1 shows the performance of
the PSO quantified in terms of the fitness function. To put the achieved optimiza-
tion results in a certain context, we report the performance obtained when no
granularity is allowed (α = 0), that is, when considering the entries of the fuzzy
preference relations are single numeric values. In such a case, the correspond-
ing consistency degrees of the four fuzzy preference relations are: cd1 = 0.73,
cd2 = 0.76, cd3 = 0.82, and cd4 = 0.81. Therefore, the value of the fitness
function f is 0.78.



22 F.J. Cabrerizo et al.

Table 1. Performance of the PSO for selected values of α

α = 0.2 α = 0.4 α = 0.6 α = 0.8 α = 1.0 α = 1.2 α = 1.4 α = 1.6 α = 1.8 α = 2.0

cd1 0.73 0.77 0.79 0.83 0.88 0.93 0.96 0.98 1.00 1.00

cd2 0.76 0.78 0.82 0.85 0.88 0.91 0.94 0.97 1.00 1.00

cd3 0.83 0.84 0.86 0.89 0.91 0.94 0.97 0.99 1.00 1.00

cd4 0.82 0.83 0.85 0.88 0.91 0.94 0.97 0.98 1.00 1.00

f 0.79 0.80 0.83 0.86 0.90 0.93 0.96 0.98 1.00 1.00

Comparing with the values obtained by the PSO, the fitness function f takes
on now lower values. As we can see in Table 1, the higher the admitted level
of granularity α, the higher the values obtained by the fitness function f . It is
logical, as the higher the level of granularity α, the higher the level of flexibility
introduced in the fuzzy preference relations and, hence, the possibility of achiev-
ing higher level of consistency. Furthermore, when each entry of the granular
preference relation is treated as the whole [0, 1] interval (α = 2.0), the value of
the fitness function is 1, the maximum one. Nevertheless, in this case, we have
to take into account that whether the level of granularity is very high, the values
of the entries of the fuzzy preference relation could be very different in compari-
son with the original ones given by the decision maker and, hence, he/she could
reject them.

Following with the example, we are going to consider that the level of gran-
ularity α is equal to 0.6 and, therefore, the consistency level achieved among all
the decision makers is 0.83 which is better than the consistency obtained when
no granularity is admitted (0.78). Then, using this level of granularity, the new
fuzzy preference relations obtained using the PSO are:

PR1 =

⎛

⎜⎜⎝

− 0.30 0.10 0.20
0.10 − 0.40 0.40
0.50 0.10 − 0.10
0.10 0.10 0.30 −

⎞

⎟⎟⎠ PR2 =

⎛

⎜⎜⎝

− 0.26 0.52 0.21
0.42 − 0.26 0.76
0.52 0.42 − 0.81
0.81 0.21 0.42 −

⎞

⎟⎟⎠

PR3 =

⎛

⎜⎜⎝

− 0.19 0.19 0.63
0.23 − 0.53 0.75
0.15 0.33 − 0.23
0.15 0.33 0.63 −

⎞

⎟⎟⎠ PR4 =

⎛

⎜⎜⎝

− 0.56 0.10 0.36
0.36 − 0.36 0.16
0.70 0.56 − 0.26
0.16 0.56 0.56 −

⎞

⎟⎟⎠

4.2 Second Step: Aggregation

Once the consistency of the fuzzy preference relations have been increased, we
aggregate them by means of the IOWA operator presented in Sect. 3.2. We make
use of the linguistic quantifier “most of”, represented by the RIM quantifier
Q(r) = r1/2, which applying (16) generates a weighting vector of four values to
obtain each collective preference value prc

ij . As example, the collective preference
value prc

12 is calculated in the following way:
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w1 = Q(1/4) − Q(0) = 0.5 − 0 = 0.5
w2 = Q(2/4) − Q(1/4) = 0.71 − 0.5 = 0.21
w3 = Q(3/4) − Q(2/4) = 0.87 − 0.71 = 0.16
w4 = Q(1) − Q(3/4) = 1 − 0.87 = 0.13
cd1 = 0.79, cd2 = 0.82, cd3 = 0.86, cd4 = 0.85
σ(1) = 3, σ(2) = 4, σ(3) = 2, σ(4) = 1
prc

12 = w1 · pr312 + w2 · pr412 + w3 · pr212 + w4 · pr112 = 0.21

Then, the collective fuzzy preference relation is:

PRc =

⎛

⎜⎜⎝

− 0.21 0.17 0.45
0.27 − 0.43 0.58
0.37 0.36 − 0.31
0.25 0.33 0.54 −

⎞

⎟⎟⎠

4.3 Third Step: Exploitation

Using again the same linguistic quantifier “most of” and (16), we obtain the
following weighting vector W = (w1, w2, w3):

w1 = Q(1/3) − Q(0) = 0.58 − 0 = 0.58
w2 = Q(2/3) − Q(1/3) = 0.82 − 0.58 = 0.24
w3 = Q(1) − Q(2/3) = 1 − 0.82 = 0.18

Using, for example, the quantifier-guided dominance degree, we obtain the
following values: {QGDD1 = 0.34, QGDD2 = 0.49, QGDD3 = 0.36, QGDD4 =
0.44}. Then, applying, for instance, the sequential policy, the following ranking
of alternatives is obtained: x2 � x4 � x3 � x1. Using this information, the
supermarket manager should buy 500 bottles of Los Molinos wine.

5 Conclusions

In this contribution, we have presented a new selection process based on granular
computing to be used to solve GDM problems. As main novelty, it incorporates
a first step in order to increase the consistency achieved by the decision makers
in their opinions. To do so, we have proposed the concept of granular fuzzy
preference relation and we have emphasized a role of information granularity as
a conceptual vehicle to facilitate admissible changes to the results of pairwise
comparisons. It has offered a badly needed flexibility to increase the consistency.
In addition, the aggregation of the opinions provided by the decision makers has
been carried out by giving more importance to the most consistent ones.
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